Petrogenesis of Triassic Suolagou Sanukitoid-like Diorite in East Kunlun Orogen and Its Implications for Paleo-Tethyan Orogeny
-
摘要: 具有特殊成因机制的赞岐岩是探究深部岩浆动力学过程与区域构造演化的重要岩石探针之一.以东昆仑索拉沟地区赞岐质闪长岩为研究对象,开展系统的岩石学、年代学、元素地球化学和Lu-Hf同位素分析,厘定其岩石成因,揭示其对古特提斯造山作用的启示.锆石U-Pb年代学分析表明,索拉沟闪长岩形成于中三叠世(~243 Ma).岩石具有较低含量的SiO2(50.26%~57.40%),较高的全碱成分(Na2O+K2O=3.5%~6.3%)、MgO(6.0%~7.1%)和Mg#值(50.1~60.9),属于高镁钙碱性准铝质岩石.索拉沟闪长岩具有较高的Sr(622×10-6~1 041×10-6)、Cr(30×10-6~161×10-6)和Ni(19×10-6~79×10-6)以及中等的Y(7.6×10-6~24.3×10-6)和Yb(0.62~1.87)含量,与典型的高镁安山质赞歧岩成分类似.岩石富集轻稀土和大离子亲石元素(如Rb、K和Pb),亏损高场强元素(如Ta、Nb和Zr),具有弧岩浆岩的化学属性.Lu-Hf同位素研究揭示,索拉沟闪长岩起源于富集岩石圈地幔(εHf(t)=-2.4~-0.4,TDM=0.89~0.99 Ga).岩石成因分析表明,东昆仑索拉沟中三叠世赞岐质高镁闪长岩形成于陆缘弧背景,岩浆起源于富集岩石圈地幔,且岩浆经历了以角闪石和黑云母为主的分离结晶作用.中三叠世是东昆仑造山带古特提斯洋壳俯冲和地体碰撞的构造转换阶段,索拉沟赞岐质高镁闪长岩可能是俯冲作用结束时板片断离的岩浆响应.Abstract: Sanukitoid with special genetic mechanism is one important petrological probe to study the magma dynamic processes and associated tectonic process. In this study, it presents petrology, geochronology, elemental geochemistry and Lu-Hf isotopic data on the Suolagou sanukitoid-like diorite in East Kunlun, aiming to characterize its petrogenesis and to reveal its implications on the Paleo-Tethyan orogeny. Zircon U-Pb dating shows that the Suolagou diorite was formed in the Middle Triassic (~243 Ma). Geochemically, they have low contents of SiO2(50.26%-57.40%), but high contents of total alkaline (Na2O+K2O=3.5%-6.3%), MgO (6.0%-7.1%) and high Mg# (50.1-60.9), belonging to high magnesium, calc-alkaline and metaluminous series. The Suolagou diorites show geochemical similarities to high Mg# andesitic sanukitoids with high contents of Sr (622×10-6-1 041×10-6), Cr (30×10-6-161×10-6) and Ni (19×10-6-79×10-6), and moderate contents of Y(7.6×10-6-24.3×10-6) and Yb(0.62×10-6-1.87×10-6). These rocks display remarkable enrichment in light rare earth elements and large-ion lithophile elements (such as Cs, Rb, K and Pb) but depletion in high-field strength elements (such as Ta, Nb and Zr), resembling the arc-related magmatic rocks above subduction zone. Lu-Hf isotopes show that the Suolagou diorites were derived from partial melting of enriched lithospheric mantle (εHf(t)=-2.4 to -0.4, TDM=0.89-0.99 Ga). The~243 Ma sanukitoid-like diorite in East Kunlun were formed in a continental arc setting, i.e., the parent magma derived from partial melting of enriched lithospheric mantle, subsequently followed by fractional crystallization of amphibole and biotite. This study suggests that the transition from Paleo-Tethyan oceanic slab subduction to terranes collision in East Kunlun occurred at Middle Triassic, and the Suolagou sanukitoid-like high-Mg diorites could be the magmatic response to the slab break-off at the end of subduction.
-
Key words:
- East Kunlun /
- Triassic /
- high-Mg diorite /
- sanukitoid /
- Paleo-Tethyan /
- geochemistry /
- geochronology
-
图 1 东昆仑及其邻区的构造单元划分简图(a)、东昆仑东段花岗岩基分布(b)和索拉沟岩体地质简图(c)
图a据Roger et al.(2003);图b据Xiong et al.(2014)
Fig. 1. Tectonic outline of the East Kunlun Orogen and its adjacent area (a), the distribution of the granitic batholith in the eastern part of East Kunlun (b) and simplified geological map of the Suolagou pluton (c)
图 4 索拉沟闪长岩的TAS分类命名图(a),A/NK-A/CNK图(b),SiO2-K2O判别图(c)和SiO2-MgO成分关系图(d)
a. 据Middlemost(1994);b.据Chappell and White(1974); c. 据Peccerillo and Taylor(1976);d. 日本Setouchi地区赞岐岩的成分资料据Tatsumi et al.(2003)和Tatsumi(2006)
Fig. 4. TAS classification and nomenclature diagram (a), A/NK vs. A/CNK diagram (b), SiO2 vs. K2O diagram (c) and SiO2-MgO diagram (d) for the Suolagou diorite
图 6 索拉沟闪长岩的球粒陨石标准化稀土元素图(a)和原始地幔标准化微量元素蛛网图(b)
标准化值分别据Taylor and McLennan(1985)和Sun and McDonough(1989)
Fig. 6. Chondrite-normalized REE pattern (a) and primitive mantle-normalized trace element spider diagram (b) of the Suolagou diorite
图 7 东昆仑索拉沟闪长岩与典型赞岐岩的成因分类判别图解
a.据Defant and Drummond(1990);b.据Kamei et al.(2004);c. 据Laurent et al.(2014);d. 据Martin et al.(2010)
Fig. 7. Comparative diagrams for the Suolagou diorite and typical sanukitoid
图 8 东昆仑索拉沟闪长岩与中三叠世埃达克岩的成分对比图及地幔源区判别图
开木棋、沟里和香日德埃达克岩资料据Chen et al.(2015, 2017)和Xiong et al.(2014)
Fig. 8. Comparative diagrams for the Suolagou diorites and Middle Triassic adakites in the East Kunlun and discrimination diagram of mantle source for the Soulagou diorites
图 9 东昆仑索拉沟闪长岩的Ba/Yb-Ta/Yb(a)、(Hf/Sm)N-(Ta/La)N(b)和Th/Yb-Ba/La(c)成分关系图解
洋中脊玄武岩、洋岛玄武岩和地幔值据Sun and McDonough(1989)
Fig. 9. Ba/Yb-Ta/Yb (a), (Hf/Sm)N-(Ta/La)N (b) and Th/Yb-Ba/La (c) diagrams for the Suolagou diorite in the East Kunlun
-
[1] Chappell, B. W., White, A. J. R., 1974. Two Contrasting Granite Types. Pacific Geology, 8: 173-174. [2] Chen, J., Wang, B. Z., Li, B., et al., 2015. Zircon U-Pb Ages, Geochemistry, and Sr-Nd-Pb Isotopic Compositions of Middle Triassic Granodiorites from the Kaimuqi Area, East Kunlun, Northwest China: Implications for Slab Breakoff. International Geology Review, 57(2): 257-270. https://doi.org/10.1080/00206814.2014.1003105 [3] Chen, J. J., Wei, J. H., Fu, L. B., et al., 2017. Multiple Sources of the Early Mesozoic Gouli Batholith, Eastern Kunlun Orogenic Belt, Northern Tibetan Plateau: Linking Continental Crustal Growth with Oceanic Subduction. Lithos, 292-293: 161-178. https://doi.org/10.1016/j.lithos.2017.09.006 [4] Chen, N.S., Sun, M., Wang, Q.Y., et al., 2007. EMP Chemical Ages of Monazites from Central Zone of the Eastern Kunlun Orogen: Records of Multi-Tectonometamorphic Events. Chinese Science Bulletin, 52(11): 1297-1306 (in Chinese). doi: 10.1360/csb2007-52-11-1297 [5] Chen, S.J., Li, R.S., Ji, W.H., et al., 2010. The Permian Lithofacies Paleogeographic Characteristics and Basin-Mountain Conversion in the Kunlun Orogenic Belt. Geology in China, 37(2): 374-393 (in Chinese with English abstract). http://www.researchgate.net/publication/289454308_The_Permian_lithofacies_paleogeographic_characteristics_and_basin-mountain_conversion_in_the_Kunlun_orogenic_belt [6] Chen, Y.X., Pei, X.Z., Li, R.B., et al., 2014. Rock Association, Geochemical Characteristics and Tectonic Setting of the Xiaomiao Formation, East Region of East Kunlun Orogenic Belt. Acta Geologica Sinica, 88(6): 1038-1054 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201406007.htm [7] Chiaradia, M., Müntener, O., Beate, B., 2014. Quaternary Sanukitoid-Like Andesites Generated by Intracrustal Processes (Chacana Caldera Complex, Ecuador): Implications for Archean Sanukitoids. Journal of Petrology, 55(4): 769-802. https://doi.org/10.1093/petrology/egu006 [8] Defant, M. J., Drummond, M. S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294): 662-665. https://doi.org/10.1038/347662a0 [9] Dong, Y. P., He, D. F., Sun, S. S., et al., 2018. Subduction and Accretionary Tectonics of the East Kunlun Orogen, Western Segment of the Central China Orogenic System. Earth-Science Reviews, 186: 231-261. https://doi.org/10.1016/j.earscirev.2017.12.006 [10] Guo, X.Z., Xie, W.H., Zhou, H.B., et al., 2019. Zircon U-Pb Chronology and Geochemistry of the Rhyolite Porphyry in the Nagengkangqieer Silver Polymetallic Deposit, East Kunlun and Their Geological Significance. Earth Science, 44(7): 2505-2518 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201907022.htm [11] Heilimo, E., Halla, J., Hölttä, P., 2010. Discrimination and Origin of the Sanukitoid Series: Geochemical Constraints from the Neoarchean Western Karelian Province (Finland). Lithos, 115(1-4): 27-39. https://doi.org/10.1016/j.lithos.2009.11.001 [12] Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. Improved In Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391-1399. https://doi.org/10.1039/c2ja30078h [13] Huang, H., Niu, Y. L., Nowell, G., et al., 2014. Geochemical Constraints on the Petrogenesis of Granitoids in the East Kunlun Orogenic Belt, Northern Tibetan Plateau: Implications for Continental Crust Growth through Syn-Collisional Felsic Magmatism. Chemical Geology, 370: 1-18. https://doi.org/10.1016/j.chemgeo.2014.01.010 [14] Jones, J. H., Walker, D., Pickett, D. A., et al., 1995. Experimental Investigations of the Partitioning of Nb, Mo, Ba, Ce, Pb, Ra, Th, Pa, and U between Immiscible Carbonate and Silicate Liquids. Geochimica et Cosmochimica Acta, 59(7): 1307-1320. https://doi.org/10.1016/0016-7037(95)00045-2 [15] Kamei, A., Owada, M., Nagao, T., et al., 2004. High-Mg Diorites Derived from Sanukitic HMA Magmas, Kyushu Island, Southwest Japan Arc: Evidence from Clinopyroxene and Whole Rock Compositions. Lithos, 75(3-4): 359-371. https://doi.org/10.1016/j.lithos.2004.03.006 [16] la Flèche, M. R., Camiré, G., Jenner, G. A., 1998. Geochemistry of Post-Acadian, Carboniferous Continental Intraplate Basalts from the Maritimes Basin, Magdalen Islands, Québec, Canada. Chemical Geology, 148(3-4): 115-136. https://doi.org/10.1016/s0009-2541(98)00002-3 [17] Laurent, O., Martin, H., Moyen, J. F., et al., 2014. The Diversity and Evolution of Late-Archean Granitoids: Evidence for the Onset of "Modern-Style" Plate Tectonics between 3.0 and 2.5 Ga. Lithos, 205: 208-235. https://doi.org/10.1016/j.lithos.2014.06.012 [18] Li, R.B., Pei, X.Z., Li, Z.C., et al., 2012. Geological Characteristics of Late Palaeozoic-Mesozoic Unconformities and Their Response to Some Significant Tectonic Events in Eastern Part of Eastern Kunlun. Earth Science Frontiers, 19(5): 244-254 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dxqy201205024 [19] Li, R. B., Pei, X. Z., Pei, L., et al., 2018. The Early Triassic Andean-Type Halagatu Granitoids Pluton in the East Kunlun Orogen, Northern Tibet Plateau: Response to the Northward Subduction of the Paleo-Tethys Ocean. Gondwana Research, 62: 212-226. https://doi.org/10.1016/j.gr.2018.03.005 [20] Liu, B., Ma, C. Q., Huang, J., et al., 2017. Petrogenesis and Tectonic Implications of Upper Triassic Appinite Dykes in the East Kunlun Orogenic Belt, Northern Tibetan Plateau. Lithos, 284-285: 766-778. https://doi.org/10.1016/j.lithos.2017.05.016 [21] Liu, J.L., Sun, F.Y., Li, L., et al., 2015. Geochronology, Geochemistry and Hf Isotopes of Gerizhuotuo Complex Intrusion in West of Anyemaqen Suture Zone. Earth Science, 40(6): 965-981 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dqkx201506003 [22] Liu, Y. J., Genser, J., Neubauer, F., et al., 2005. 40Ar/39Ar Mineral Ages from Basement Rocks in the Eastern Kunlun Mountains, NW China, and Their Tectonic Implications. Tectonophysics, 398(3-4): 199-224. https://doi.org/10.1016/j.tecto.2005.02.007 [23] Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 [24] Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082 [25] Martin, H., Moyen, J. F., Rapp, R., 2010. The Sanukitoid Series: Magmatism at the Archaean-Proterozoic Transition. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 100(1-2): 15-33. https://doi.org/10.1017/s1755691009016120 [26] Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9 [27] Mo, X.X., Luo, Z.H., Deng, J.F., et al., 2007. Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt. Geological Journal of China Universities, 13(3): 403-414 (in Chinese with English abstract). http://adsabs.harvard.edu/abs/2011AGUFM.T51D2370M [28] Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/bf00384745 [29] Rapp, R. P., Shimizu, N., Norman, M. D., et al., 1999. Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chemical Geology, 160(4): 335-356. https://doi.org/10.1016/s0009-2541(99)00106-0 [30] Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891-931. https://doi.org/10.1093/petrology/36.4.89 [31] Roger, F., Arnaud, N., Gilder, S., et al., 2003. Geochronological and Geochemical Constraints on Mesozoic Suturing in East Central Tibet. Tectonics, 22(4): 1037. https://doi.org/10.1029/2002tc001466 [32] Shao, F. L., Niu, Y. L., Liu, Y., et al., 2017. Petrogenesis of Triassic Granitoids in the East Kunlun Orogenic Belt, Northern Tibetan Plateau and Their Tectonic Implications. Lithos, 282-283: 33-44. https://doi.org/10.1016/j.lithos.2017.03.002 [33] Stern, R. A., Hanson, G. N., Shirey, S. B., 1989. Petrogenesis of Mantle-Derived, LILE-Enriched Archean Monzodiorites and Trachyandesites (Sanukitoids) in Southwestern Superior Province. Canadian Journal of Earth Sciences, 26(9): 1688-1712. https://doi.org/10.1139/e89-145 [34] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [35] Tatsumi, Y., 2001. Geochemical Modeling of Partial Melting of Subducting Sediments and Subsequent Melt-Mantle Interaction: Generation of High-Mg Andesites in the Setouchi Volcanic Belt, Southwest Japan. Geology, 29(4): 323-326. https://doi.org/10.1130/0091-7613(2001)0290323:gmopmo>2.0.co;2 doi: 10.1130/0091-7613(2001)0290323:gmopmo>2.0.co;2 [36] Tatsumi, Y., 2006. High-Mg Andesites in the Setouchi Volcanic Belt, Southwestern Japan: Analogy to Archean Magmatism and Continental Crust Formation? Annual Review of Earth and Planetary Sciences, 34(1): 467-499. https://doi.org/10.1146/annurev.earth.34.031405.125014 [37] Tatsumi, Y., Shukuno, H., Sato, K., et al., 2003. The Petrology and Geochemistry of High-Magnesium Andesites at the Western Tip of the Setouchi Volcanic Belt, SW Japan. Journal of Petrology, 44(9): 1561-1578. https://doi.org/10.1093/petrology/egg049 [38] Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford. [39] Wang, G.C., Wang, Q.H., Jian, P., et al., 2004. Zircon SHRIMP Ages of Precambrian Metamorphic Basement Rocks and Their Tectonic Significance in the Eastern Kunlun Mountains, Qinghai Province, China. Earth Science Frontiers, 11(4): 481-490 (in Chinese with English abstract). [40] Wang, G.C., Xiang, S.Y., Wang, A., et al., 2007. Thermochronological Constraint to the Processes of the East Kunlun and Adjacent Areas in Mesozoic-Early Cenozoic. Earth Science, 32(5): 605-614 (in Chinese with English abstract). [41] Xiong, F. H., Ma, C. Q., Jiang, H. A., et al., 2016. Geochronology and Petrogenesis of Triassic High-K Calc-Alkaline Granodiorites in the East Kunlun Orogen, West China: Juvenile Lower Crustal Melting during Post-Collisional Extension. Journal of Earth Science, 27(3): 474-490. https://doi.org/10.1007/s12583-016-0674-6 [42] Xiong, F. H., Ma, C. Q., Zhang, J. Y., et al., 2014. Reworking of Old Continental Lithosphere: An Important Crustal Evolution Mechanism in Orogenic Belts, as Evidenced by Triassic I-Type Granitoids in the East Kunlun Orogen, Northern Tibetan Plateau. Journal of the Geological Society, 171(6): 847-863. https://doi.org/10.1144/jgs2013-038 [43] Xu, Z. Q., Yang, J. S., Jiang, M., et al., 2001. Deep Structure and Lithospheric Shear Faults in the East Kunlun-Qiangtang Region, Northern Tibetan Plateau. Science China Earth Sciences, 44(1): 1-9. https://doi.org/10.1007/bf02911965 [44] Yin, H.F., Zhang, K.X., 1997. Some Characteristics of the East Kunlun Orogenic Belt. Earth Science, 22(4): 3-6 (in Chinese). http://www.researchgate.net/publication/306203698_Characteristics_of_the_eastern_Kunlun_orogenic_belt [45] Yuan, C., Sun, M., Xiao, W. J., et al., 2009. Garnet-Bearing Tonalitic Porphyry from East Kunlun, Northeast Tibetan Plateau: Implications for Adakite and Magmas from the MASH Zone. International Journal of Earth Sciences, 98(6): 1489-1510. https://doi.org/10.1007/s00531-008-0335-y [46] Yuan, W.M., Mo, X.X., Zhang, A.K., et al., 2017. Discovery of New Porphyry Belts in Eastern Kunlun Mountains, Qinghai-Tibet Plateau. Earth Science Frontiers, 24(6): 1-9 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201706001.htm [47] Zhan, F.Y., Gu, F.B., Li, D.S., et al., 2007. Tectonic Environment of Adakite in Eastern Kunlun Area, Qinghai, and Its Ore-Forming Significance. Acta Geologica Sinica, 81(10): 1352-1368 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200710007.htm [48] Zhang, H., Wang, Z.Q., Ma, C.Q., et al., 2018. Proto-Tethys Record in Paleo-Tethys Belt of East Kunlun: Evidence from Kuhai Mafic Blocks. Earth Science, 43(4): 1164-1188 (in Chinese with English abstract). http://www.researchgate.net/publication/325534319_Proto-Tethys_Record_in_Paleo-Tethys_Belt_of_East_Kunlun_Evidence_from_Kuhai_Mafic_Blocks [49] Zhang, M.Y., Feng, C.Y., Wang, H., et al., 2018. Petrogenesis and Tectonic Implications of the Late Triassic Syenogranite in Qimantag Area, East Kunlun Mountains. Acta Petrologica et Mineralogica, 37(2): 197-210 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSKW201802002.htm [50] Zhang, Q., Qian, Q., Zhai, M.G., et al., 2005. Geochemistry, Petrogenesis and Geodynamic Implications of Sanukite. Acta Petrologica et Mineralogica, 24(2): 117-125 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200502004.htm [51] Zhang, Y., Pei, X.Z., Li, R.B., et al., 2017. Zircon U-Pb Geochronology, Geochemistry of the Alasimu Gabbro in Eastern Section of East Kunlun Mountains and the Closing Time of Paleo-Ocean Basin. Geology in China, 44(3): 526-540 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201703011.htm [52] Zhao, X., Fu, L.B., Wei, J.H., et al., 2018. Geochemical Characteristics of An'nage Hornblende Gabbro from East Kunlun Orogenic Belt and Its Constraints on Evolution of Paleo-Tethys Ocean. Earth Science, 43(2): 354-370 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_earth-science_thesis/0201252989570.html [53] 陈能松, 孙敏, 王勤燕, 等, 2007. 东昆仑造山带昆中带的独居石电子探针化学年龄: 多期构造变质事件记录. 科学通报, 52(11): 1297-1306. doi: 10.3321/j.issn:0023-074X.2007.11.014 [54] 陈守建, 李荣社, 计文化, 等, 2010. 昆仑造山带二叠纪岩相古地理特征及盆山转换探讨. 中国地质, 37(2): 374-393. doi: 10.3969/j.issn.1000-3657.2010.02.011 [55] 陈有炘, 裴先治, 李瑞保, 等, 2014. 东昆仑东段中元古代小庙岩组岩石组合、地球化学特征及构造环境分析. 地质学报, 88(6): 1038-1054. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201406007.htm [56] 国显正, 谢万洪, 周洪兵, 等, 2019. 东昆仑那更康切尔银多金属矿床流纹斑岩锆石U-Pb年代学、地球化学特征及其地质意义. 地球科学, 44(7): 2505-2518. doi: 10.3799/dqkx.2018.101 [57] 李瑞保, 裴先治, 李佐臣, 等, 2012. 东昆仑东段晚古生代-中生代若干不整合面特征及其对重大构造事件的响应. 地学前缘, 19(5): 244-254. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201205025.htm [58] 刘金龙, 孙丰月, 李良, 等, 2015. 青海阿尼玛卿蛇绿混杂岩带西段哥日卓托杂岩体年代学、地球化学及Hf同位素. 地球科学, 40(6): 965-981. doi: 10.3799/dqkx.2015.081 [59] 莫宣学, 罗照华, 邓晋福, 等, 2007. 东昆仑造山带花岗岩及地壳生长. 高校地质学报, 13(3): 403-414. doi: 10.3969/j.issn.1006-7493.2007.03.010 [60] 王国灿, 王青海, 简平, 等, 2004. 东昆仑前寒武纪基底变质岩系的锆石SHRIMP年龄及其构造意义. 地学前缘, 11(4): 481-490. doi: 10.3321/j.issn:1005-2321.2004.04.014 [61] 王国灿, 向树元, 王岸, 等, 2007. 东昆仑及相邻地区中生代-新生代早期构造过程的热年代学记录. 地球科学, 32(5): 605-614. doi: 10.3321/j.issn:1000-2383.2007.05.003 [62] 殷鸿福, 张克信, 1997. 东昆仑造山带的一些特点. 地球科学, 22(4): 3-6. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX704.000.htm [63] 袁万明, 莫宣学, 张爱奎, 等, 2017. 青海省东昆仑斑岩带新发现. 地学前缘, 24(6): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201706001.htm [64] 詹发余, 古凤宝, 李东生, 等, 2007. 青海东昆仑埃达克岩的构造环境及成矿意义. 地质学报, 81(10): 1352-1368. doi: 10.3321/j.issn:0001-5717.2007.10.006 [65] 张航, 王宗起, 马昌前, 等, 2018. 东昆仑古特提斯构造带中的原特提斯记录: 来自苦海镁铁质岩块的证据. 地球科学, 43(4): 1164-1188. doi: 10.3799/dqkx.2018.714 [66] 张明玉, 丰成友, 王辉, 等, 2018. 东昆仑祁漫塔格地区晚三叠世正长花岗岩岩石成因及构造意义. 岩石矿物学杂志, 37(2): 197-210. doi: 10.3969/j.issn.1000-6524.2018.02.002 [67] 张旗, 钱青, 翟明国, 等, 2005. Sanukite(赞岐岩)的地球化学特征、成因及其地球动力学意义. 岩石矿物学杂志, 24(2): 117-125. doi: 10.3969/j.issn.1000-6524.2005.02.005 [68] 张玉, 裴先治, 李瑞保, 等, 2017. 东昆仑东段阿拉思木辉长岩锆石U-Pb年代学、地球化学特征及洋盆闭合时限界定. 中国地质, 44(3): 526-540. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201703011.htm [69] 赵旭, 付乐兵, 魏俊浩, 等, 2018. 东昆仑按纳格角闪辉长岩体地球化学特征及其对古特提斯洋演化的制约. 地球科学, 43(2): 354-370. doi: 10.3799/dqkx.2018.020