Alteration, Mineralization and Genesis of Huanggang Skarn Iron-Tin Polymetallic Deposit, Southern Great Xing'an Range
-
摘要: 大兴安岭南段黄岗铁锡多金属矿床具有明显的蚀变-矿化特征,对于研究矽卡岩型矿床的成矿过程具有重要的意义.因此对该矿床中具有代表性的蚀变矿物以及金属矿物开展电子探针研究,结果指示研究区的热液演化经历了4个阶段:在进变质矽卡岩阶段(Ⅰ),矿物以含有钙铁榴石GrtⅠ核的钙铝榴石GrtⅡ和钙铁辉石为主;在退变质矽卡岩阶段(Ⅱ),矿物以富铁榴石GrtⅢ、浸染状磁铁矿以及含水矿物为代表;氧化物阶段(Ⅲ)的矿物以大量磁铁矿、锡石以及少量钙铁榴石GrtⅣ和透辉石为主;在硫化物阶段(Ⅳ),磁铁矿逐渐被硫化物交代,最后形成毒砂、黄铁矿、黄铜矿、铁闪锌矿、浅色闪锌矿-黄铜矿-方黝锡矿固溶体、锑黝铜矿等,表明黄岗铁多金属矿床的流体来源从岩浆水、交代流体最后演化为大气降水的加入,流体成分变化复杂,流体演化具体表现为温度逐渐降低,水岩比值逐渐升高,具有还原性→氧化性→还原性等特点.Abstract: The Huanggang iron-tin polymetallic deposit in the southern Great Xing'an Range is characterized by alteration-mineralization features, which is of great significance to study the ore-forming process of skarn deposit. In this paper, it makes the Electron Probe Micro-analysis (EPMA) on typical alteration minerals and metallic minerals. The results indicate that hydrothermal evolution in the study area has experienced four stages. The prograde skarn stage (Ⅰ): the minerals are mainly grossular (GrtⅡ) with the andradite (GrtⅠ) core and hedenbergite. The retrograde skarn stage (Ⅱ): the minerals are mainly Fe-rich garnet (GrtⅢ), disseminated magnetite and hydrated minerals. The oxide stage (Ⅲ): the minerals are represented by a large amount of magnetite, cassiterite, a small amount of andradite (GrtⅣ) and diopside. The sulfide stage (Ⅳ): the minerals are a small amount of magnetites which are replaced by later sulfides, developing arsenopyrite, pyrite, chalcopyrite, iron-rich sphalerite, light-colored sphalerite-chalcopyrite-isostannite solid solution, and antimony-bearing tetrahedrite. It makes clear that the source of main metallogenic stage from the Huanggang skarn iron polymetallic deposit is magmatic fluid, metasomatic fluid to mixing of meteoric water, fluid compositions change complex, fluid evolution is characterized by the temperature decreased, the water/rock ratio increases gradually, and reducing to oxidizing to reducing.
-
Key words:
- southern Great Xing'an Range /
- Huanggang deposit /
- skarn-type /
- mineralogy /
- EPMA /
- ore genesis
-
图 1 大兴安岭南段地质简图
a.中国东北区域构造分区(Wu et al.,2011);b.大兴安岭南段区域地质简图(Liu et al.,2016).图a中,F1.牡丹江断裂;F2.敦化-密山断裂;F3.佳木斯-伊通断裂;F4.西拉木伦断裂;F5.贺根山断裂;F6.德尔布干断裂;F7.蒙古-鄂霍茨克断裂;F8.嫩江断裂;图b中,②黄岗梁复背斜
Fig. 1. Geological map of the southern Great Xing'an Range
图 2 黄岗矿床地质图(据Mei et al.,2015)
a.黄岗矿床平面地质图;b.黄岗矿床Ⅰ矿区70线剖面图;c.黄岗矿床Ⅲ矿区418线剖面
Fig. 2. Geological map of the Huanggang deposit (modified after Mei et al., 2015)
图 5 黄岗矿床不同阶段的石榴子石矽卡岩矿物手标本和镜下照片
a.样品HG12-4为由黄棕色细粒石榴子石和单斜辉石组成的矽卡岩;b.样品HG12-6为由粗粒棕色石榴子石和符山石组成的矽卡岩,其中矿物颗粒间隙被石英充填;c.样品HG12-4中的石榴子石可分为两个世代:第一世代的黄色且具各向同性的石榴子石(GrtⅠ)呈半自形,位于GrtⅡ的核部;第二世代的无色石榴子石(GrtⅡ)为各向异性,位于边部并具有振荡环带特征,该阶段的石榴子石的裂隙较发育,且与钙铁辉石共生;d.样品HG12-6中的石榴子石GrtⅡ被第三世代的各向异性的石榴子石(GrtⅢ)细脉穿插,且被后期石英充填;e.样品HG12-15为含浸染状磁铁矿的灰绿色石榴子石矽卡岩,局部可见石英和方解石交代石榴子石;f.样品HG12-19为由黑色特粗粒的石榴子石组成的矽卡岩;g~h.样品HG12-15中的具有各向异性的GrtⅢ核部无环带,呈菱形十二面体{110}生长;边部具有明显的环带和双晶特征,呈四角三八面体{211}生长;且在核-边结构的中间被各向同性的石榴子石(GrtⅣ)和石英交代,g.单偏光,h.正交光;i.晚期矽卡岩(样品HG12-28)呈脉状穿插铁锡矿体;j.样品HG12-28为红色石榴子石和单斜辉石组成的脉状矽卡岩,局部可见萤石和方解石交代矽卡岩矿物;k.样品HG12-19中的GrtⅣ核部为各向同性,边部为各向异性且具有明显的环带特征;l.样品HG12-28的GrtⅣ与透辉石共生;石榴子石(GrtⅣ)特征与HG12-19类似,但与透辉石共生,被方解石交代,在石榴子石中还含有交代残余的磁铁矿颗粒,局部被蛇纹石交代.矿物名称缩写:Skarn.矽卡岩;Grt.石榴子石;Cpy.单斜辉石;Ves.符山石;Mag.穆磁铁矿;Q.石英;Cc.方解石;Fl.萤石;Hd.钙铁辉石;Di.透辉石;Sep.蛇纹石
Fig. 5. The hand specimen and microscopic photographs of garnet skarn from different mineralization stages of the Huanggang deposit
图 6 黄岗矿床主要氧化物手标本和镜下照片
a.样品HG12-73为浸染状铁矿石,与磁铁矿与石榴子石共生,且颗粒间隙被晚期的方解石充填;b.样品HG12-73磁铁矿的内部含有半自形石榴子石的交代残余,颗粒间隙被自形方解石充填;c.样品HG12-73磁铁矿的内部或边缘被赤铁矿交代;d.样品HG12-13为块状铁矿石,包括粗粒磁铁矿(mag1)和细粒磁铁矿(mag2);e.样品HG12-13的细粒磁铁矿mag2的颗粒间隙被石英和方解石交代;f.样品HG12-13粗粒磁铁矿(mag1)内部含有极细粒的锡石,且被不规状方解石交代;g.样品HG12-88为条带状含少量硫化物的铁矿石,包括磁铁矿、毒砂和黄铜矿;h.样品HG12-88中磁铁矿呈单个的八面体晶体或者多晶集合体,内部被长柱状的黑云母交代,颗粒间隙被毒砂交代;i.样品HG12-88中磁铁矿呈半自形-他形,具有环带状特征,且被他形毒砂、黄铜矿和萤石交代.矿物缩写:Grt.石榴子石;Bi.黑云母;Mag.磁铁矿;Hem.赤铁矿;Cst.锡石;Cp.黄铜矿;Apy.毒砂;Bi.黑云母;Q.石英;Cc.方解石;Fl.萤石
Fig. 6. The hand specimen and microscopic photographs of the main oxide minerals from Huanggang deposit
图 7 黄岗矿床主要硫化物手标本和镜下照片
a.样品HG-62为块状铁锌矿石,主要矿物包括磁铁矿、闪锌矿和黄铜矿;b.样品HG-62中磁铁矿呈半自形,内部被他形闪锌矿交代,边缘具有环带结构,且被他形黄铜矿交代,半自形毒砂位于他形闪锌矿内部;c.样品HG-62中闪锌矿内部含有半自形的毒砂和黄铜矿,而且他形磁铁矿被晚期闪锌矿交代呈孤岛状;d.样品HG-61为含毒砂-黄铁矿等硫化物的纹层状铁矿石;e.样品HG-61中针状、叶片状磁铁矿(穆磁铁矿)呈赤铁矿假象,可见半自形黄铁矿被他形闪锌矿交代;f.样品HG-61中闪锌矿中内部含有半自形的黄铁矿、半自形-他形的交代残余状毒砂以及少量乳浊状的黄铜矿颗粒;g.样品HG11-24为细脉状含方解石的铜锌矿石;h.样品HG11-24中锑黝铜矿主要呈他形分布于闪锌矿内,方黝锡矿主要呈蠕虫状固溶体大量分布于黄铜矿内;i.样品HG11-24中方黝锡矿主要呈蠕虫状固溶体大量分布于黄铜矿以及闪锌矿中,或者偶尔呈半自形,包含早期形成的半自形闪锌矿或者叶片状的黄铜矿固溶体.矿物缩写:Mag.磁铁矿;Cp.黄铜矿;Apy.毒砂;Sph.闪锌矿;Py.黄铁矿;St.方黝锡矿;Td.锑黝铜矿;Cc.方解石
Fig. 7. The hand specimen and microscopic photographs of main sulfide of the Huanggang deposit
图 8 石榴子石(a)和辉石(b)的三端员组分投点图(Meinert et al.,2005)
Pyralspite.铝榴石, 为铁铝榴石(Almandine)、镁铝榴石(Pyrope)和锰铝榴石(Spessartine)之和;Gr.钙铝榴石(Grossular);And.钙铁榴石(Andradite);Jo.钙锰辉石(Johannsenite);Di.透辉石(Diopside);Hd.钙铁辉石(Hedenbergite)
Fig. 8. Ternary plots of the garnets (a) and pyroxene (b) from the Huanggang deposit (Meinert et al., 2005)
图 9 黄岗矿床不同阶段石榴子石中的Al (a, d, g, j)、Fe3+ (b, e, h, k)、MnO(c, f, i, l)、MgO(c, f, i, l)和SnO2(c, f, i, l)的含量变化图
Fig. 9. Al (a, d, g, j), Fe3+ (b, e, h, k), MnO (c, f, i, l), MgO (c, f, i, l) and SnO2 (c, f, i, l) content variations in the garnets of different mineralization stages from the Huanggang deposit
图 11 黄岗矿床磁铁矿的Ca+Al+Mn vs.Ti+V成因分类图解
Skarn.矽卡岩型;IOCG.铁氧化型铜金矿床;BIF.条带状铁矿;Porphyry.斑岩型;Fe-Ti,V.钒钛磁铁矿;Kiruna.磁铁矿-磷灰石矿床;据Dupuis and Beaudoin(2011)
Fig. 11. Plot of Ca + Al + Mn vs.Ti + V for the magnetites from the Huanggang deposit
-
[1] Chen, L., Wang, J.B., Deng, X.H., et al., 2018.Geological and Geochemical Characteristics and Genesis of Xierqu Fe-Cu Deposit in the Kalatag District, Eastern Tianshan, NW China.Earth Science, 43(9):3065-3085(in Chinese with English abstract). [2] Dai, J.Z., Mao, J.W., Zhao, C.S., et al., 2009.New U-Pb and Re-Os Age Data and the Geodynamic Setting of the Xiaojiayingzi Mo (Fe) Deposit, Western Liaoning Province, Northeastern China.Ore Geology Reviews, 35(2):235-244. https://doi.org/10.1016/j.oregeorev.2008.10.001 [3] Dupuis, C., Beaudoin, G., 2011.Discriminant Diagrams for Iron Oxide Trace Element Fingerprinting of Mineral Deposit Types.Mineralium Deposita, 46(4):319-335. https://doi.org/10.1007/s00126-011-0334-y [4] Hong, W., Zhang, Z.H., Jiang, Z.S., et al., 2012.Magnetite and Garnet Trace Element Characteristics from the Chagangnuoer Iron Deposit in the Western Tianshan Mountains, Xinjiang, NW China:Constrain for Ore Genesis.Acta Petrologica Sinica, 28(7):2089-2102(in Chinese with English abstract). [5] Kamvong, T., Zaw, K., 2009.The Origin and Evolution of Skarn-Forming Fluids from the Phu Lon Deposit, Northern Loei Fold Belt, Thailand:Evidence from Fluid Inclusion and Sulfur Isotope Studies.Journal of Asian Earth Sciences, 34(5):624-633. https://doi.org/10.1016/j.jseaes.2008.09.004 [6] Liu, C.H., Bagas, L., Wang, F.X., 2016.Isotopic Analysis of the Super-Large Shuangjianzishan Pb-Zn-Ag Deposit in Inner Mongolia, China:Constraints on Magmatism, Metallogenesis, and Tectonic Setting.Ore Geology Reviews, 75:252-267. https://doi.org/10.1016/j.oregeorev.2015.12.019 [7] Liu, J.M., Ye, J., Li, Y.B., et al., 2001.A Preliminary Study on Exhalative Mineralization in Permian Basins, the Southern Segment of the Da Hinggan Mountains, China:Case Studies of the Huanggang and Dajing Deposits.Resource Geology, 51(4):345-358. https://doi.org/10.1111/j.1751-3928.2001.tb00107.x [8] Liu, J.M., Zhang, R., Zhang, Q.Z., 2004.The Regional Metallogeny of Da Hinggan Ling, China.Earth Science Frontiers, 11(1):269-277(in Chinese with English abstract). http://www.researchgate.net/publication/287652723_The_regional_metallogeny_of_Dahingganling_China [9] Mei, W., 2014.Mesozoic Magmatism and Mineralization in Northern Chifeng, Inner Mongolia (Dissertation).China University of Geosciences, Wuhan(in Chinese with English abstract). [10] Mei, W., Lü, X.B., Cao, X.F., et al., 2015.Ore Genesis and Hydrothermal Evolution of the Huanggang Skarn Iron-Tin Polymetallic Deposit, Southern Great Xing'an Range:Evidence from Fluid Inclusions and Isotope Analyses.Ore Geology Reviews, 64(1):239-252. https://doi.org/10.1016/j.oregeorev.2014.07.015 [11] Mei, W., Lü, X.B., Wang, X.D., et al., 2018.Geochemistry of Magnetite from the Huanggang Skarn Iron-Tin Polymetallic Deposit in the Southern Great Xing'an Range, NE China.Geological Journal, 53(3):1200-1214. https://doi.org/10.1002/gj.2951 [12] Meinert, L.D., Dipple, G.M., Nicolescu, S., 2005.World Skarn Deposits.One Hundredth Anniversary Volume.Society of Economic Geologists, McLean, Va, 299-336. https://doi.org/10.5382/av100.11 [13] Ouyang, H.G., Mao, J.W., Zhou, Z.H., et al., 2015.Late Mesozoic Metallogeny and Intracontinental Magmatism, Southern Great Xing'an Range, Northeastern China.Gondwana Research, 27(3):1153-1172. https://doi.org/10.1016/j.gr.2014.08.010 [14] Shao, H., Chen, M., Ji, M., et al., 2020.Micro-Textures and Chemistry of Magnetite from the Tonglushan Skarn Cu-Fe Deposit and Its Implications for Ore-Forming Processes.Earth Science, 45(1):118-130(in Chinese with English abstract). [15] Smith, M.P., Henderson, P., Jeffries, T.E.R., et al., 2004.The Rare Earth Elements and Uranium in Garnets from the Beinn an Dubhaich Aureole, Skye, Scotland, UK:Constraints on Processes in a Dynamic Hydrothermal System.Journal of Petrology, 45(3):457-484. https://doi.org/10.1093/petrology/egg087 [16] Somarin, A.K., Moayyed, M., 2002.Granite-and Gabbrodiorite-Associated Skarn Deposits of NW Iran.Ore Geology Reviews, 20(3-4):127-138. https://doi.org/10.1016/s0169-1368(02)00068-9 [17] Tang, P., Tang, J.X., Zheng, W.B., et al., 2017.Progress in Study of Mineral Chemistry of Magmatic and Hydrothermal Biotites.Mineral Deposits, 36(4):935-950(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201704010.htm [18] Tang, R.K., Lü, X.B., Cao, X.F., et al., 2014.Mineralogy and Metallogenic Mechanism of Weilasituo and Bairendaba Deposits, Inner Mongolia, China.Earth Science, 39(6):671-686(in Chinese with English abstract). http://www.researchgate.net/publication/287841153_Mineralogy_and_metallogenic_mechanism_of_Weilasituo_and_Bairendaba_deposits_Inner_Mongolia_China [19] Wang, C., Shao, Y.J., Zhang, X., et al., 2018.Trace Element Geochemistry of Magnetite:Implications for Ore Genesis of the Huanggangliang Sn-Fe Deposit, Inner Mongolia, Northeastern China.Minerals, 8(5):195. [20] Wang, C.M., Zhang, S.T., Deng, J., et al., 2007.The Exhalative Genesis of the Stratabound Skarn in the Huanggangliang Sn-Fe Polymetallic Deposit of Inner Mongolia.Acta Petrologica et Mineralogica, 26(5):409-417(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-mineralogica_thesis/0201254451841.html [21] Wang, L.J., Shimazaki, H., Shiga, Y., 2001a.Skarns and Genesis of the Huanggang Fe-Sn Deposit, Inner Mongolia, China.Resource Geology, 51(4):359-376. https://doi.org/10.1111/j.1751-3928.2001.tb00108.x [22] Wang, L.J., Shimazaki, H., Wang, J.B., et al., 2001b.Ore-Forming Fluid and Metallization of the Huanggangliang Skarn Fe-Sn Deposit, Inner Mongolia.Science in China (Series D), 44(8):735-747. https://doi.org/10.1007/bf02907203 [23] Wang, L.J., Wang, J.B., Wang, Y.W., et al., 2001c.Fluid-Melt Inclusions in Fluorite of the Huanggangliang Skarn Iron-Tin Deposit and Their Significance to Mineralization.Acta Geologica Sinica, 75(2):204-211. https://doi.org/10.1111/j.1755-6724.2001.tb00522.x [24] Wang, W., Wang, M.F., Guo, X.N., et al., 2015.Geochemical Characteristics of Magnetite Elements in the Tieshan Iron Deposit in Southeastern Hubei Province and Geological Implications.Geology and Exploration, 51(3):451-465(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT201503006.htm [25] Wu, F.Y., Sun, D.Y., Ge, W.C., et al., 2011.Geochronology of the Phanerozoic Granitoids in Northeastern China.Journal of Asian Earth Sciences, 41(1):1-30. https://doi.org/10.1016/j.jseaes.2010.11.014 [26] Xiao, W.J., Windley, B.F., Hao, J., et al., 2003.Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China:Termination of the Central Asian Orogenic Belt.Tectonics, 22(6):1069. https://doi.org/10.1029/2002tc001484 [27] Xu, Z.B., Shao, Y.J., Yang, Z.A., et al., 2017.LA-ICP-MS Analysis of Trace Elements in Sphalerite from the Huanggangliang Fe-Sn Deposit, Inner Mongolia, and Its Implications.Acta Petrologica et Mineralogica, 36(3):360-370(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201703006.htm [28] Ying, L.J., Wang, D.H., Liang, T., et al., 2006.Chemical Composition and Typomorphic Characteristics of Magnetite and Its Geological Significance in Qiaoxiahala Iron-Copper-Gold Deposit of Altai, Xinjiang.Acta Mineralogica Sinica, 26(1):59-68(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB200601010.htm [29] Zaw, K., Singoyi, B., 2000.Formation of Magnetite-Scheelite Skarn Mineralization at Kara, Northwestern Tasmania:Evidence from Mineral Chemistry and Stable Isotopes.Economic Geology, 95(6):1215-1230. https://doi.org/10.2113/gsecongeo.95.6.1215 [30] Zeng, Q.D., Liu, J.M., Yu, C.M., et al., 2011.Metal Deposits in the Da Hinggan Mountains, NE China:Styles, Characteristics, and Exploration Potential.International Geology Review, 53(7):846-878. https://doi.org/10.1080/00206810903211492 [31] Zhai, D.G., Liu, J.J., Zhang, H.Y., et al., 2014.S-Pb Isotopic Geochemistry, U-Pb and Re-Os Geochronology of the Huanggangliang Fe-Sn Deposit, Inner Mongolia, NE China.Ore Geology Reviews, 59:109-122. https://doi.org/10.1016/j.oregeorev.2013.12.005 [32] Zhang, Z.Y., Du, Y.S., Zhang, J., 2013.Alteration, Mineralization, and Genesis of the Zoned Tongshan Skarn-Type Copper Deposit, Anhui, China.Ore Geology Reviews, 53:489-503. https://doi.org/10.1016/j.oregeorev.2013.02.009 [33] Zhao, Y.M., Feng, C.Y., Li, D.X., 2017.New Progress in Prospecting for Skarn Deposits and Spatial-Teporal Distribution of Skarn Deposits in China.Mineral Deposits, 36(3):519-543(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201703001.htm [34] Zhou, Z.H., Liu, H.W., Chang, G.X., et al., 2011.Mineralogical Characteristics of Skarns in the Huanggang Sn-Fe Deposit of Inner Mongolia and Their Metallogenic Indicating Significance.Acta Petrologica et Mineralogica, 30(1):97-112(in Chinese with English abstract). [35] Zhou, Z.H., Mao, J.W., Lyckberg, P., 2012.Geochronology and Isotopic Geochemistry of the A-Type Granites from the Huanggang Sn-Fe Deposit, Southern Great Hinggan Range, NE China:Implication for Their Origin and Tectonic Setting.Journal of Asian Earth Sciences, 49:272-286. https://doi.org/10.1016/j.jseaes.2012.01.015 [36] 陈磊, 王京彬, 邓小华, 等, 2018.东天山卡拉塔格西二区铁铜矿床地质地球化学特征及成因.地球科学, 43(9):3065-3085. doi: 10.3799/dqkx.2018.157 [37] 洪为, 张作衡, 蒋宗胜, 等, 2012.新疆西天山查岗诺尔铁矿床磁铁矿和石榴石微量元素特征及其对矿床成因的制约.岩石学报, 28(7):2089-2102. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201207012.htm [38] 刘建明, 张锐, 张庆洲, 2004.大兴安岭地区的区域成矿特征.地学前缘, 11(1):269-277. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200401036.htm [39] 梅微, 2014.内蒙古赤峰北部地区中生代岩浆作用与成矿研究(硕士学位论文).武汉: 中国地质大学. [40] 邵辉, 陈觅, 纪敏, 等, 2020.磁铁矿显微结构及化学成分对铜绿山矽卡岩型铜铁矿床成矿过程的指示.地球科学, 45(1):118-130. doi: 10.3799/dqkx.2018.583 [41] 唐攀, 唐菊兴, 郑文宝, 等, 2017.岩浆黑云母和热液黑云母矿物化学研究进展.矿床地质, 36(4):935-950. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201704010.htm [42] 唐然坤, 吕新彪, 曹晓峰, 等, 2014.内蒙古维拉斯托-拜仁达坝矿床矿石特征及成矿机理.地球科学, 39(6):671-686. doi: 10.3799/dqkx.2014.063 [43] 王伟, 王敏芳, 郭晓南, 等, 2015.鄂东南矿集区铁山铁矿床中磁铁矿元素地球化学特征及其地质意义.地质与勘探, 51(3):451-465. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201503006.htm [44] 王长明, 张寿庭, 邓军, 等, 2007.内蒙古黄岗梁锡铁多金属矿床层状夕卡岩的喷流沉积成因.岩石矿物学杂志, 26(5):409-417. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200705004.htm [45] 徐卓彬, 邵拥军, 杨自安, 等, 2017.内蒙古黄岗梁铁锡矿床闪锌矿LA-ICP-MS微量元素组成及其指示意义.岩石矿物学杂志, 36(3):360-370. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201703006.htm [46] 应立娟, 王登红, 梁婷, 等, 2006.新疆阿尔泰乔夏哈拉铁铜金矿床磁铁矿的化学成分标型特征和地质意义.矿物学报, 26(1):59-68. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB200601010.htm [47] 赵一鸣, 丰成友, 李大新, 2017.中国矽卡岩矿床找矿新进展和时空分布规律.矿床地质, 36(3):519-543. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201703001.htm [48] 周振华, 刘宏伟, 常帼雄, 等, 2011.内蒙古黄岗锡铁矿床夕卡岩矿物学特征及其成矿指示意义.岩石矿物学杂志, 30(1):97-112. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201101013.htm