• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    东非海岸坦桑尼亚和鲁伍马盆地天然气成藏机理

    梁建设 孔令武 邱春光 李华 贾屾 龙旭

    梁建设, 孔令武, 邱春光, 李华, 贾屾, 龙旭, 2021. 东非海岸坦桑尼亚和鲁伍马盆地天然气成藏机理. 地球科学, 46(8): 2919-2933. doi: 10.3799/dqkx.2020.264
    引用本文: 梁建设, 孔令武, 邱春光, 李华, 贾屾, 龙旭, 2021. 东非海岸坦桑尼亚和鲁伍马盆地天然气成藏机理. 地球科学, 46(8): 2919-2933. doi: 10.3799/dqkx.2020.264
    Liang Jianshe, Kong Lingwu, Qiu Chunguang, Li Hua, Jia Shen, Long Xu, 2021. Gas Accumulation Mechanism in East Africa Coastal Key Basins. Earth Science, 46(8): 2919-2933. doi: 10.3799/dqkx.2020.264
    Citation: Liang Jianshe, Kong Lingwu, Qiu Chunguang, Li Hua, Jia Shen, Long Xu, 2021. Gas Accumulation Mechanism in East Africa Coastal Key Basins. Earth Science, 46(8): 2919-2933. doi: 10.3799/dqkx.2020.264

    东非海岸坦桑尼亚和鲁伍马盆地天然气成藏机理

    doi: 10.3799/dqkx.2020.264
    基金项目: 

    国家重大科技项目 2017ZX05032-002

    详细信息
      作者简介:

      梁建设(1965-), 男, 教授级高工, 主要从事海洋油气勘探与研究. ORCID: 0000-0003-1046-9462. E-mail: liangjsh@cnooc.com.cn

    • 中图分类号: P618.13

    Gas Accumulation Mechanism in East Africa Coastal Key Basins

    • 摘要: 东非海岸盆地天然气资源丰富,是世界天然气勘探的热点地区.东非海岸重点盆地的天然气为腐泥型高温裂解气,主要来源于下侏罗统局限海相优质烃源岩.大型断裂控制了东非海岸重点盆地天然气的垂向运移,研究区主要发育大型伸展断裂和大型走滑断裂.大型走滑断裂是坦桑尼亚盆地南部天然气藏的主要运移通道,其主要活动时期为晚白垩世-古新世,控制了白垩系-古近系浊积砂岩气藏的油气运移成藏.大型伸展断裂是鲁伍马盆地天然气藏的主要运移通道,其主要活动时期为古新世、渐新世和新近纪,控制了古近系浊积砂岩气藏的油气运移成藏.砂体规模控制了深水区岩性或构造-岩性圈闭的大小,进而控制了天然气藏的规模.受天然气运移方式的控制,东非海岸盆地形成了大型走滑断裂控藏模式和大型伸展断裂控藏模式.

       

    • 图  1  坦桑尼亚和鲁伍马盆地新生界构造纲要和综合柱状图(盆地轮廓据IHS, 2020

      Fig.  1.  Cenozoic structural framework and stratigraphy chart in Tanzania and Ruvuma basins(basin boundaries from IHS, 2020)

      图  2  鲁伍马盆地北部典型地质剖面图

      Fig.  2.  Regional geological cross-section in northern Ruwuma Basin

      图  3  坦桑尼亚盆地南部地质剖面图

      Fig.  3.  Regional geological cross-section in southern Tanzania Basin

      图  4  东非海岸盆地下侏罗统烃源岩地化指标

      Fig.  4.  Geochemical parameters of Lower Jurassic source rock in Tanzania and Ruvuma basins

      图  5  甲烷碳同位素与氘同位素交会图

      Fig.  5.  The graph of δ13C1 vs. δ2D

      图  6  甲烷碳同位素与乙烷碳同位素交会图

      Fig.  6.  The graph of δ13C1 vs. δ13C2

      图  7  东非海岸盆地烃源岩和油样饱和烃-芳香烃碳同位素交会图

      Fig.  7.  δ13 saturate vs. δ13 aromtic graph of oil and source rock in East Africa costal basins

      图  8  坦桑尼亚盆地天然气藏伴生的凝析油和烃源岩生物标志化合物对比

      Fig.  8.  Biomarker correlation between condense and source rock samples in Tanzania Basin

      图  9  坦桑尼亚盆地M-1井沉积与地化剖面图

      Fig.  9.  The sedimentary and geochemical profile of M-1 Well in Tanzania Basin

      图  10  东非海岸早侏罗世古环境图

      Fig.  10.  Early Jurassic paleo-environment in East African coast

      图  11  东非重点盆地区下侏罗统沉积相图

      Fig.  11.  Early Jurassic depositional facies in East Africa coastal basins

      图  12  坦桑尼亚和鲁伍马盆地下侏罗统烃源岩成熟度图

      Fig.  12.  The maturity of Lower Jurassic source rocks in Tanzania and Ruvuma basins

      图  13  坦桑尼亚盆地南部Seagap走滑断裂活动性分析

      Fig.  13.  Movement analysis of Seagap strike-slip fault in southern Tanzania Basin

      图  14  鲁伍马盆地Kerimbas西断裂带活动性分析

      Fig.  14.  Movement analysis of Kerimbas west fault in southern Ruwuma Basin

      图  15  东非海岸物源体系与水道-海底扇体系关系

      Fig.  15.  Relationship between sediment source and turbidite system in East African coast

      图  16  东非鲁伍马和坦桑尼亚盆地古近系沉积相与气田分布

      Fig.  16.  Paleogene facies and gas fields in Ruvuma and Tanzania basins of East Africa

      图  17  坦桑尼亚盆地和鲁伍马盆地成藏模式对比

      Fig.  17.  Comparison of accumulation models in Tanzania and Ruvuma basins

      图  18  坦桑尼亚盆地和鲁伍马盆地成藏事件图

      Fig.  18.  Diagram of hydrocarbon accumulation in Tanzania and Ruvuma basins

      图  19  坦桑尼亚盆地天然气成藏模式

      Fig.  19.  Gas accumulation model in Tanzania Basin

      图  20  鲁伍马盆地天然气成藏模式

      Fig.  20.  Gas accumulation model in Ruvuma Basin

    • [1] Cai, L.X., Xiao, G.L., Dong, H.P., et al., 2020. Characteristics of Mesozoic Source Rocks and Exploration Direction of Oil and Gas in the Eastern Depression, North Yellow Sea Basin. Earth Science, 45(2): 583-601 (in Chinese with English abstract).
      [2] Cao, Q.B., Tang, P.C., Lü, F.L., et al., 2018. Formation Conditions and Controlling Factors of Gas-Bearing Turbidite Sand Reservoirs in Deep Water Deposits in the Rovuma Basin, East Africa. Marine Origin Petroleum Geology, 23(3): 65-72 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HXYQ201803007.htm
      [3] Catuneanu, O., Wopfner, H., Eriksson, P. G., et al., 2005. The Karoo Basins of South-Central Africa. Journal of African Earth Sciences, 43(1-3): 211-253. https://doi.org/10.1016/j.jafrearsci.2005.07.007
      [4] Chen, Y.H., Yao, G.S., Lü, F.L., et al., 2017. Sedimentary Characteristics and Controlling Factors of Oligocene Deep-Water Channel-Lobe in Rovuma Basin of the East Africa. Acta Petrolei Sinica, 38(9): 1047-1058 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201709006.htm
      [5] Cui, G., Jin, A.M., Wu, C.W., et al., 2020. Tectonic Evolution of East Africa Coast and Comparison of Hydrocarbon Accumulation Conditions in the North and South Petroliferous Basins. Marine Geology & Quaternary Geology, 40(1): 104-113 (in Chinese with English abstract).
      [6] Du, J.Y., Zhang, X.T., Liu, P., et al., 2020. Classification of the Paleogene Source-to-Sink System and Its Petroleum Geological Significance in the Zhuyi Depression of the Pearl River Mouth Basin. Earth Science (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2020.133
      [7] Emmel, B., Kumar, R., Ueda, K., et al., 2011. Thermochronological History of an Orogen-Passive Margin System: An Example from Northern Mozambique. Tectonics, 30(2): TC2002. https://doi.org/10.1029/2010tc002714
      [8] Fonnesu, M., Palermo, D., Galbiati, M., et al., 2020. A New World-Class Deep-Water Play-Type, Deposited by the Syndepositional Interaction of Turbidity Flows and Bottom Currents: The Giant Eocene Coral Field in Northern Mozambique. Marine and Petroleum Geology, 111: 179-201. https://doi.org/10.1016/j.marpetgeo.2019.07.047
      [9] Fuhrmann, A., Kane, I. A., Clare, M. A., et al., 2020. Hybrid Turbidite-Drift Channel Complexes: An Integrated Multiscale Model. Geology, 48(6): 562-568. https://doi.org/10.1130/g47179.1
      [10] Guo, X., Li, H., Liang, J.S., et al., 2019. Sedimentary Characteristics and Controlling Factors of Deep-Water Gravity Flow Deposits of the Oligocene in Tanzania Basin. Journal of Palaeogeography (Chinese Edition), 21(6): 971-982 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GDLX201906008.htm
      [11] IHS, 2020. International Energy Oil & Gas Industry Solutions. https://my.ihs.com/Energy/Products
      [12] Liu, Z.Y., Lü, M., Lu, J.M., et al., 2017. Deepwater Depositional System in the Background of Narrow Shelf in the Ruvuma Basin, Eastern Africa. Marine Origin Petroleum Geology, 22(4): 27-34 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HXYQ201704004.htm
      [13] Mahanjane, E. S., 2014. The Davie Fracture Zone and Adjacent Basins in the Offshore Mozambique Margin-A New Insights for the Hydrocarbon Potential. Marine and Petroleum Geology, 57: 561-571. https://doi.org/10.1016/j.marpetgeo.2014.06.015
      [14] Phethean, J. J., Kalnins, L. M., van Hunen, J., et al., 2016. Madagascar's Escape from Africa: A High-Resolution Plate Reconstruction for the Western Somali Basin and Implications for Supercontinent Dispersal. Geochemistry, Geophysics, Geosystems, 17(12): 5036-5055. https://doi.org/10.1002/2016gc006624
      [15] Reeves, C., 2014. The Position of Madagascar within Gondwana and Its Movements during Gondwana Dispersal. Journal of African Earth Sciences, 94: 45-57. https://doi.org/10.1016/j.jafrearsci.2013.07.011
      [16] Said, A., Moder, C., Clark, S., et al., 2015. Sedimentary Budgets of the Tanzania Coastal Basin and Implications for Uplift History of the East African Rift System. Journal of African Earth Sciences, 111: 288-295. https://doi.org/10.1016/j.jafrearsci.2015.08.012
      [17] Schoell, M., 1984. Recent Advances in Petroleum Isotope Geochemistry. Organic Geochemistry, 6: 645-663. https://doi.org/10.1016/0146-6380(84)90086-x
      [18] Scotese, C. R., 1991. Jurassic and Cretaceous Plate Tectonic Reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology, 87(1-4): 493-501. https://doi.org/10.1016/0031-0182(91)90145-h
      [19] Sun, H., Liu, S.Z., Lü, F.L., et al., 2019a. Sedimentary Characteristics and Influential Factors of Oligocene Deep Water Sand-Rich Lobe Complex in the Rovuma Basin, East Africa. Acta Geologica Sinica, 93(5): 1154-1165 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201905012.htm
      [20] Sun, H., Liu, S.Z., Lü, F.L., et al., 2019b. Stratigraphic Framework and Temporal-Spatial Distribution of Oligocene Deepwater Sedimentary Sequence in Ruvuma Basin, East Africa. Oil & Gas Geology, 40(1): 170-181 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_oil-gas-geology_thesis/0201270872146.html
      [21] Sun, H., Liu, S.Z., Ma, H.X., et al., 2017. Characteristics and Controlling Factors of Coarse-Grained Turbidite Sediment Waves in Submarine Channel-Lobe System of the Ruvuma Basin, East Africa. Acta Sedimentologica Sinica, 35(4): 763-771 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-CJXB201704010.htm
      [22] Sun, Y.M., Sun, T., Xu, Z.G., 2016. Source Rock Characteristics and Oil-Gas Origins in Tanzania Basin, East Africa Coast. China Offshore Oil and Gas, 28(1): 13-19 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZHSD201601002.htm
      [23] Wang, L., Qu, H.J., Zhang, G.C., et al., 2017. Petroleum Geological Characteristics and Exploration Prospects in Tanzania Basin, East Africa. Marine Geology Frontiers, 33(12): 46-52 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=HYDT201712006&dbcode=CJFD&year=2017&dflag=pdfdown
      [24] Wen, Z.X., Wang, Z.M., Song, C.P., et al., 2015. Structural Architecture Difference and Petroleum Exploration of Passive Continental Margin Basins in East Africa. Petroleum Exploration and Development, 42(5): 671-680 (in Chinese with English abstract). http://www.cqvip.com/QK/90664X/201505/666165984.html
      [25] Xu, Z.G., Han, W.M., Sun, Y.M., 2014a. Tectonic Evolution and Petroleum Exploration Prospect of East Africa. Geology in China, 41(3): 961-969 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201403021.htm
      [26] Xu, Z.G., Han, W.M., Sun, Y.M., 2014b. Differences in Petroleum Geological Conditions of Conjugate Continental Margin in East Africa. Natural Gas Geoscience, 25(5): 732-738 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TDKX201405012.htm
      [27] Yu, S., 2020. Depositional Genesis Analysis of Source Rock in Pinghu Formation of Western Slope, Xihu Depression. Earth Science, 45(5): 1722-1736 (in Chinese with English abstract).
      [28] Zhang, G.C., Qu, H.J., Zhang, F.L., et al., 2019. Major New Discoveries of Oil and Gas in Global Deepwaters and Enlightenment. Acta Petrolei Sinica, 40(1): 1-34 (in Chinese with English abstract). doi: 10.1038/s41401-018-0042-6
      [29] Zhang, G.Y., Liu, X.B., Wen, Z.X., et al., 2015. Structural and Sedimentary Characteristics of Passive Continental Margin Basins in East Africa and Their Effect on the Formation of Giant Gas Fields. China Petroleum Exploration, 20(4): 71-80 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KTSY201504009.htm
      [30] Zhao, J., Zhang, G.Y., Li, Z., et al., 2018. Characteristics and the Forming Process of the Eocene Ultra-Deep-Water Gravity Flow Sandstone Reservoir in the Rovuma Basin, East Afirca. Earth Science Frontiers, 25(2): 83-91 (in Chinese with English abstract). http://www.researchgate.net/publication/327767005_Characteristics_and_the_forming_process_of_the_Eocene_ultra-deep-water_gravity_flow_sandstone_reservoir_in_the_Rovuma_Basin_East_Afirca
      [31] Zhou, Z.Y., Tao, Y., Li, S.J., et al., 2013. Hydrocarbon Potential in the Key Basins in the East Coast of Africa. Petroleum Exploration and Development, 40(5): 543-551 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1876380413600762
      [32] 蔡来星, 肖国林, 董贺平, 等, 2020. 北黄海盆地东部坳陷中生界烃源岩特征及其指示的油气勘探方向. 地球科学, 45(2): 583-601. doi: 10.3799/dqkx.2019.004
      [33] 曹全斌, 唐鹏程, 吕福亮, 等, 2018. 东非鲁伍马盆地深水浊积砂岩气藏成藏条件及控制因素. 海相油气地质, 23(3): 65-72. doi: 10.3969/j.issn.1672-9854.2018.03.007
      [34] 陈宇航, 姚根顺, 吕福亮, 等, 2017. 东非鲁伍马盆地渐新统深水水道-朵体沉积特征及控制因素. 石油学报, 38(9): 1047-1058. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201709006.htm
      [35] 崔哿, 金爱民, 邬长武, 等, 2020. 东非海岸构造演化及其对南、北主要富油气盆地控藏作用对比. 海洋地质与第四纪地质, 40(1): 104-113. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ202001011.htm
      [36] 杜家元, 张向涛, 刘培, 等, 2020. 珠江口盆地珠一坳陷古近系"源-汇"系统分类及石油地质意义. 地球科学. https://doi.org/10.3799/dqkx.2020.133
      [37] 郭笑, 李华, 梁建设, 等, 2019. 坦桑尼亚盆地渐新统深水重力流沉积特征及控制因素. 古地理学报, 21(6): 971-982. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201906008.htm
      [38] 刘子玉, 吕明, 卢景美, 等, 2017. 东非鲁伍马盆地窄陆架背景下的深水沉积体系. 海相油气地质, 22(4): 27-34. doi: 10.3969/j.issn.1672-9854.2017.04.004
      [39] 孙辉, 刘少治, 吕福亮, 等, 2019a. 东非鲁武马盆地渐新统富砂深水朵体复合体特征及影响因素. 地质学报, 93(5): 1154-1165. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201905012.htm
      [40] 孙辉, 刘少治, 吕福亮, 等, 2019b. 东非鲁武马盆地渐新统深水沉积层序地层格架组成和时空分布. 石油与天然气地质, 40(1): 170-181. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201901018.htm
      [41] 孙辉, 刘少治, 马宏霞, 等, 2017. 东非鲁武马盆地海底水道-朵体体系粗粒浊流沉积物波特征及主控因素. 沉积学报, 35(4): 763-771. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201704010.htm
      [42] 孙玉梅, 孙涛, 许志刚, 2016. 东非海岸坦桑尼亚盆地烃源岩特征与油气来源. 中国海上油气, 28(1): 13-19. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201601002.htm
      [43] 汪立, 屈红军, 张功成, 等, 2017. 东非坦桑尼亚盆地油气地质特征与勘探前景. 海洋地质前沿, 33(12): 46-52. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201712006.htm
      [44] 温志新, 王兆明, 宋成鹏, 等, 2015. 东非被动大陆边缘盆地结构构造差异与油气勘探. 石油勘探与开发, 42(5): 671-680. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201505017.htm
      [45] 许志刚, 韩文明, 孙玉梅, 2014a. 东非大陆边缘构造演化过程与油气勘探潜力. 中国地质, 41(3): 961-969. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201403021.htm
      [46] 许志刚, 韩文明, 孙玉梅, 2014b. 东非共轭型大陆边缘油气成藏差异性分析. 天然气地球科学, 25(5): 732-738. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201405012.htm
      [47] 于水, 2020. 西湖凹陷西斜坡平湖组烃源岩沉积成因分析. 地球科学, 45(5): 1722-1736. doi: 10.3799/dqkx.2019.188
      [48] 张功成, 屈红军, 张凤廉, 等, 2019. 全球深水油气重大新发现及启示. 石油学报, 40(1): 1-34. doi: 10.3969/j.issn.1001-8719.2019.01.001
      [49] 张光亚, 刘小兵, 温志新, 等, 2015. 东非被动大陆边缘盆地构造-沉积特征及其对大气田富集的控制作用. 中国石油勘探, 20(4): 71-80. doi: 10.3969/j.issn.1672-7703.2015.04.008
      [50] 赵健, 张光亚, 李志, 等, 2018. 东非鲁武马盆地始新统超深水重力流砂岩储层特征及成因. 地学前缘, 25(2): 83-91. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201802012.htm
      [51] 周总瑛, 陶冶, 李淑筠, 等, 2013. 非洲东海岸重点盆地油气资源潜力. 石油勘探与开发, 40(5): 543-551. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201305006.htm
    • 加载中
    图(20)
    计量
    • 文章访问数:  585
    • HTML全文浏览量:  343
    • PDF下载量:  49
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-07-27
    • 网络出版日期:  2021-09-14
    • 刊出日期:  2021-08-15

    目录

      /

      返回文章
      返回