• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    南海西北部过去~55 ka以来元素地球化学记录的古气候环境演变

    田成静 蔡观强 李明坤 李波 赵利

    田成静, 蔡观强, 李明坤, 李波, 赵利, 2021. 南海西北部过去~55 ka以来元素地球化学记录的古气候环境演变. 地球科学, 46(3): 975-985. doi: 10.3799/dqkx.2020.276
    引用本文: 田成静, 蔡观强, 李明坤, 李波, 赵利, 2021. 南海西北部过去~55 ka以来元素地球化学记录的古气候环境演变. 地球科学, 46(3): 975-985. doi: 10.3799/dqkx.2020.276
    Tian Chengjing, Cai Guanqiang, Li Mingkun, Li Bo, Zhao Li, 2021. Paleoclimatic and Paleoenvironmental Changes Recorded by Elemental Geochemistry in the Northwestern South China Sea since the Past~55 ka. Earth Science, 46(3): 975-985. doi: 10.3799/dqkx.2020.276
    Citation: Tian Chengjing, Cai Guanqiang, Li Mingkun, Li Bo, Zhao Li, 2021. Paleoclimatic and Paleoenvironmental Changes Recorded by Elemental Geochemistry in the Northwestern South China Sea since the Past~55 ka. Earth Science, 46(3): 975-985. doi: 10.3799/dqkx.2020.276

    南海西北部过去~55 ka以来元素地球化学记录的古气候环境演变

    doi: 10.3799/dqkx.2020.276
    基金项目: 

    中国地质调查局项目 DD20190627

    中国地质调查局项目 DD20191002

    中国地质调查局项目 DD20190209

    国家自然科学基金项目 41576049

    中国博士后科学基金项目 2019M652936

    南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项 GML2019ZD0209

    详细信息
      作者简介:

      田成静(1989-), 女, 工程师, 硕士, 主要从事海洋地质与地球化学研究.ORCID: 0000-0001-7248-9843.E-mail: tianchengjingpx@163.com

    • 中图分类号: P76

    Paleoclimatic and Paleoenvironmental Changes Recorded by Elemental Geochemistry in the Northwestern South China Sea since the Past~55 ka

    • 摘要: 南海西北部的西沙碳酸盐台地北坡受到陆源和海洋自生物质的供应,蕴含丰富的气候变化信息.为探究该区域的古气候环境演变历史,选取长828 cm的SS7岩心,利用AMS14C测年以及有孔虫氧同位素建立该区域的年代学框架,并进行元素地球化学分析.该岩心底部年龄为~55 ka BP,沉积物的元素主要受到陆源碎屑输入、海洋自生作用、氧化还原条件、海洋化学沉积作用等因素的控制.碎屑组分元素比值K/Rb和K/Ti能用于反映源区地表化学风化程度,进而反映源区过去55 ka的东亚夏季风的演化.区域东亚夏季风在约40 ka BP明显减弱,且对Heinrich、新仙女木等北半球快速变冷的事件有明显地响应.过去55 ka的东亚夏季风,不仅受到北半球低纬度夏季日照辐射量的控制,还受到赤道太平洋大气动力(如太平洋沃克环流)的影响.

       

    • 图  1  SS7岩心位置及周边地形

      底图来源于自然资源部数据服务栏目,审图号:GS(2016)2891号

      Fig.  1.  Location of the studied core SS7 and surrounding topography

      图  2  南海西沙海槽SS7柱沉积物年代地层框架

      Fig.  2.  The chronological framework of core SS7

      图  3  SS7柱沉积物常量元素含量

      Fig.  3.  Distribution of major elements of core SS7

      图  4  SS7柱沉积物微量元素含量

      Fig.  4.  Distribution of trace elements of core SS7

      图  5  元素或氧化物的主成分1和主成分2的荷载关系

      Fig.  5.  Relationships between the loading of principal components 1 and 2 of the elements or oxides

      图  6  SS7岩心的元素比值与区域和全球气候变化的对比

      a. SS7岩心的沉积速率;b. 全球相对海平面,据Rohling et al. (2009);c. K/Rb;d. K/Ti;e. 湖光岩玛珥湖的热带季雨林孢粉含量,据Mingram et al. (2004);f. 湖光岩玛珥湖木本/草本木质素比值,据Fuhrmann et al. (2003);g. 亚洲季风区平均有效湿度,据Herzschuh (2006);h. 黄土高原蓝田剖面磁化率,据Liu et al. (2005);i. 印度尼西亚Towuti湖的叶蜡正构烷烃碳同位素,据Russell et al. (2014);j. 热带太平洋东、西部的表层海水温度差,据Dyez and Ravelo (2014);k. 北纬30°夏季日照辐射量,据Berger and Loutre (1991);l. 华南石笋氧同位素,据Dykoski et al. (2005)Wang et al. (2001);m. 格陵兰岛冰心GISP2的氧同位素,据Dansgaard et al. (1993)

      Fig.  6.  Comparison of elemental ratios with regional and global climate change

      表  1  SS7岩心元素和氧化物的主成分分析结果

      Table  1.   Principal component analysis of elements and oxides of core SS7

      元素/氧化物 成分1 成分2 成分3 元素/氧化物 成分1 成分2 成分3
      CaO -0.984 -0.061 -0.097 Ta 0.841 0.097 0.073
      SiO2 0.981 -0.057 -0.049 MgO 0.795 -0.556 0.143
      TiO2 0.977 -0.137 -0.026 Co 0.712 -0.125 0.608
      Sr -0.976 -0.048 0.037 Pb 0.588 0.361 0.397
      LOI -0.970 0.201 -0.011 Ba -0.577 0.432 0.318
      Al2O3 0.964 0.110 0.155 P2O5 0.023 -0.888 0.122
      Ga 0.963 -0.065 0.192 TOC -0.390 0.849 -0.161
      Rb 0.962 -0.061 0.228 Li 0.191 0.829 0.231
      Sc 0.942 -0.165 0.221 Na2O -0.020 0.791 0.043
      Nb 0.941 0.164 0.058 W 0.224 0.785 0.074
      Cs 0.936 -0.230 0.218 Cu 0.025 0.780 0.275
      Fe2O3 0.931 -0.210 0.260 MnO 0.278 -0.777 0.231
      V 0.910 -0.001 0.259 U -0.290 0.716 0.083
      K2O 0.897 -0.374 0.072 Zn 0.254 -0.125 0.868
      Zr 0.891 -0.158 -0.263 Ni 0.007 0.414 0.815
      Th 0.848 0.222 0.317 方差(%) 58.62 19.77 6.94
      Cr 0.844 -0.258 0.118 累积方差(%) 58.62 78.39 85.33
      下载: 导出CSV
    • [1] An, Z. S., Porter, S. C., 1997. Millennial-Scale Climatic Oscillations during the Last Interglaciation in Central China. Geology, 25(7): 603-606. https://doi.org/10.1130/0091-7613(1997)0250603:mscodt>2.3.co;2 doi: 10.1130/0091-7613(1997)0250603:mscodt>2.3.co;2
      [2] Berger, A., Loutre, M. F., 1991. Insolation Values for the Climate of the Last 10 Million Years. Quaternary Science Reviews, 10(4): 297-317. https://doi.org/10.1016/0277-3791(91)90033-Q
      [3] Cai, G. Q., Qiu, Y., Peng, X. C., et al., 2010. The Geochemical Characteristics of Trace Elements and Rees in Surficial Sediments of the Southwestern South China Sea and Their Implications. Marine Geology & Quaternary Geology, 30(5): 53-62 (in Chinese with English abstract). http://www.cqvip.com/QK/71135X/201107/35889894.html
      [4] Chen, H. J., Xu, Z. K., Cai, M. J., et al., 2019. Provenance of Clay-Sized Detrital Sediments and Its Paleoenvironmental Implications at Site U1456 in the Eastern Arabian Sea since 30 ka. Earth Science, 44(8): 2803-2817 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201908024.htm
      [5] Dansgaard, W., Johnsen, S. J., Clausen, H. B., et al., 1993. Evidence for General Instability of Past Climate from a 250-kyr Ice-Core Record. Nature, 364(6434): 218-220. https://doi.org/10.1038/364218a0
      [6] Dyez, K. A., Ravelo, A. C., 2014. Dynamical Changes in the Tropical Pacific Warm Pool and Zonal SST Gradient during the Pleistocene. Geophysical Research Letters, 41(21): 7626-7633. https://doi.org/10.1002/2014GL061639
      [7] Dykoski, C. A., Edwards, R. L., Cheng, H., et al., 2005. A High-Resolution, Absolute-Dated Holocene and Deglacial Asian Monsoon Record from Dongge Cave, China. Earth and Planetary Science Letters, 233(1-2): 71-86. https://doi.org/10.1016/j.epsl.2005.01.036
      [8] Fairbanks, R. G., Mortlock, R. A., Chiu, T. C., et al., 2005. Radiocarbon Calibration Curve Spanning 0 to 50 000 Years BP Based on Paired 230Th/234U/238U and 14C Dates on Pristine Corals. Quaternary Science Reviews, 24(16-17): 1781-1796. https://doi.org/10.1016/j.quascirev.2005.04.007
      [9] Fuhrmann, A., Mingram, J., Lücke, A., et al., 2003. Variations in Organic Matter Composition in Sediments from Lake Huguang Maar (Huguangyan), South China during the last 68 ka: Implications for Environmental and Climatic Change. Organic Geochemistry, 34(11): 1497-1515. https://doi.org/10.1016/S0146-6380(03)00158-X
      [10] Herzschuh, U., 2006. Palaeo-Moisture Evolution in Monsoonal Central Asia during the Last 50, 000 Years. Quaternary Science Reviews, 25(1-2): 163-178. https://doi.org/10.1016/j.quascirev.2005.02.006
      [11] Hu, D. K., Böning, P., Köhler, C. M., et al., 2012. Deep Sea Records of the Continental Weathering and Erosion Response to East Asian Monsoon Intensification since 14 ka in the South China Sea. Chemical Geology, 326-327: 1-18. https://doi.org/10.1016/j.chemgeo.2012.07.024
      [12] Hu, D. K., Clift, P. D., Wan, S. M., et al., 2015. Testing Chemical Weathering Proxies in Miocene-Recent Fluvial-Derived Sediments in the South China Sea. Geological Society, London, Special Publications, 429(1): 45-72. https://doi.org/10.1144/sp429.5
      [13] Huang, J., Wan, S. M., Xiong, Z. F., et al., 2016. Geochemical Records of Taiwan-Sourced Sediments in the South China Sea Linked to Holocene Climate Changes. Palaeogeography, Palaeoclimatology, Palaeoecology, 441: 871-881. https://doi.org/10.1016/j.palaeo.2015.10.036
      [14] Jin, H. Y., Jian, Z. M., Xie, X., et al., 2011. Late Quaternary East Asian Monsoonal Evolution Recorded by High Resolution Elemental Ratios in the Northern South China Sea. Quaternary Sciences, 31(2): 207-215 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ201102001.htm
      [15] Li, C. Z., 1987. Geochemistry of Elements in Surface Sediments of the South China Sea Basin. Donghai Marine Science, 5(1-2): 77-91 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DHHY1987Z1010.htm
      [16] Li, M. K., Ouyang, T. P., Tian, C. J., et al., 2019. Sedimentary Responses to the East Asian Monsoon and Sea Level Variations Recorded in the Northern South China Sea over the Past 36 kyr. Journal of Asian Earth Sciences, 171: 213-224. https://doi.org/10.1016/j.jseaes.2018.01.001
      [17] Lin, Z. J., Chen, D. F., Liu, Q., 2008. Geochemical Indices for Redox Conditions of Marine Sediments. Bulletin of Mineralogy, Petrology and Geochemistry, 27(1): 72-80 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH200801012.htm
      [18] Liu, W. G., Huang, Y. S., An, Z. S., et al., 2005. Summer Monsoon Intensity Controls C4/C3 Plant Abundance during the Last 35 ka in the Chinese Loess Plateau: Carbon Isotope Evidence from Bulk Organic Matter and Individual Leaf Waxes. Palaeogeography, Palaeoclimatology, Palaeoecology, 220(3-4): 243-254. https://doi.org/10.1016/j.palaeo.2005.01.001
      [19] Mingram, J., Schettler, G., Nowaczyk, N., et al., 2004. The Huguang Maar Lake-AHigh-Resolution Record of Palaeoenvironmental and Palaeoclimatic Changes over the Last 78, 000 Years from South China. Quaternary International, 122(1): 85-107. https://doi.org/10.1016/j.quaint.2004.02.001
      [20] Nesbitt, H. W., Markovics, G., Price, R. C., 1980. Chemical Processes Affecting Alkalis and Alkaline Earths during Continental Weathering. Geochimica et Cosmochimica Acta, 44(11): 1659-1666. https://doi.org/10.1016/0016-7037(80)90218-5
      [21] Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299(5885): 715-717. https://doi.org/10.1038/299715a0
      [22] Qiu, Y., Peng, X. C., Wang, Y. M., et al., 2017. Erosive Process and Sedimentary Characteristics of the Quaternary Sediments in the Northern South China Sea. Geological Publishing House, Beijing (in Chinese).
      [23] Reimer, P. J., Baillie, M. L., Bard, E., et al., 2009. IntCal09 and Marine09 Radiocarbon Age Calibration Curves, 0‒50, 000 Years cal BP. Radiocarbon, 51(4): 1111-1150. https://doi.org/10.1017/s0033822200034202
      [24] Rohling, E. J., Grant, K., Bolshaw, M., et al., 2009. Antarctic Temperature and Global Sea Level Closely Coupled over the Past Five Glacial Cycles. Nature Geoscience, 2(7): 500-504. https://doi.org/10.1038/ngeo557
      [25] Russell, J. M., Hendrik, V., Konecky, B. L., et al., 2014. Glacial Forcing of Central Indonesian Hydroclimate since 60, 000 y B.P. Proceedings of the National Academy of Sciences of the United States of America, 111: 5100-5105. https://doi.org/10.1073/pnas.1402373111
      [26] Wan, S. M., Toucanne, S., Clift, P. D., et al., 2015. Human Impact Overwhelms Long-Term Climate Control of Weathering and Erosion in Southwest China. Geology, 43(5): 439-442. https://doi.org/10.1130/g36570.1
      [27] Wang, P. X., 2014. China's Participation in the Ocean Drilling Program: Decade Retrospect and Future Prospect. Advances in Earth Science, 29(3): 322-326 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ201403003.htm
      [28] Wang, P. X., Sun, X. J., 1994. Last Glacial Maximum in China: Comparison between Land and Sea. Catena, 23(3-4): 341-353. https://doi.org/10.1016/0341-8162(94)90077-9
      [29] Wang, Y. J., 2001. A High-Resolution Absolute-Dated Late Pleistocene Monsoon Record from Hulu Cave, China. Science, 294(5550): 2345-2348. https://doi.org/10.1126/science.1064618
      [30] Wei, G. J., Liu, Y., Li, X. H., et al., 2004. Major and Trace Element Variations of the Sediments at ODP Site 1144, South China Sea, during the Last 230 ka and Their Paleoclimate Implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 212(3-4): 331-342. https://doi.org/10.1016/j.palaeo.2004.06.011
      [31] Wei, G., Liu, Y., Li, X., et al., 2003. Climatic Impact on Al, K, Sc and Ti in Marine Sediments: Evidence from ODP Site 1144, South China Sea. Geochemical Journal, 37(5): 593-602. https://doi.org/10.2343/geochemj.37.593
      [32] Wu, M., Li, S. R., Chu, F. Y., et al., 2011. Paleoclimate Environmental Significance of Clay Mineral Analysis of Core B106 at Offshore Hainan Island. Journal of Huaihai Institute of Technology (Natural Sciences Edition), 20(1): 85-91 (in Chinese with English abstract). http://www.cqvip.com/QK/90998X/201101/37035532.html
      [33] Yan, H., Sun, L., Oppo, D. W., et al., 2011. South China Sea Hydrological Changes and Pacific Walker Circulation Variations over the Last Millennium. Nature Communications, 2: 293. https://doi.org/10.1038/ncomms1297
      [34] Yang, G. F., Chen, Z. H., Zhang, H. J., et al., 2018. Paleoclimatic Variations in Ningjinpo Area since Late Pleistocene as Indicated by N-Alkanes. Earth Science, 43(11): 4001-4007 (in Chinese with English abstract). http://www.researchgate.net/publication/330192417_Paleoclimatic_Variations_in_Ningjinpo_Area_since_Late_Pleistocene_as_Indicated_by_n-Alkanes
      [35] Yu, Z. J., Wan, S. M., Colin, C., et al., 2016. Co-Evolution of Monsoonal Precipitation in East Asia and the Tropical Pacific ENSO System since 2.36 Ma: New Insights from High-Resolution Clay Mineral Records in the West Philippine Sea. Earth and Planetary Science Letters, 446: 45-55. https://doi.org/10.1016/j.epsl.2016.04.022
      [36] Zhang, H., Griffiths, M. L., Chiang, J. C. H., et al., 2018. East Asian Hydroclimate Modulated by the Position of the Westerlies during Termination I. Science, 362(6414): 580-583. https://doi.org/10.1126/science.aat9393
      [37] Zhao, Q. H., Jian, Z. M., Wang, J. L., et al., 2001. Neogene Oxygen Isotopic Stratigraphy, ODP Site 1148, Northern South China Sea. Science China Earth Sciences, 44(10): 934-942. https://doi.org/10.1007/BF02907086
      [38] Zhao, Y., Yu, Z. C., Chen, F. H., et al., 2009. Vegetation Response to Holocene Climate Change in Monsoon-Influenced Region of China. Earth-Science Reviews, 97(1-4): 242-256. https://doi.org/10.1016/j.earscirev.2009.10.007
      [39] Zhou, H., Liu, L. J., Xu, Y. Q., et al., 2018. Sediment Characteristics and Paleoenvironmental Significance of Core DLW3101 from Northern Slope of the South China Sea. Acta Oceanologica Sinica, 40(7): 103-115 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SEAC201807009.htm
      [40] Zhou, X., Sun, L. G., Chu, Y. X., et al., 2016. Catastrophic Drought in East Asian Monsoon Region during Heinrich Event 1. Quaternary Science Reviews, 141: 1-8. https://doi.org/10.1016/j.quascirev.2016.03.029
      [41] 蔡观强, 邱燕, 彭学超, 等, 2010. 南海西南海域表层沉积物微量和稀土元素地球化学特征及其意义. 海洋地质与第四纪地质, 30(5): 53-62. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201005010.htm
      [42] 陈红瑾, 徐兆凯, 蔡明江, 等, 2019. 30 ka以来东阿拉伯海U1456站位粘土粒级碎屑沉积物来源及其古环境意义. 地球科学, 44(8): 2803-2817. doi: 10.3799/dqkx.2018.185
      [43] 金海燕, 翦知湣, 谢昕, 等, 2011. 南海北部晚第四纪高分辨率元素比值反映的东亚季风演变. 第四纪研究, 31(2): 207-215. doi: 10.3969/j.issn.1001-7410.2011.02.02
      [44] 李粹中, 1987. 南海中部沉积物的元素地球化学特征. 东海海洋, 5(1-2): 77-91. https://www.cnki.com.cn/Article/CJFDTOTAL-DHHY1987Z1010.htm
      [45] 林治家, 陈多福, 刘芊, 2008. 海相沉积氧化还原环境的地球化学识别指标. 矿物岩石地球化学通报, 27(1): 72-80. doi: 10.3969/j.issn.1007-2802.2008.01.012
      [46] 邱燕, 彭学超, 王英民, 等, 2017. 南海北部海域第四系侵蚀过程与沉积响应. 北京: 地质出版社.
      [47] 汪品先, 2014. 我国参加大洋钻探的近十年回顾与展望. 地球科学进展, 29(3): 322-326. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201403003.htm
      [48] 吴敏, 李胜荣, 初凤友, 等, 2011. 海南岛近海B106柱粘土矿物学指标的古气候环境意义. 淮海工学院学报, 20(1): 85-91. doi: 10.3969/j.issn.1672-6685.2011.01.022
      [49] 杨桂芳, 陈正洪, 张慧娟, 等, 2018. 宁晋泊晚更新世以来气候变化的正构烷烃分子记录. 地球科学, 43(11): 4001-4007. doi: 10.3799/dqkx.2018.575
      [50] 周航, 刘乐军, 徐元芹, 等, 2018. 南海北部陆坡区DLW3101孔沉积物特征及古环境意义. 海洋学报, 40(7): 103-115. doi: 10.3969/j.issn.0253-4193.2018.07.009
    • 加载中
    图(6) / 表(1)
    计量
    • 文章访问数:  824
    • HTML全文浏览量:  135
    • PDF下载量:  77
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-05-14
    • 刊出日期:  2021-03-15

    目录

      /

      返回文章
      返回