Element Migration and Accumulation Characteristics of Bedrock-Regolith-Soil-Fruit Plant Continuum of the Earth's Critical Zone in Chengde Almond Producing Area
-
摘要: 特色经济作物品质与生态地球化学条件密切相关,查明山区地球关键带基岩-风化壳-土壤-作物BRSPC系统元素迁移富集规律,对农业种植布局优化具有重要意义.选取承德冀北山区仁用杏产区为研究区,结合多元统计分析采用多种化学风化指数、元素化学损耗分数CDF、质量迁移系数法、生物富集系数BCF法分碎屑岩建造区和火山岩建造区定量评价BRSPC体系中元素迁聚特征.结果表明:研究区土壤TK和TFe2O3含量丰富,Se元素含量适量,Cu和Ge含量中等-较丰富,TP、S和B元素含量较缺乏.区内基岩-土壤总体处于初等化学风化阶段,火山岩建造区土壤风化程度总体高于碎屑岩区.土壤S、B、Se、Ti、MgO和Fe2O3含量在基岩风化过程相对富集,基岩风化过程中Se、S、B、Ni和V为质量迁移强活动元素.全区85.71%的杏果肉样品Se含量达到富硒标准,25%杏仁达到含硒-富硒标准;碎屑岩区杏果实Se含量高于火山岩区.基岩风化过程中的元素富集亏损特征与土壤-作物吸收过程中的元素迁聚密切相关,BRSPC系统元素传导具有较好的继承性.土壤Cu、Zn、TP、Se、B、CaO和TFe2O3含量是制约研究区杏果实品质的主要地化因素,火山岩基岩风化过程中Cu和Zn元素淋滤流失程度大于碎屑岩区,碎屑岩区土壤TP、Se、B、CaO和TFe2O3含量高于火山岩建造区,相对更适宜于仁用杏种植.Abstract: Eco-geochemical conditions have an important impact on the quality of characteristic crops. It is of great significance to carry out investigation of the element migration and accumulation characteristics of the bedrock-regolith-soil-plant continuum of the Earth's critical zone for the adaptive evaluation on agricultural planting and the optimization of utilization of agricultural land. Taking the almond producing area in Chengde, Hebei Province as the study area, the quantitative evaluation of element migration in BRSPC was calculated by multiple chemical weathering index, chemical depletion fraction, mass transfer coefficient and bioconcentration factor in clastic rock and volcanic rock formation area combining multiple statistical methods. The results indicate that the element geochemical grade of TK and TFe2O3 were categorized as rich level, Se categorized as moderate level, Cu and Ge categorized as moderate-rich level and TP, TS, B as insufficient level. The bedrock-regolith-soil samples in the study area are generally at the elementary chemical weathering stage while the weathering intensity of soil ofvolcanic rock formation area is relatively higher than that of clastic rock formation area. The TS, B, Se, Ti, MgO and Fe2O3 contents are relatively enriched in soil during the weathering process of bedrocks, and the Se, S, B, Ni, and V are strong active elements for mass migration. The Se content of 85.71% of the almond pulp samples belong to the selenium-rich fruit, with 25% of the almond samples being above the selenium-enriched level. Meanwhile, The Se content in both of almond pulp and almond samples located in clastic rock formation are relatively higher than that in volcanic rock formation. The characteristics of element enrichment and loss in weathering process are closely related to the element migration in the soil-plant absorption process, and the bedrock-regolith-soil-plant continuum has a good inheritance on element conduction. The contents of Cu, Zn, TP, Se, B, Cao and TFe2O3 in soil were the main geochemistry factors restricting the quality of almond and pulp in the study area. The leaching loss of Cu and Zn elements in the weathering process of volcanic bedrock is greater than that in clastic rock area, while the contents of TP, Se, B, Cao and TFe2O3 in the soil of clastic rock formation area are higher than those in the volcanic rock formation area, which leads to the conclusion that the clastic rock formation area is more suitable for almond apricot planting.
-
Key words:
- Earth's critical zone /
- geochemistry /
- weathering mechanism /
- element migration /
- BRSPC /
- almond /
- Chengde
-
图 4 原岩类型判别基岩-风化层-土壤CIA、IOL、MIA风化指数三元图
a.原岩类型判别图;b.SiO2-Al2O3-Fe2O3 (Saf)砖红壤化指数IOL;c.Al2O3-CaO+Na2O-K2O (A-CN-K)化学蚀变指数CIA图;d.A-CNK-FM还原镁铁质蚀变指数MIAR;e.A-CNKM-F氧化镁铁质蚀变指数MIAo;f.AF-CNK-M氧化镁铁质蚀变指数MIAo;SS.碎屑岩区土壤;RS. 碎屑岩区风化层;BS.碎屑岩区基岩;SV.火山岩区土壤;RV.火山岩区风化层;BV.火山岩区基岩
Fig. 4. Discrimination of protolith and the CIA, IOL and MIA weathering index of bedrock-regolith-soil samples
表 1 研究区土壤-风化层-基岩元素地球化学含量统计
Table 1. Statistics of geochemical element content of bedrock-regolith-soil samples
分层 土壤 风化层 基岩 全国浅层土壤背景 碎屑岩 Min Max Mean CV Min Max Mean CV Min Max Mean CV TN(mg/kg) 450.20 1 964.00 1 168.73 0.375 112.00 2 674.00 531.95 1.290 101.00 536.00 183.00 0.709 707.00 TP(mg/kg) 202.70 1 794.00 658.65 0.541 367.40 1 589.00 709.65 0.431 233.10 3 113.00 818.20 0.800 570.00 S(mg/kg) 109.70 615.30 242.13 0.448 48.65 361.10 106.49 0.829 48.63 180.20 83.79 0.558 245.00 B(mg/kg) 11.69 94.03 38.83 0.476 8.54 116.600 29.25 1.063 5.88 45.43 16.49 0.711 43.00 Cu(mg/kg) 15.23 68.50 25.56 0.453 9.34 46.63 22.57 0.496 10.73 91.94 26.76 0.710 20.00 Zn(mg/kg) 42.19 140.40 77.54 0.250 47.89 112.00 76.19 0.257 50.50 154.70 78.20 0.298 66.00 Mo(mg/kg) 0.483 1.136 0.747 0.206 0.328 1.406 0.659 0.366 0.393 2.658 0.731 0.686 0.70 Se(mg/kg) 0.107 0.574 0.224 0.410 0.040 0.405 0.121 0.979 0.032 0.084 0.047 0.353 0.17 Ge(mg/kg) 1.082 1.897 1.349 0.113 0.939 1.498 1.158 0.158 0.836 1.933 1.175 0.252 1.30 Mn(mg/kg) 499.90 1 527.00 698.08 0.273 104.00 1 238.00 629.84 0.436 318.600 1347.00 647.86 0.467 569.00 V(mg/kg) 9.533 204.200 85.908 0.304 22.550 116.600 76.393 0.356 33.370 127.900 62.638 0.419 70.00 Ti(mg/kg) 2 922.3 5 687.2 3 938.488 0.169 1 123.2 4 685.6 3 286.344 0.312 2 063.8 7 427.1 3 188.819 0.455 3 498 pH 5.27 8.420 7.15 0.132 5.91 9.08 7.64 0.100 6.60 9.10 7.99 0.102 8.00 Corg(%) 1.061 3.553 2.170 0.359 0.211 3.251 1.093 1.184 0.113 0.986 0.443 0.966 0.26 SiO2(%) 60.635 71.029 65.758 0.043 53.560 75.133 66.306 0.072 56.775 77.024 68.465 0.095 66.70 Al2O3(%) 11.763 15.351 13.344 0.076 3.718 14.684 13.362 0.184 9.489 20.138 13.495 0.173 11.90 K2O(%) 1.432 3.480 2.706 0.148 0.364 5.065 3.126 0.278 2.442 4.244 3.342 0.166 2.36 Na2O(%) 1.132 3.257 2.679 0.227 0.116 3.977 2.778 0.448 0.870 5.156 3.443 0.294 1.75 CaO(%) 0.528 5.052 1.759 0.525 1.035 19.420 2.929 1.400 1.161 11.864 3.066 1.092 2.74 MgO(%) 1.353 7.125 2.438 0.545 0.694 4.156 1.492 0.522 0.587 2.308 1.323 0.333 1.43 TFe2O3(%) 3.236 23.350 5.325 0.584 1.234 7.546 4.321 0.331 1.789 6.660 3.791 0.330 2.80 LREE(μg/kg) 162.139 166.605 164.834 0.014 98.645 159.850 134.261 0.237 79.936 298.602 174.005 0.646 139.20 HREE(μg/kg) 41.366 41.753 41.533 0.005 17.705 28.436 24.367 0.239 16.163 85.277 43.181 0.856 40.70 REE(μg/kg) 203.618 208.358 206.367 0.012 116.350 188.286 158.628 0.237 96.099 383.879 217.186 0.687 179.90 L/HREE 3.909 4.007 3.969 0.013 5.352 5.621 5.515 0.026 3.502 5.105 4.518 0.196 3.42 TN(mg/kg) 146.00 2 523.00 1 250.88 0.431 79.00 960.00 328.97 0.655 48.00 225.00 123.76 0.321 381.00 TP(mg/kg) 145.95 1 373.00 495.80 0.528 112.20 1 741.00 565.79 0.819 77.84 1 847.00 651.940 0.770 517.00 S(mg/kg) 68.91 1 562.00 240.93 0.918 31.83 592.800 117.18 0.914 21.12 1 557.00 148.06 2.028 142.00 B(mg/kg) 10.81 53.25 33.24 0.238 3.97 49.63 17.88 0.807 3.23 39.29 8.89 0.797 52.00 Cu(mg/kg) 11.13 88.20 25.13 0.560 1.76 64.33 24.86 0.629 6.55 390.20 56.53 1.216 23.00 Zn(mg/kg) 55.30 142.00 83.91 0.220 46.67 204.36 96.05 0.318 38.69 361.70 117.22 0.488 62.00 Mo(mg/kg) 0.408 8.849 1.217 1.296 0.045 13.560 1.242 1.776 0.218 56.000 2.414 3.599 0.52 Se(mg/kg) 0.035 0.338 0.180 0.400 0.030 0.218 0.082 0.612 0.002 0.182 0.039 0.800 0.07 Ge(mg/kg) 0.908 2.427 1.363 0.182 0.734 1.765 1.258 0.199 0.538 1.905 1.226 0.256 1.40 Mn(mg/kg) 343.75 1542.00 782.69 0.333 40.460 2742.00 824.93 0.653 20.95 1 572.00 577.74 0.548 705.00 V(mg/kg) 32.880 745.100 91.951 1.102 7.714 489.800 67.159 1.162 4.659 202.500 51.895 1.004 82.00 Ti(mg/kg) 2 669.3 5 716.3 4 142.194 0.164 0.767 5 780.6 3 426.388 0.413 863.1 6 589.941 3 336.515 0.484 3 844 pH 4.82 8.29 6.84 0.114 5.23 9.35 6.96 0.127 5.97 8.79 7.41 0.102 8.61 Corg (%) 0.076 4.008 1.705 0.557 0.031 1.500 0.325 0.920 0.054 0.220 0.096 0.331 0.60 SiO2(%) 54.054 75.683 64.956 0.066 54.380 77.039 65.891 0.070 57.054 85.290 68.601 0.095 64.87 Al2O3(%) 11.114 16.141 13.870 0.091 11.950 18.243 15.060 0.113 7.724 17.611 14.734 0.127 12.84 K2O(%) 1.970 5.872 2.988 0.238 1.410 7.628 3.486 0.379 0.614 9.900 4.431 0.455 2.34 Na2O(%) 1.364 3.255 2.110 0.173 0.276 6.700 2.811 0.419 0.413 5.980 3.299 0.384 1.70 CaO (%) 0.633 3.471 1.515 0.403 0.375 6.271 1.641 0.812 0.050 5.254 1.774 0.837 4.10 MgO(%) 0.716 2.653 1.570 0.271 0.153 2.576 1.307 0.452 0.181 3.401 1.152 0.724 1.88 TFe2O3(%) 3.559 9.414 4.935 0.222 1.445 8.349 4.629 0.328 1.344 8.072 4.293 0.441 3.71 LREE(μg/kg) 62.602 212.656 178.360 0.229 95.557 367.279 226.217 0.347 123.603 291.264 215.978 0.247 128.72 HREE(μg/kg) 9.538 77.431 44.266 0.314 12.266 79.066 50.313 0.347 19.522 68.319 45.308 0.331 41.00 REE(μg/kg) 72.140 290.087 222.626 0.239 107.823 446.345 276.529 0.344 148.411 351.823 261.286 0.252 169.72 L/HREE 2.746 6.563 4.232 0.190 3.370 7.790 4.711 0.251 3.017 7.041 4.995 0.188 3.14 注: Min表示最小值;Max表示最大值;Mean表示均值;CV表示变异系数;pH和L/HREE无量纲. 表 2 风化指数计算方法一览表
Table 2. Calculation formula of weathering Index
指标 计算公式 参考文献 Sa [SiO2/Al2O3] Price et al.(2003) Saf [SiO2/(Al2O3+Fe2O3)] Qiu et al.(2014) IOL [(Al2O3+Fe2O3)/(Al2O3+Fe2O3+SiO2)]×100 Babechuk et al.(2014) CIA [Al2O3/(Al2O3+CaO*+Na2O+K2O)]×100 Nesbitt and Young(1982, 1984) MIAo [Al2O3/(Al2O3+Fe2O3+MgO+CaO*+Na2O+K2O)]×100 Babechuk et al.(2014) MIOr [(Al2O3+Fe2O3)/(Al2O3+Fe2O3+MgO+CaO*+Na2O+K2O)]×100 Babechuk et al.(2014) CIX [Al2O3/(Al2O3+Na2O+K2O)]×100 Garzanti et al.(2014) ICV [(Fe2O3+MgO+CaO*+Na2O+K2O+MnO+TiO2)/Al2O3] Cox et al.(1995) 注: IOL指标运用氧化物的质量分数计算,其余风化指标均运用氧化物的分子摩尔数计算;CaO*为硅酸盐矿物中的摩尔含量,不包括碳酸盐和磷酸盐矿物中的CaO含量;由于硅酸盐中的CaO与Na2O通常以1∶1的摩尔比例存在,所以当CaO的摩尔数大于Na2O时,CaO*的分子摩尔等于Na2O的分子摩尔,而小于Na2O时则有m(CaO*)=m(CaO). 表 3 不同地质建造土壤-风化层-基岩风化指数统计
Table 3. Statistics on weathering index of bedrock-regolith-soil samples in different geological formations
建造 采样层 项目 Sa Saf IOL CIA MIAO MIOR PIA CIX ICV 碎屑岩 土壤 Min 6.71 0.96 16.73 52.14 41.48 51.01 53.12 59.24 1.20 Max 10.27 0.99 26.05 66.25 46.59 57.81 70.27 77.18 1.49 Mean 8.40 0.98 21.38 56.13 43.95 53.17 58.26 64.83 1.34 CV 0.119 0.007 0.141 0.066 0.029 0.040 0.08 0 0.076 0.051 风化层 Min 7.31 0.96 17.01 9.37 7.28 8.82 8.55 56.74 1.06 Max 9.95 0.99 24.14 64.55 49.49 59.72 72.58 86.42 1.74 Mean 8.44 0.98 21.00 52.96 42.61 50.95 54.97 63.66 1.34 CV 0.086 0.006 0.092 0.182 0.174 0.174 0.207 0.094 0.107 基岩 Min 6.71 0.96 15.66 27.38 23.86 28.05 23.59 54.54 1.18 Max 10.99 1.00 26.70 59.06 47.57 53.29 64.21 72.11 2.59 Mean 9.00 0.98 19.94 48.06 39.79 46.79 47.99 58.98 1.53 CV 0.156 0.008 0.161 0.151 0.147 0.196 0.085 0.217 0.161 火山岩 土壤 Min 6.28 0.94 16.26 52.72 38.14 49.65 53.82 58.99 0.99 Max 11.58 0.98 30.35 68.28 51.16 62.02 74.98 74.07 1.70 Mean 8.05 0.97 22.52 59.33 45.55 55.78 62.93 67.47 1.26 CV 0.140 0.009 0.131 0.058 0.069 0.051 0.073 0.055 0.128 风化层 Min 5.67 0.95 15.36 41.58 34.15 42.97 40.23 51.64 0.84 Max 10.90 0.99 29.94 67.48 55.38 64.12 85.45 74.34 2.00 Mean 7.56 0.97 22.99 57.47 46.48 55.43 61.51 64.42 1.23 CV 0.159 0.010 0.234 0.146 0.099 0.110 0.089 0.148 0.071 基岩 Min 6.01 0.89 9.61 37.69 21.40 38.54 37.18 50.13 0.84 Max 11.26 1.00 29.44 62.94 55.32 62.07 84.45 71.14 2.11 Mean 7.95 0.97 21.54 52.11 43.55 51.64 54.56 59.13 1.32 CV 0.178 0.022 0.208 0.206 0.094 0.154 0.093 0.154 0.076 表 4 土壤-作物系统元素质量迁移系数τREE
Table 4. Mass transfer coefficient τREE in soil-plant system
迁移系数 B Ni Cu Zn Mo Se 杏仁 Min -0.010 -0.870 -0.180 1.250 -0.050 -0.890 Max 2.440 -0.560 3.890 5.300 12.230 0.260 Mean 0.970 -0.740 1.410 2.610 3.020 -0.640 CV 0.915 -0.149 0.973 0.508 1.251 -0.526 杏果肉 Min -0.960 -0.990 -0.990 -0.990 -0.970 -0.990 Max -0.510 -0.970 -0.830 -0.810 0.450 -0.930 Mean -0.794 -0.980 -0.920 -0.930 -0.760 -0.960 CV -0.153 -0.010 -0.065 -0.063 -0.477 -0.020 -
[1] Alaimo, M. G., Dongarrà, G., La Rosa, A., et al., 2018. Major and Trace Elements in Boletus Aereus and Clitopilus Prunulus Growing on Volcanic and Sedimentary Soils of Sicily (Italy). Ecotoxicology and Environmental Safety, 157(2): 182-190. https://doi.org/10.1016/j.ecoenv.2018.03.080 [2] Babechuk, M. G., Widdowson, M., Kamber, B. S., 2014. Quantifying Chemical Weathering Intensity and Trace Element Release from Two Contrasting Basalt Profiles, Deccan Traps, India. Chemical Geology, 363(7): 56-75. https://doi.org/10.1016/j.chemgeo.2013.10.027 [3] Banwart, S., Menon, M., Bernasconi, S. M., et al., 2012. Soil Processes and Functions Across an International Network of Critical Zone Observatories: Introduction to Experimental Methods and Initial Results. Comptes Rendus Geoscience, 344(11/12): 758-772. https://doi.org/10.1016/j.crte.2012.10.007 [4] Brantley, S. L., Goldhaber, M. B., Ragnarsdottir, K. V., 2007. Crossing Disciplines and Scales to Understand the Critical Zone. Elements, 3(5): 307-314. https://doi.org/10.2113/gselements.3.5.307 [5] Chadwick, O. A., Brimhall, G. H., Hendricks, D. M., 1990. From a Black to a Gray Box: A Mass Balance Interpretation of Pedogenesis. Geomorphology, 3(3/4): 369-390. https://doi.org/10.1016/0169-555x(90)90012-f [6] Cheng, H. X., Peng, M., Zhao, C. D., et al., 2019. Epigenetic Geochemical Dynamics and Driving Mechanisms of Distribution Patterns of Chemical Elements in Soil, Southwest China. Earth Science Frontiers, 26(6): 159-191(in Chinese with English abstract). [7] Cox, R., Lowe, D. R., Cullers, R. L., 1995. The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in the Southwestern United States. Geochimica et Cosmochimica Acta, 59(14): 2919-2940. https://doi.org/10.1016/0016-7037(95)00185-9 [8] Dixon, J.L., Chadwick, O.A., Vitousek, P.M., et al., 2016. Climate-Driven Thresholds for Chemical Weathering in Postglacial Soils of New Zealand. Journal of Geophysical Research: Earth Surface, 121(9): 1619-1634. https://doi.org/10.1002/2016jf003864 [9] Fang, Q., Hong, H. L., Zhao, L. L., et al., 2018. Climatic Implication of Authigenic Minerals Formed during Pedogenic Weathering Processes. Earth Science, 43(3): 753-769(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201803007 [10] Fedo, C. M., Nesbitt, H. W., Young, G. M., 1995. Unraveling the Effects of Potassium Metasomatism in Sedimentary Rocks and Paleosols, with Implications for Paleoweathering Conditions and Provenance. Geology, 23(10): 921. https://doi.org/10.1130/0091-7613(1995)023<0921:uteopm>2.3.co;2 doi: 10.1130/0091-7613(1995)023<0921:uteopm>2.3.co;2 [11] Fu, W., Luo, P., Hu, Z. Y., et al., 2019. Enrichment of Ion-Exchangeable Rare Earth Elements by Felsic Volcanic Rock Weathering in South China: Genetic Mechanism and Formation Preference. Ore Geology Reviews, 114(1): 103120. https://doi.org/10.1016/j.oregeorev.2019.103120 [12] Garzanti, E., Padoan, M., Setti, M., et al., 2014. Provenance Versus Weathering Control on the Composition of Tropical River Mud (Southern Africa). Chemical Geology, 366(77): 61-74. https://doi.org/10.1016/j.chemgeo.2013.12.016 [13] Ge, W., 2013. Geochemical Environment of Soil and Suitability Evaluation on High-Quality Apple Production in Yantai Area, Shandong Province(Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). [14] Gu, L.M.Y., Tao, X. D., Sun, S. W., et al., 2014. The Analysis of Baren Apricot Orchards Soil Fertilit Condition and Leaf Nutrition Level. Acta Agriculturae Boreali-Occidentalis Sinica, 23(9): 183-188 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZNTB201419021.htm [15] Guo, A. H., Yang, K. T., Yao, Y. T., et al., 1997. Study on the Nutrient Cycle of the Apricot for the Almond. Forest Science and Technology, 22(6): 1-5 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-LYKJ706.000.htm [16] Hewawasam, T., von Blanckenburg, F., Bouchez, J., et al., 2013. Slow Advance of the Weathering Front during Deep, Supply-Limited Saprolite Formation in the Tropical Highlands of Sri Lanka. Geochimica et Cosmochimica Acta, 118(2): 202-230. https://doi.org/10.1016/j.gca.2013.05.006 [17] Hou, Z. X., Zhai, M. P., Yuan, M. D., et al., 2008. Progress of Cultivated and Physiological Researches on Kernel-Apricot (Armeniaca vulgaris Lam. ) in China. Chinese Agricultural Science Bulletin, 24(12): 189-192 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZNTB200812043.htm [18] Kong, D. M., Shen, H. L., Yao, Y. T., 2004. The Relationships between Cu, Zn and Polyphenol Oxidase, Superoxide Dismutase Activities in Prunus armeriaca L. Journal of Northeast Forestry University, 32(6): 72-73 (in Chinese with English abstract). [19] Lee, J. S., Chon, H. T., Kim, K. W., 1998. Migration and Dispersion of Trace Elements in the Rock-Soil-Plant System in Areas Underlain by Black Shales and Slates of the Okchon Zone, Korea. Journal of Geochemical Exploration, 65(1): 61-78. https://doi.org/10.1016/s0375-6742(98)00054-5 [20] Li, X. H., 2007. The Restriction and Influence Study of the Soil Geochemistry Condition for Lycium Barbarum L. (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [21] Li, Z. J., 1996. Large Scale System of Rock-Soil-Plant. Geological Review, 42(04): 369-372(in Chinese with English abstract). [22] Liu, C. Q., 2007. Biogeochemical Processes and Cycling of Nutrients in the Earth's Surface: Cycling of Nutrients in Soil-Plant System of Karstic Environments, Southwest China. Science Press, Beijing (in Chinese). [23] Liu, J.L., Yao, Y. T., Yang, X. Q., 2002. Research on Polyphenoloxidase and Superoxide Dismutase of Kernel-Apricot. Shanxi Forestry Science and Technology, 31(2): 38-41 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-sxlk200202011.htm [24] Liu, P., Wu, J. Z., Yang, Y. A., 2000. The Research Development of Boron in Soil and Its Effect in Plant. Agro-Environmental Protection, 19(2): 119-122 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NHBH200002018.htm [25] Liu, P., Yang, Y. A., 2001. Research Development of Molybdenum in Soil and Its Effects on Vegetation. Agro-Environmental Protection, 20 (4): 280-282 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyhjbh200104028 [26] Ma, L., Jin, L. X., Brantley, S. L., 2011. How Mineralogy and Slope Aspect Affect REE Release and Fractionation during Shale Weathering in the Susquehanna/Shale Hills Critical Zone Observatory. Chemical Geology, 290(1/2): 31-49. https://doi.org/10.1016/j.chemgeo.2011.08.013 [27] Ma, X. C., Wang, J. S., Chen, C., et al., 2018. Major Element Compositions and Paleoclimatic Implications of Paleo-Regolith on Top Jingeryu Formation in Fangshan, North China. Earth Science, 43(11): 3853-3872(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201811005.htm [28] MacLean, W. H., 1990. Mass Change Calculations in Altered Rock Series. Mineralium Deposita, 25(1): 44-49. https://doi.org/10.1007/bf03326382 [29] Martignier, L., Verrecchia, E. P., 2013. Weathering Processes in Superficial Deposits (regolith) and their Influence on Pedogenesis: A Case Study in the Swiss Jura Mountains. Geomorphology, 189: 26-40. https://doi.org/10.1016/j.geomorph.2012.12.038 [30] Mendieta-Lora, M., Mejía-Ledezma, R. O., Kasper-Zubillaga, J. J., et al., 2018. Mineralogical and Geochemical Implications of Weathering Rates in Coastal Dunes and Beach Sands Close to a Volcanic Rock Source in the Western Gulf of Mexico, Mexico. Geochemistry, 78(3): 323-339. https://doi.org/10.1016/j.chemer.2018.06.004 [31] Moses, C., Robinson, D., Barlow, J., 2014. Methods for Measuring Rock Surface Weathering and Erosion: A Critical Review. Earth-Science Reviews, 135(3-4): 141-161. https://doi.org/10.1016/j.earscirev.2014.04.006 [32] Nesbitt, H. W., Young, G. M., 1984. Prediction of some Weathering Trends of Plutonic and Volcanic Rocks Based on Thermodynamic and Kinetic Considerations. Geochimica et Cosmochimica Acta, 48(7): 1523-1534. https://doi.org/10.1016/0016-7037(84)90408-3 [33] Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299(5885): 715-717. https://doi.org/10.1038/299715a0 [34] Oeser, R. A., Stroncik, N., Moskwa, L. M., et al., 2018. Chemistry and Microbiology of the Critical Zone along a Steep Climate and Vegetation Gradient in the Chilean Coastal Cordillera. CATENA, 170: 183-203. https://doi.org/10.1016/j.catena.2018.06.002 [35] Peng, B., Rate, A., Song, Z. L., et al., 2014. Geochemistry of Major and Trace Elements and Pb-Sr Isotopes of a Weathering Profile Developed on the Lower Cambrian Black Shales in Central Hunan, China. Applied Geochemistry, 51(15): 191-203. https://doi.org/10.1016/j.apgeochem.2014.09.007 [36] Peng, B., Song, Z. L., Tu, X. L., et al., 2004. Release of Heavy Metals during Weathering of the Lower Cambrian Black Shales in Western Hunan, China. Environmental Geology, 45(8): 1137-1147. https://doi.org/10.1007/s00254-004-0974-7 [37] Price, J. R., Velbel, M. A., 2003. Chemical Weathering Indices Applied to Weathering Profiles Developed on Heterogeneous Felsic Metamorphic Parent Rocks. Chemical Geology, 202(3/4): 397-416. https://doi.org/10.1016/j.chemgeo.2002.11.001 [38] Qiu, S. F., Zhu, Z. Y., Yang, T., et al., 2014. Corrigendum to "Chemical Weathering of Monsoonal Eastern China: Implications from Major Elements of Topsoil". Journal of Asian Earth Sciences, 89: 141. https://doi.org/10.1016/j.jseaes.2013.12.004 [39] Reimann, C., Englmaier, P., Fabian, K., et al., 2015. Biogeochemical Plant-Soil Interaction: Variable Element Composition in Leaves of Four Plant Species Collected along a South-North Transect at the Southern Tip of Norway. Science of the Total Environment, 506-507(4): 480-495. https://doi.org/10.1016/j.scitotenv.2014.10.079 [40] Saracoglu, S., Tuzen, M., Soylak, M., 2009. Evaluation of Trace Element Contents of Dried Apricot Samples from Turkey. Journal of Hazardous Materials, 167(1/2/3): 647-652. https://doi.org/10.1016/j.jhazmat.2009.01.011 [41] Song, Z.L., Peng, B., Liu, C.Q., et al., 2004. Discussion on Element Mobility and Reference Frame Selection during Black Shale Weathering: Example of Profiles from Matianand Taohuajiang in Hunan Province. Geological Science and Technology Information, 23(3): 25-29 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200403005.htm [42] Su, Y. Z., Zhao, H. L., 2003. Soil Properties and Plant Species in an Age Sequence of Caragana Microphylla Plantations in the Horqin Sandy Land, North China. Ecological Engineering, 20(3): 223-235. https://doi.org/10.1016/s0925-8574(03)00042-9 [43] Sun, H. Y., Wei, X. F., Gan, F. W., et al., 2019. Determination of Heavy Metal Geochemical Baseline Values and Its Accumulation in Soils of the Luanhe River Basin, Chengde. Environment Science, 40(08): 3753-3763 (in Chinese with English abstract). [44] Sun, H. Y., Wei, X. F., Sun, H. Y., et al., 2020. Formation Mechanism and Geological Formation Constraints of Metasilicate Mineral Water in Yudaokou Hannuoba Basalt Area. Earth Science, 45(11): 4236-4253(in Chinese with English abstract). [45] Sun, S. W., Tao, X. D., Zhao, L., et al., 2014. The Analysis of Little White Apricot Leaf Nutrition and Orchards Soil Fertility Condition in Southern Xinjiang. Chinese Agricultural Science Bulletin, 30(19): 118-122(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZNTB201419021.htm [46] Tang, K., Wang, X. Q., Chi, Q. H., et al., 2018. Concentration and Spatial Distribution of REE in Geochemical Transect of Xingmeng Orogenic Belt-North China Craton. Earth Science, 43(3): 655-671(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201803002.htm [47] Wang, W. J., Lv, L. X., Hao, J., Y., et al., 2019. Effects of N, P, K, Fertilizer Application Methods on Soil Nutrientsand Fruit Quality of Gongfo Apricot. Northern Horticulture, 10: 102-107(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-BFYY201910016.htm [48] Wang, X. Q., Zhou, J., Xu, S F., et al., 2016. China Soil Geochemical Baselines Networks: Data Characteristics. Geology in China, 43(5): 1469-1480(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201605001.htm [49] Wang, Z. L., Deng, T. D., Wang, R. M., et al., 2009. Characteristics of Migration and Accumulation of Rare Earth Elements in the Rock-Soil-Navel Orange System. Geology in China, 36(6): 1382-1394(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200906022.htm [50] Wu, B. J., Peng, B., Zhang, K., et al., 2016. A New Chemical Index of Identifying the Weathering Degree of Black Shales. Acta Geologica Sinica, 90(4): 818-832 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DZXE201604016&dbcode=CJFD&year=2016&dflag=pdfdown [51] Wu, X. Y., Ling, S. X., Ren, Y., et al., 2016. Elemental Migration Characteristics and Chemical Weathering Degree of Black Shale in Northeast Chongqing, China. Earth Science, 41(2): 218-233(in Chinese with English abstract). doi: 10.1007/s12303-016-0008-y [52] Wu Y. L., Xu M., Dong S. J., et al., 2019. Analysis of Nutritional Composition of Bitter Almond from Different Growing Areas. Science and Technology of Food Industry, 40(23): 300-305 (in Chinese with English abstract). [53] Wu, C.D., Chu, Z.Y., 2001. Sequential Extraction of Trace Elements and the Geological Significance of Fractionsin Black Shales, West Hunan and East Guizhou. Bulletin of Mineralogy, Petrology and Geochemistry, 20(1): 14-20(in Chinese with English abstract). http://www.cqvip.com/QK/84215X/20011/1001065108.html [54] Yan, H. Z, Zhou, G. H., Sun, B. B., et al., 2018. Geochemical Characteristics of the Bayberry Producing Area in Longhai, Fujian. Geology in China, 45(6): 1155-1166(in Chinese with English abstract). http://www.researchgate.net/publication/332712387_Geochemical_characteristics_of_the_bayberry_producing_area_in_LonghaiFujian [55] Yao, Y., Liu, J. M., Liu, Z. L., et al., 2019. Comparison on Armeniaca Sibirica Natural Forest Growth and Soil Physicochemical Properties in Different Slope Position. Forest Engineering, 35(6): 36-41+54(in Chinese with English abstract). [56] Yu, K. W., Murthy, H. N., Jeong, C. S., et al., 2005. Organic Germanium Stimulates the Growth of Ginseng Adventitious Roots and Ginsenoside Production. Process Biochemistry, 40(9): 2959-2961. https://doi.org/10.1016/j.procbio.2005.01.015 [57] Zhai, Z. Y., Qiu, J., Si, H. Z., et al., 2019. Effects of Microtopography on Germination Layer Soil Factors in Armeniaca Vulgaris Lam. in Daxigou. Acta Ecologica Sinica, 39(6): 2168-2179(in Chinese with English abstract). http://www.researchgate.net/publication/332557965_Effects_of_microtopography_on_germination_layer_soil_factors_in_Armeniaca_vulgaris_Lam_in_Daxigou [58] Zhang, Z. C., Santosh, M., Li, J. W., 2015. Iron Deposits in Relation to Magmatism in China. Journal of Asian Earth Sciences, 113: 951-956. https://doi.org/10.1016/j.jseaes.2015.09.026 [59] Zhou, D. X., Peng, B., Wang, Q., et al., 2020. Elemental Geochemical Characteristics of Soils Derived from the Lower-Cambrian Black Shales in the Western Yangtze Platform, China. Bulletin of Mineralogy, Petrology and Geochemistry, 39(1): 59-71(in Chinese with English abstract). [60] Zhu, L. X., Ma, S. M., Wang, Z. F., 2006. Soil Eco-Geochemical Baseline in Alluvial Plains of Eastern China. Geology in China, 33(6): 1400-1405(in Chinese with English abstract). http://www.researchgate.net/publication/287706672_Soil_eco-geochemical_baseline_in_alluvial_plains_of_eastern_China [61] Zhu, Y. G., Duan, G. L., Chen, B D., et al., 2004. Mineral Weathering and Element Cycling in Soil-Microorganism-Plant System. Science China: Earth Sciences, 44(6): 1107-1116(in Chinese with English abstract). [62] 成杭新, 彭敏, 赵传冬, 等, 2019. 表生地球化学动力学与中国西南土壤中化学元素分布模式的驱动机制. 地学前缘, 26(6): 159-191. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201906021.htm [63] 方谦, 洪汉烈, 赵璐璐, 等, 2018. 风化成土过程中自生矿物的气候指示意义. 地球科学, 43(3): 753-769. doi: 10.3799/dqkx.2018.905 [64] 葛文, 2013. 山东烟台地区土壤地球化学环境与优质苹果生产的适应性评价(博士学位论文). 武汉: 中国地质大学. [65] 古丽米热, 陶秀冬, 孙守文, 等, 2014. 南疆地区巴仁杏果园土壤矿质元素与叶片营养水平分析. 西北农业学报, 23(9): 183-188. https://www.cnki.com.cn/Article/CJFDTOTAL-XBNX201409031.htm [66] 郭爱华, 杨克听, 姚延梼, 等, 1997. 仁用杏营养元素循环研究. 林业科技, 22(6): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-LYKJ706.000.htm [67] 侯智霞, 翟明普, 原牡丹, 等, 2008. 中国仁用杏栽培生理研究进展. 中国农学通报, 24(12): 189-192. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB200812043.htm [68] 孔冬梅, 沈海龙, 姚延梼, 2004. 仁用杏铜锌元素与多酚氧化酶、超氧化物歧化酶活性的关系. 东北林业大学学报, 32(6): 72-73. doi: 10.3969/j.issn.1000-5382.2004.06.022 [69] 李新虎, 2007. 土壤地球化学环境对宁夏枸杞品质的制约影响研究(博士学位论文). 北京: 中国地质大学(北京). [70] 李正积, 1996. 时代前缘的全息探索——岩土植物大系统研究. 地质论评, 42(4): 369-372. doi: 10.3321/j.issn:0371-5736.1996.04.015 [71] 刘丛强, 2007. 生物地球化学过程与地表物质循环-西南喀斯特流域侵蚀与生源要素循环. 北京: 科学出版社. [72] 刘金龙, 姚延梼, 杨秀清, 2002. 仁用杏树多酚氧化酶和超氧化物歧化酶的研究. 山西林业科技, 31(2): 38-41. doi: 10.3969/j.issn.1007-726X.2002.02.011 [73] 刘鹏, 吴建之, 杨玉爱, 2000. 土壤中的硼及其植物效应的研究进展. 农业环境保护, 19(2): 119-122. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200002018.htm [74] 刘鹏, 杨玉爱, 2001. 土壤中的钼及其植物效应的研究进展. 农业环境保护, 20 (4): 280-282. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200104027.htm [75] 马晓晨, 王家生, 陈粲, 等, 2018. 华北房山景儿峪组顶部古风化壳常量元素地球化学特征及其古气候意义. 地球科学, 43(11): 3853-3872. doi: 10.3799/dqkx.2018.235 [76] 宋照亮, 彭渤, 刘丛强, 2004. 黑色页岩风化过程中元素的活动性及参考系的选取初探. 地质科技情报, 23(3): 25-29. doi: 10.3969/j.issn.1000-7849.2004.03.005 [77] 孙厚云, 卫晓锋, 甘凤伟, 等, 2019. 承德市滦河流域土壤重金属地球化学基线厘定及其累积特征. 环境科学, 40(08): 3753-3763. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201908043.htm [78] 孙厚云, 卫晓锋, 孙晓明, 等, 2020. 御道口汉诺坝玄武岩偏硅酸矿泉水形成机制及其地质建造制约. 地球科学, 45(11): 4236-4253. doi: 10.3799/dqkx.2020.011 [79] 孙守文, 陶秀冬, 赵蕾, 等, 2014. 南疆地区小白杏叶片营养和土壤养分现状及相关性研究. 中国农学通报, 30(19): 118-122. doi: 10.11924/j.issn.1000-6850.2013-3124 [80] 唐坤, 王学求, 迟清华, 等, 2018. 兴蒙-华北地球化学走廊带稀土元素含量与空间分布. 地球科学, 43(3): 655-671. doi: 10.3799/dqkx.2018.901 [81] 汪振立, 邓通德, 王瑞敏, 等, 2009. 岩石-土壤-脐橙系统中稀土元素迁聚特征. 中国地质, 36(6): 1382-1394. doi: 10.3969/j.issn.1000-3657.2009.06.020 [82] 王伟军, 吕丽霞, 郝建宇, 等, 2019. 氮磷钾配比对供佛杏土壤养分及果实品质的影响. 北方园艺, 10: 102-107. https://www.cnki.com.cn/Article/CJFDTOTAL-BFYY201910016.htm [83] 王学求, 周建, 徐善法, 等, 2016. 全国地球化学基准网建立与土壤地球化学基准值特征. 中国地质, 43(5): 1469-1480. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201605001.htm [84] 巫锡勇, 凌斯祥, 任勇, 等, 2016. 渝东北黑色页岩元素迁移特征及化学风化程度. 地球科学, 41(2): 218-233. doi: 10.3799/dqkx.2016.017 [85] 吴蓓娟, 彭渤, 张坤, 等, 2016. 黑色页岩化学风化程度指标研究. 地质学报, 90(4): 818-832. doi: 10.3969/j.issn.0001-5717.2016.04.015 [86] 吴朝东, 储著银, 2001. 黑色页岩微量元素形态分析及地质意义. 矿物岩石地球化学通报, 20(1): 14-20. doi: 10.3969/j.issn.1007-2802.2001.01.004 [87] 吴月亮, 许淼, 董胜君, 等, 2019. 不同产区苦杏仁营养成分分析. 食品工业科技, 40(23): 300-305. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKJ201923049.htm [88] 严洪泽, 周国华, 孙彬彬, 等, 2018. 福建龙海杨梅产地元素地球化学特征. 中国地质, 45(6): 1155-1166. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201806007.htm [89] 姚颖, 刘建明, 刘忠玲, 等, 2019. 不同坡位山杏天然林生长和土壤理化性质比较. 森林工程, 35(6): 36-41+54. doi: 10.3969/j.issn.1006-8023.2019.06.006 [90] 翟朝阳, 邱娟, 司洪章, 等, 2019. 微地形对大西沟新疆野杏萌发层土壤因子的影响. 生态学报, 39(6) : 2168-2179. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201906031.htm [91] 张贻次, 柏文富, 陈升高, 等, 1996. 杏生长结果与土壤关系的研究. 经济林研究, (增刊2): 297-301. https://www.cnki.com.cn/Article/CJFDTOTAL-JLYJ1996S2073.htm [92] 周东晓, 彭渤, 王勤, 等, 2020. 扬子地台西缘下寒武统黑色页岩土壤元素地球化学特征. 矿物岩石地球化学通报, 39(1): 59-71. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202001013.htm [93] 朱立新, 马生明, 王之峰, 2006. 中国东部平原土壤生态地球化学基准值. 中国地质, 33(6): 1400-1405. doi: 10.3969/j.issn.1000-3657.2006.06.025 [94] 朱永官, 段桂兰, 陈保冬, 等, 2014. 土壤-微生物-植物系统中矿物风化与元素循环. 中国科学: 地球科学, 44(6): 1107-1116. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201406005.htm