Depositional Differentiation and Porvenance Analysis of Liantuo Formation in Neoproterozoic Rift Basin, Yangtze Block
-
摘要: 扬子地块莲沱组及相当地层单元的划分和对比,一直是我国南华系(即Cryogenian)研究关键难题之一.新元古代裂谷盆地开启早期,构造-沉积分异作用,同裂谷相变很大,使得盆地边缘区地层序列不完整.过分依赖岩石地层单元对比,历存分歧,典型的就是关于莲沱组与板溪群地层对比、时代归属以及莲沱组的沉积环境问题.本文通过对扬子地块东南缘莲沱组沉积古环境分析和锆石U-Pb精确定年,认为莲沱组沉积时限为790~720 Ma,相当于板溪群中上部,是华南新元古代裂谷盆地沉积充填序列的第Ⅱ旋回.莲沱组顶部U-Pb最小年龄约720 Ma,制约了扬子地块Sturtian冰期的启动年龄≤720 Ma.通过对中扬子地块从北向南展布的莲沱组陆相-海陆过渡相-海相不同的沉积单元岩相组合的沉积特征观察研究,分析沉积环境并建立了沉积模式;莲沱组及休宁组碎屑锆石记录了莲沱组沉积时该盆地在780~760 Ma经历了持续热隆升与地层剥蚀,揭示了中国南方扬子和华夏地块聚合与裂解事件的重要信息.Abstract: The division and correlation of the Liantuo Formation and its equivalent stratigraphic units in the Mid-Yangtze block has been one of the key problems in study of the Nanhuan System (Cryogenian) in China. In the early stage of the Neoproterozoic rift basin, tectonic-sedimentary differentiation, which made the stratigraphic sequence of the basin margin incomplete. Due to the excessive reliance on the lithostratigraphic unit comparison, which are typically related to the stratigraphic correlation between the Liantuo Formation and the Banxi Group. The geochronology and paleoenvironment of the Liantuo Formation are still highly controversial. An integrated approach of facies analysis, paleogeography, and geochronology provides new insights into the sedimentology and paleogeography in the Precambrian. The Liantuo Formation was deposited ca. 790-720 Ma, which was equivalent to the Wuqiangxi Formation in the middle-upper part of the Banxi Group. Due to the uplift and subsidence of the earth's crust, the sea water gradually overflows from south to north. Different sedimentary units of the Liantuo Formation, continental, transitional and Marine facies, have been developed from north to south in the Mid-Yangtze block. Detrital zircons from the Liantuo and Xiuning formations record that the basin experienced continuous heat uplift and stratigraphic denudation in 780-760Ma during the deposition of the Liantuo Formation, which reveals the important information about the convergence and rift events of the Yangtze and Cathaysia blocks in south China.
-
图 9 (a)莲沱组、休宁组样品锆石年龄谱;(b)2 000 Ma以来超大陆旋回与地幔柱喷发事件耦合图(Li et al., 2019)
Fig. 9. (a)Histogram of from the Liantuo and Xiuning formations; (b) Supercontinent cycle (Nuna, Rodinia and Pangaea) since 2 000 Ma ago, coupled to a slightly phase-shifted ~600 Ma plume frequency cycle(Li et al., 2019)
图 10 (a~c)北印度、南极洲、西澳大利亚新元古代地层锆石年谱曲线(Wang et al., 2018);(d)扬子东缘沉积岩前寒武纪碎屑锆石年龄谱(李献华等,2012);(e)莲沱组、休宁组样品锆石年龄谱
Fig. 10. (a~c)zircon U-Pb ages from this study and for other locations: northern India, Antarctica, western Australia(Wang et al., 2018); (d) Detrital zircon age histograms for Precambrian sedimentary form eastern Yangtze block(Li et al. 2012); (e) histogram of from the Liantuo and Xiuning formations
-
[1] Borg, G., Karner, K., Buxton, M., et al., 2003. Geology of the Skorpion Supergene Zinc Deposit, Southern Namibia. Economic Geology, 98(4): 749-771. https://doi.org/10.2113/gsecongeo.98.4.749 [2] Cai, X.F., Ye, Q., Xiao, M.Y., 2018. Some Opinions Concerning the Understanding of CIA Cold Climate of the Liantuo Formation of Nanhua System: Exemplified by the Nanhua System from Shennongjia in Western Hubei and Western Hunan. Acta Petrologica et Mineralogica, 37(4): 621-636 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSKW201804008.htm [3] Cawood, P. A., Wang, W., Zhao, T. Y., et al., 2020. Deconstructing South China and Consequences for Reconstructing Nuna and Rodinia. Earth-Science Reviews, 204(1): 103-169. https://doi.org/10.1016/j.earscirev.2020.103169 [4] Cawood, P. A., Zhao, G. C., Yao, J. L., et al., 2018. Reconstructing South China in Phanerozoic and Precambrian Supercontinents. Earth-Science Reviews, 186(5-6): 173-194. https://doi.org/10.1016/j.earscirev.2017.06.001 [5] Du, Q. D., Wang, Z. J., Wang, J., et al., 2013. Geochronology and Paleoenvironment of the Pre-Sturtian Glacial Strata: Evidence from the Liantuo Formation in the Nanhua Rift Basin of the Yangtze Block, South China. Precambrian Research, 233(3-5): 118-131. https://doi.org/10.1016/j.precamres.2013.04.012 [6] Du, Q.D., Wang, Z.J., Wang, J., et al., 2013. LA-ICP-MS U-Pb Ages of Detrital Zircons from the Neoproterozoic Chang'an Formation in Central Hunan and Its Geological Implicatons. Geological Review, 59(2): 332-344 (in Chinese with English abstract). http://www.researchgate.net/publication/281095298_LA-ICP-MS_U-Pb_ages_of_detrital_zircons_from_the_Neoproterozoic_Chang'an_Formation_in_Central_Huanan_and_its_geological_implications [7] Feng, L.J., Chu, X.L., Zhang, Q.R., et al., 2004. New Evidence of Deposition under Cold Climate for the Xieshuihe Formation of the Nanhua System in Northwestern Hunan, China. Chinese Science Bulletin, 49(2): 1172-1178 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/kxtb-e200413019 [8] Frimmel, H. E., Klötzli, U. S., Siegfried, P. R., 1996. New Pb-Pb Single Zircon Age Constraints on the Timing of Neoproterozoic Glaciation and Continental Break-Up in Namibia. The Journal of Geology, 104(4): 459-469. https://doi.org/10.1086/629839 [9] Hofmann, M., Linnemann, U., Rai, V., et al., 2011. The India and South China Cratons at the Margin of Rodinia: Synchronous Neoproterozoic Magmatism Revealed by LA-ICP-MS Zircon Analyses. Lithos, 123(1/2/3/4): 176-187. https://doi.org/10.1016/j.lithos.2011.01.012 [10] Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. A "Wire" Signal Smoothing Device for Laser Ablation Inductively Coupled Plasma Mass Spectrometry Analysis. Spectrochimica Acta Part B: Atomic Spectroscopy, 78: 50-57. https://doi.org/10.1016/j.sab.2012.09.007 [11] Huang, J., Feng, L. J., Lu, D. B., et al., 2014. Multiple Climate Cooling Prior to Sturtian Glaciations: Evidence from Chemical Index of Alteration of Sediments in South China. Scientific Reports, 4(1): 1-6. https://doi.org/10.1038/srep06868 [12] Jiang, X.S., Wang, J., Cui, X.Z., et al., 2012. Zircon SHRIMP U-Pb Geochronology of the Neoproterozoic Chengjiang Formation in Central Yunnan Province (SW China) and Its Geological Significance. Science China: Earth Sciences, 42(10): 1496-1507 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-JDXK201210005.htm [13] Key, R. M., Liyungu, A. K., Njamu, F. M., et al., 2001. The Western Arm of the Lufilian Arc in NW Zambia and its Potential for Copper Mineralization. Journal of African Earth Sciences, 33(3/4): 503-528. https://doi.org/10.1016/s0899-5362(01)00098-7 [14] Lan, Z. W., Li, X. H., Zhu, M. Y., et al., 2015. Revisiting the Liantuo Formation in Yangtze Block, South China: SIMS U-Pb Zircon Age Constraints and Regional and Global Significance. Precambrian Research, 263: 123-141. https://doi.org/10.1016/j.precamres.2015.03.012 [15] Li, W. X., Li, X. H., Li, Z. X., et al., 2008. Obduction-Type Granites within the NE Jiangxi Ophiolite: Implications for the Final Amalgamation between the Yangtze and Cathaysia Blocks. Gondwana Research, 13(3): 288-301. https://doi.org/10.1016/j.gr.2007.12.010 [16] Li, W. X., Li, X. H., Li, Z. X., 2010. Ca. 850 Ma Bimodal Volcanic Rocks in Northeastern Jiangxi Province, South China: Initial Extension during the Breakup of Rodinia? American Journal of Science, 310(9): 951-980. https://doi.org/10.2475/09.2010.08 [17] Li, X.H., Li, W.X., He, B., 2012. Building of the South China Block and Its Relevance to Assembly and Breakup of Rodinia Supercontinent: Observations, Interpretations and Tests. Bulletin of Mineralogy, Petrology and Geochemistry, 31: 543-559 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH201206001.htm [18] Li, X. H., Li, W. X., Li, Q. L., et al., 2010. Petrogenesis and Tectonic Significance of the ~850 Ma Gangbian Alkaline Complex in South China: Evidence from in Situ Zircon U-Pb Dating, Hf-O Isotopes and Whole-Rock Geochemistry. Lithos, 114(1/2): 1-15. https://doi.org/10.1016/j.lithos.2009.07.011 [19] Li, Z. X., Mitchell, R. N., Spencer, C. J., et al., 2019. Decoding Earth's Rhythms: Modulation of Supercontinent Cycles by Longer Superocean Episodes. Precambrian Research, 323: 1-5. https://doi.org/10.1016/j.precamres.2019.01.009 [20] Li, Z. X., Wartho, J. A., Occhipinti, S., et al., 2007. Early History of the Eastern Sibao Orogen (South China) during the Assembly of Rodinia: New Mica 40Ar/39Ar Dating and SHRIMP U-Pb Detrital Zircon Provenance Constraints. Precambrian Research, 159(1/2): 79-94. https://doi.org/10.1016/j.precamres.2007.05.003 [21] Lin, S.J., 1995. Correlation for Liantuo Formation to Banxi Group and Boundary between the Presinian and Sinian in Eastern Guizhou. Guizhou Geology, 12(1): 23-29 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GZDZ501.001.htm [22] Liu, H.Y., 1991. The System in China. Science Press, Beijing, 1-388(in Chinese). [23] Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 [24] Ma, G.G., Zhang Z.C., Li, H.Q., et al., 1989. A Geochronostratigraphical Study of the Simian System in Yangtze Platform. Bull. Yichang Inst. Geol. Mineral Resources, CAGA, 14: 83-124 (in Chinese with English abstract). [25] Wang J., Pan, G.T., 2009. Neoproterozoic South China Palaeocontinents: An Overview. Acta Sedimentologica Sinica, 27(5): 818-825 (in Chinese with English abstract). http://www.researchgate.net/publication/280949693_Neoproterozoic_South_China_Palaeocontinents_An_overview [26] Wang, D., Wang, X. L., Zhou, J. C., et al., 2013. Unraveling the Precambrian Crustal Evolution by Neoproterozoic Conglomerates, Jiangnan Orogen: U-Pb and Hf Isotopes of Detrital Zircons. Precambrian Research, 233(9): 223-236. https://doi.org/10.1016/j.precamres.2013.05.005 [27] Wang, J., 2005. New advances in the study of "the Nanhuaan System": with Particular Reference to the Stratigraphic Division and Correlation of the Nanhuaan System, South China. Geological Bulletin of China, 24(6): 491-495 (in Chinese with English abstract). http://www.researchgate.net/publication/281025564_New_advances_in_the_study_of_the_Nanhuaan_System-With_particular_reference_to_the_stratigraphic_division_and_correlation_of_the_Nanhuaan_System_South_China [28] Wang, J., Li Z. X, 2003. History of Neoproterozoic Rift Basins in South China: Implications for Rodinia Break-Up. Precambrian Research, 122(1/2/3/4): 141-158. https://doi.org/10.1016/s0301-9268(02)00209-7 [29] Wang, W., Zeng, M. F., Zhou, M. F., et al., 2018. Age, Provenance and Tectonic Setting of Neoproterozoic to Early Paleozoic Sequences in Southeastern South China Block: Constraints on its Linkage to Western Australia-East Antarctica. Precambrian Research, 309(1): 290-308. https://doi.org/10.1016/j.precamres.2017.03.002 [30] Wang, Z.J., 2008. A Proposal to Establish the Banxi System and Discussion on Its Foundations-Based Mainly on Studies in Eastern Guizhou Area. Geological Review, 54(3): 296-306 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/OA000004486 [31] Wang, Z.Q., Yin, C.Y., Gao, L.Z., et al., 2006a. Chemostratigraphic Studies to Explain Neoproterozoic Stratigraphic Division and Correlation. Earth Science Frontiers, 13(6): 268-279 (in Chinese with English abstract). http://www.researchgate.net/publication/285504331_Chemostratigraphic_studies_to_explain_Neoproterozoic_stratigraphic_division_and_correlation [32] Wang, Z.Q., Yin, C.Y., Gao, L.Z., et al., 2006b. The Character of the Chemical Index of Alteration and Discussion of Subdivision and Correlation of the Nanhua System in Yichang Area. Geological Review, 52(5): 577-585 (in Chinese with English abstract). http://www.researchgate.net/publication/291448584_The_character_of_the_chemical_index_of_alteration_and_discussion_of_subdivision_and_correlation_of_the_Nanhua_System_in_Yichang_Area [33] Xu, B., Xiao, S., Zou, H., et al., 2009. SHRIMP Zircon U-Pb Age Constraints on Neoproterozoic Quruqtagh Diamictites in NW China. Precambrian Research, 168(3/4): 247-258. https://doi.org/10.1016/j.precamres.2008.10.008 [34] Yin, C.Y., Liu, D.Y., Gao, L.Z., et al., 2003. Lower Boundary Age of the Nanhua System and the Gucheng Glacial Stage: Evidence from SHRIMPⅡ Dating. Chinese Science Bulletin, 48(16): 1721-1725 (in Chinese with English abstract). doi: 10.1360/csb2003-48-16-1721 [35] Zhao, G. C., Wang, Y. J., Huang, B. C., et al., 2018. Geological Reconstructions of the East Asian Blocks: From the Breakup of Rodinia to the Assembly of Pangea. Earth-Science Reviews, 186(2): 262-286. https://doi.org/10.1016/j.earscirev.2018.10.003 [36] Zheng, Y.F., 2003. Neoproterozoic Magmatic Activity and Global Change. Chinese Science Bulletin, 48: 1705-1720 (in Chinese with English abstract). doi: 10.1360/csb2003-48-16-1705 [37] Zheng, Y.F., Zhang, S.B., 2007. Formation and Evolution of Precambrian Continental Crust in South China. Chinese Science Bulletin, 52(1): 1-10 (in Chinese with English abstract). doi: 10.1007/s11434-007-0015-5 [38] Zhou, C.M., 2016. Neoproterozoic Lithostratigraphy and Correlation across the Yangtze Block, South China. Journal of Stratigraphy, 40(2): 120-135 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DCXZ201602002.htm [39] Zhou, C. M., Tucker, R., Xiao, S. H., et al., 2004. New Constraints on the Ages of Neoproterozoic Glaciations in South China. Geology, 32(5): 437. https://doi.org/10.1130/g20286.1 [40] Zhou, J. C., Wang, X. L., Qiu, J. S., 2009. Geochronology of Neoproterozoic Mafic Rocks and Sandstones from Northeastern Guizhou, South China: Coeval Arc Magmatism and Sedimentation. Precambrian Research, 170(1/2): 27-42. https://doi.org/10.1016/j.precamres.2008.11.002 [41] 蔡雄飞, 叶琴, 肖明元, 2018. 对南华系下统莲沱组CIA值寒冷气候认识的几点商榷——以鄂西神农架、湘西北南华系莲沱组为例. 岩石矿物学杂志, 37(4): 621-636. doi: 10.3969/j.issn.1000-6524.2018.04.008 [42] 杜秋定, 汪正江, 王剑, 等, 2013. 湘中长安组碎屑锆石LA-ICP-MS U-Pb年龄及其地质意义. 地质论评, 59(2): 332-344. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201302017.htm [43] 冯连君, 储雪蕾, 张启锐, 等, 2004. 湘西北南华系渫水河组寒冷气候成因的新证据. 科学通报, 49(2): 1172-1178. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200412012.htm [44] 江新胜, 王剑, 崔晓庄, 等, 2012. 滇中新元古代澄江组锆石SHRIMP U-Pb年代学研究及其地质意义. 中国科学: 地球科学, 42(10): 1496-1507. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201210005.htm [45] 李献华, 李武显, 何斌, 2012. 华南陆块的形成与Rodinia超大陆聚合——裂解, 观察、解释与检验. 矿石岩石地球化学通报, 31: 543-559. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201206001.htm [46] 林树基, 1995. 板溪群与莲沱组对比问题与震旦/前震旦界限. 贵州地质, 12(1): 23-29. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ501.001.htm [47] 刘鸿允, 1991. 中国震旦系. 北京: 科学出版社, 1-388. [48] 马国干, 张自超, 李华芹, 等, 1989. 扬子地台震旦系同位素年代地层学研究. 中国地质科学院宜昌地质矿产研究所所刊, 14: 83-124. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ198908001005.htm [49] 汪正江, 2008. 关于建立"板溪系"的建议及其基础的讨论. 地质论评, 54(3): 296-306. doi: 10.3321/j.issn:0371-5736.2008.03.002 [50] 王剑, 2005. 华南"南华系"研究新进展——论南华系地层划分与对比. 地质通报, 24(6): 491-495. doi: 10.3969/j.issn.1671-2552.2005.06.001 [51] 王剑, 潘桂堂, 2009. 中国南方古大陆研究进展与问题评述. 沉积学报, 27(5): 818-825. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200905007.htm [52] 王自强, 尹崇玉, 高林志, 等, 2006a. 用化学地层学研究新元古代地层划分和对比. 地学前缘, 13(6): 268-279. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200606035.htm [53] 王自强, 尹崇玉, 高林志, 等, 2006b. 宜昌三斗坪地区南华系化学蚀变指数特征及南华系划分、对比的讨论. 地质论评, 52(5): 577-585. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200605000.htm [54] 尹崇玉, 刘敦一, 高林志, 等, 2003. 南华系底界与古城冰期的年龄: SHRIMP Ⅱ定年证据. 科学通报, 48(16): 1721-1725. doi: 10.3321/j.issn:0023-074X.2003.16.002 [55] 郑永飞, 2003. 新元古代岩浆活动与全球变化. 科学通报, 48: 1705-1720. doi: 10.3321/j.issn:0023-074X.2003.16.001 [56] 郑永飞, 张少兵, 2007. 华南前寒武纪大陆地壳的形成和演化. 科学通报, 52(1): 1-10. doi: 10.3321/j.issn:0023-074X.2007.01.001 [57] 周传明, 2016. 扬子区新元古代前震旦纪地层对比. 地层学杂志, 40(2): 120-135. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201602002.htm