Discovery, Genesis and Significances of First Siver-Tin Polymetal Deposit in Western Gangdese Belt
-
摘要: 最新的矿产调查工作在冈底斯西段火山岩区新发现了拔隆银锡多金属矿床,地表矿体表现为受火山沉积断陷盆地边缘逆冲断隆带、火山机构及次级断裂控制的脉状矿体.为了查明该矿床的成因,开展了含矿火山岩锆石U-Pb年代学、矿石矿物学、地球化学及S-Pb同位素等研究.结果表明:拔隆矿床含矿火山岩锆石LA-ICP-MS U-Pb加权平均年龄为126.5±1.2 Ma,矿物组合以中低温为主、兼有少量中高温矿物,闪锌矿Zn/Cd和Zn/Fe比值变化分别介于321~17 407、2.4~4.4,黄铁矿Co/Ni比值为2.2~3.6,硫化物样品δ34S值变化于2.94‰~4.48‰,206Pb/204Pb比值为18.590~18.779,207Pb/204Pb比值为15.636~15.865,208Pb/204Pb比值为38.883~39.991,具有岩浆硫、上地壳铅特征,矿床的形成与冈底斯西段早白垩世火山活动晚期的次火山热液密切相关.经与世界典型银锡多金属矿床的对比认为,拔隆矿床的成矿特征与世界大型-超大型银锡多金属矿床较相似,地表矿体属于浅成低温热液型银多金属矿体,向下可能发育有斑岩型锡多金属矿体.拔隆矿床富银含锡的成矿特征在冈底斯西段属于首次发现,该发现不仅为研究冈底斯西段火山岩区矿床成因类型提供了新的资料和约束,还极大地拓宽了冈底斯西段火山岩区的找矿视野.
-
关键词:
- 银锡多金属 /
- 陆相火山活动 /
- 斑岩-浅成低温热液型 /
- 冈底斯西段 /
- 矿床
Abstract: The Balong Ag-Sn polymetallic deposit was newly discovered in the volcanic rock area of western Gangdese by mineral resources investigation project. The surface ore bodies are vein type ore bodies controlled by the coupling of thrust belt, volcanic mechanism and secondary faults in the margin of volcano-sediment graben basins. In order to find out the genesis of Balong deposit, the zircon U-Pb geochronology, ore mineralogy, mineral geochemistry and S-Pb isotopes were carried out. The results show that the weighted average age of zircon LA-ICP-MS U-Pb is 126.5±1.2 Ma in the ore-bearing volcanic rocks, the mineral assemblage is mainly composed of medium-low temperature minerals and a small amount of medium-high temperature minerals, the Zn/Cd and Zn/Fe ratios of sphalerite are 321-17 407 and 2.4-4.4, the Co/Ni ratio of pyrite is 2.2-3.6, the δ 34S value of sulfide changes from 2.94 ‰ to 4.48 ‰, the 206Pb/204Pb ratio is 18.590-18.779, the 207Pb/204Pb ratio is 15.636-15.865, the 208Pb/204Pb ratio is 38.883-39.991.The above results show that the formation of the deposit is closely related to the subvolcanic hydrothermal fluid of the late stage of Early Cretaceous volcanic activity in the western Gangdese, and the ore-forming materials have the characteristics of magmatic sulfur and lead in the upper crust. Compared with the typical Ag-Sn polymetallic deposits in the world, the metallogenic characteristics of the Balong deposit are similar to those of the world's large-superlarge scale Ag-Sn polymetallic deposits. The surface ore body belongs to the epithermal silver-polymetallic orebody, and the porphyry tin-polymetallic orebody may develop downward. The metallogenic characteristics of Ag-rich and Sn-bearing deposit in the western Gangdese are firstly discovered. This discovery not only provides new data and constraints for the study of the genetic types of the deposits in the volcanic rock area of the western Gangdese, but also greatly broadens the prospecting horizon in the area.-
Key words:
- Ag-Sn polymetallic /
- continental volcanism /
- porphyry-epithermal type /
- western Gangdese belt /
- deposits
-
图 1 冈底斯成矿带地质矿产简图
a.据Zheng et al.(2014)修编;b.据王力圆等(2016)修编
Fig. 1. Mineral resources and geological map of Gangdese belt
图 3 拔隆矿床典型岩石和矿石特征
a.球粒状流纹岩;b.流纹质晶屑熔结凝灰岩(矿区地表主要含矿火山岩);c.火山角砾岩;d~f.矿区地表受构造控制的矿体露头;g.火山岩中受构造控制的黄铁矿脉;h.流纹质晶屑凝灰岩中细脉状角砾状银铅锌(锡)矿石,具硅化、方解石化;i.硅化、方解石化、菱铁矿化银铅锌矿石;j.硅化、绢云母化、方解石化、菱铁矿化银铅锌矿石;k.黄铁绢英岩化铅锌矿石,以含有大量黄铁矿为特征;l.硅化、绢云母化、方解石化、菱铁矿化银铅锌矿石,局部具有角砾状特征.Gn.方铅矿;Sph.闪锌矿;Py.黄铁矿;Q.石英;Cal.方解石;Ser.绢云母;Sde.菱铁矿;F.断裂
Fig. 3. Typical rocks and ore characteristics of Balong deposit
图 9 拔隆矿床S同位素组成分布
德新和打加错数据姜军胜(2018);查藏错数据姜军胜等(2015);纳如松多数据杨勇等(2010);斯弄多数据丁帅(2017)
Fig. 9. Distribution of δ34SCDT of ore sulfides from the Balong deposit
图 10 拔隆矿床矿石硫化物铅同位素构造模式图
冈底斯西段其他铅锌银矿床(德新、查藏错、纳如松多、斯弄多、打加错)数据分别姜军胜等(2015),姜军胜(2018);杨勇等(2010);丁帅(2017);底图据Zartman and Doe(1981)
Fig. 10. Diagrams showing evolutionary tectonic settings of lead isotopes of ore sulfides in Balong deposit
图 11 世界典型银锡多金属矿床矿化蚀变分带模式图(a)和拔隆矿床成矿模式图(b)
图b中,Q.硅化; Sde.菱铁矿化;Ro.菱锰矿化;Kl.高岭石化;Carr.碳酸盐化;Qsr.绢英岩化;Py.黄铁矿化;Gs.云英岩化;Tou.电气石化;γπ.花岗斑岩;λπ.流纹斑岩;SBF.隐爆角砾岩筒.图a据Sillitoe et al.(1998);李真真等(2019)
Fig. 11. Zonation of metal assemblages and wallrock alteration of tin-silver polymetal deposit in the world (a), the metallogenic model of Balong deposit (b)
表 1 拔隆矿区含矿火山岩LA-ICP-MS锆石U-Pb定年分析结果
Table 1. U-Pb LA-ICP-MS analyses of zircon from the ore-bearing volcanic rocks in Balong deposit
点号 Th(10-6) U(10-6) Th/U 同位素比值 年龄(Ma) 207Pb/235U ±1σ 206Pb/238U ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 1 14 394 5 401 2.66 0.139 3 0.004 5 0.020 0 0.000 2 132.4 4.0 127.8 1.3 2 6 365 3 086 2.06 0.130 2 0.005 5 0.019 2 0.000 2 124.3 5.0 122.9 1.5 3 1 622 1 626 1.00 0.147 5 0.007 7 0.020 0 0.000 3 139.7 6.9 127.6 1.8 4 967 875 1.11 0.146 5 0.011 0 0.020 2 0.000 4 138.8 9.8 128.8 2.6 5 1 412 1 405 1.00 0.131 5 0.007 5 0.020 2 0.000 4 125.4 6.7 128.8 2.3 6 1 026 837 1.23 0.151 9 0.012 1 0.019 2 0.000 4 143.6 10.6 122.6 2.4 7 1 578 1 116 1.41 0.159 1 0.009 9 0.020 1 0.000 3 149.9 8.7 128.4 2.1 8 1 628 1 146 1.42 0.178 2 0.013 0 0.019 9 0.000 3 166.5 11.2 127.1 2.2 9 2 525 2 321 1.09 0.140 2 0.006 9 0.020 2 0.000 3 133.2 6.2 128.9 1.9 10 2 090 2 001 1.04 0.135 1 0.007 1 0.020 0 0.000 3 128.7 6.4 127.6 2.0 11 1 720 1 502 1.14 0.145 4 0.008 7 0.020 7 0.000 4 137.9 7.7 131.9 2.4 12 1 927 1 595 1.21 0.136 1 0.008 3 0.019 3 0.000 3 129.6 7.4 123.4 2.0 13 2 016 1 608 1.25 0.149 0 0.009 1 0.019 4 0.000 3 141.1 8.0 123.6 1.9 14 3 589 1 771 2.03 0.140 1 0.007 2 0.019 7 0.000 3 133.1 6.4 125.7 1.8 15 1 938 1 358 1.43 3.882 2 0.096 6 0.273 8 0.002 8 1 610.0 20.1 1 560.0 14.3 16 3 238 2 401 1.35 0.195 7 0.009 8 0.019 4 0.000 3 181.5 8.3 123.7 1.8 17 2 947 1 815 1.62 0.143 7 0.008 3 0.020 6 0.000 3 136.3 7.4 131.4 1.9 18 882 769 1.15 0.207 6 0.014 1 0.020 0 0.000 4 191.5 11.8 127.9 2.5 19 4 236 2 274 1.86 0.206 2 0.011 0 0.019 8 0.000 3 190.4 9.2 126.3 1.9 20 1 972 1 429 1.38 0.140 5 0.007 9 0.019 8 0.000 3 133.5 7.0 126.3 2.0 21 1 497 1 298 1.15 0.140 1 0.008 8 0.019 5 0.000 3 133.1 7.9 124.6 1.9 22 2 394 1 543 1.55 0.322 3 0.013 2 0.019 2 0.000 3 283.7 10.1 122.8 1.7 表 2 拔隆矿床主要金属硫化物电子探针分析结果
Table 2. Results of electron microprobe analysis of major metal minerals in Balong deposit
矿物 测点号 ωB(%) 计算化学式 S Pb Zn Fe Co Ni Cu As Se Cd Sn Bi Ag Au 闪锌矿 BL1-1 34.43 0.003 45.85 18.53 0.05 0.042 0.066 0.014 - 0.143 0.045 0.181 0.032 0.275 (Fe0.33Zn0.7)1.03S1.07 闪锌矿 BL1-2 34.06 - 45.91 18.92 0.048 0.047 0.08 - - 0.146 0.036 0.153 0.025 0.272 (Fe0.33Zn0.7)1.03S1.06 闪锌矿 BL1-3 34.08 0.017 46.63 18.14 0.052 0.04 0.074 - - 0.079 0.059 0.168 0.006 0.275 (Fe0.32Zn0.71)1.03S1.06 闪锌矿 BL3-4 34.3 - 52.22 11.93 0.043 0.046 0.134 - - 0.003 0.078 0.138 0.083 0.411 (Fe0.21Zn0.8)1.01S1.07 闪锌矿 BL3-8 33.63 0.016 50.8 13.41 0.072 0.035 0.38 - - 0.085 0.289 0.135 0.027 0.249 (Fe0.24Zn0.777)1.02S1.05 闪锌矿 BL3-13 33.7 - 51.15 13.16 0.048 0.049 0.63 - - 0.065 0.252 0.159 0.065 0.284 (Fe0.23Zn0.78)1.01S1.05 闪锌矿 BL8-8 33.62 - 50.24 14.54 0.049 0.038 0.344 - 0.013 0.061 0.087 0.171 0.045 0.249 (Fe0.26Zn0.77)1.03S1.04 闪锌矿 BL8-9 33.34 - 50.66 13.65 0.051 0.045 0.831 - - 0.032 0.522 0.086 0.065 0.289 (Fe0.24Zn0.77)1.01S1.03 闪锌矿 BL8-10 33.64 - 50.25 15.09 0.044 0.029 0.258 0.001 - 0.056 0.052 0.128 0.015 0.307 (Fe0.27Zn0.77)1.04S1.05 闪锌矿 BL13-13 33.58 - 49.42 13.96 0.057 0.046 1.068 - 0.004 0.069 0.206 0.126 0.256 0.267 (Fe0.25Zn0.76)1.01S1.04 方铅矿 BL1-4 13.08 85.2 0.394 - 0.068 0.093 0.118 - 0.009 0.101 0.108 0.328 0.112 0.394 Pb1.008S 方铅矿 BL1-5 12.96 84.67 0.512 0.01 0.067 0.109 0.105 - - 0.133 0.128 0.274 0.092 0.306 Pb1.01S 方铅矿 BL1-6 13.2 84.95 0.196 - 0.055 0.111 0.105 - - 0.081 0.108 0.325 0.097 0.28 Pb0.99S 方铅矿 BL3-11 13.22 85.2 0.185 - 0.038 0.114 0.137 - - 0.058 0.225 0.302 0.096 0.342 Pb0.997S 方铅矿 BL8-13 13.14 85.05 0.234 - 0.089 0.108 0.138 - - 0.091 0.165 0.292 0.163 0.29 Pb1.002S 方铅矿 BL13-1 13.11 85.34 0.163 - 0.075 0.109 0.148 - 0.008 0.049 0.165 0.208 0.099 0.317 Pb1.01S 方铅矿 BL13-9 13.19 85.43 0.184 - 0.065 0.12 0.122 - - 0.049 0.157 0.306 0.12 0.31 Pb1.002S 黄铁矿 BL3-1 53.47 0.034 0.074 45.82 0.084 0.025 0.049 - - - 0.039 0.233 0.062 0.169 Fe0.98S2 黄铁矿 BL3-2 53.4 0.031 0.08 45.97 0.104 0.029 0.037 - 0.005 - 0.034 0.269 0.029 0.128 Fe0.989S2 黄铁矿 BL3-3 53 0.08 0.078 46.04 0.088 0.036 0.059 0.148 - - 0.041 0.275 0.025 0.126 Fe0.998S2 黄铁矿 BL8-14 51.29 0.114 0.204 46.98 0.073 0.024 0.063 0.109 - - 0.029 0.228 0.074 0.144 Fe1.05S2 黄铁矿 BL8-15 52.78 0.046 0.062 45.88 0.082 0.038 0.054 - - - 0.034 0.215 0.032 0.145 Fe0.998S2 银黝锡矿 BL3-7 24.43 - 2.66 8.55 0.051 0.055 0.691 - - - 23.021 0.167 39.832 0.246 (Ag0.37Cu0.01)0.38(Fe0.15Zn0.04)0.19Sn0.19S0.76 银黝锡矿 BL3-10 24.67 0.004 3.28 8.39 0.055 0.068 0.804 0.002 - - 22.837 0.089 39.584 0.268 (Ag0.37Cu0.01)0.38(Fe0.15Zn0.05)0.2Sn0.19S0.76 银黝锡矿 BL3-12 24.47 - 1.84 9.17 0.062 0.06 0.813 - - - 23.194 0.108 39.563 0.239 (Ag0.37Cu0.01)0.38(Fe0.16Zn0.03)0.19Sn0.2S0.76 银黝锡矿 BL8-2 24.65 - 4.66 6.73 0.047 0.07 0.769 - - - 22.898 0.118 39.657 0.237 (Ag0.37Cu0.01)0.38(Fe0.12Zn0.07)0.19Sn0.19S0.77 银黝锡矿 BL8-11 24.46 0.044 2.08 9.08 0.056 0.053 0.957 0.036 - - 22.774 0.14 40.103 0.299 (Ag0.37Cu0.02)0.39(Fe0.16Zn0.03)0.19Sn0.19S0.76 银黝锡矿 BL13-3 24.20 0.007 3.93 8.04 0.069 0.094 0.891 - - - 22.938 0.115 39.416 0.207 (Ag0.37Cu0.01)0.38(Fe0.14Zn0.06)0.2Sn0.19S0.75 银黝锡矿 BL13-4 24.76 0.03 1.79 9.05 0.048 0.074 0.791 - - - 23.129 0.121 40.085 0.272 (Ag0.37Cu0.01)0.38(Fe0.16Zn0.03)0.19Sn0.19S0.77 表 3 拔隆矿床矿石S、Pb同位素组成
Table 3. Sulfur and lead isotopic compositions of ore in Balong deposit
样号 样品名称 δ34SCDT(‰) 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb Φ值 μ ω Th/U BL-1 闪锌矿 - 18.676 ±0.003 15.764 ±0.001 39.350 ±0.002 0.584 9.76 40.33 4.00 BL-3 闪锌矿 - 18.621 ±0.005 15.723 ±0.002 39.248 ±0.004 0.583 9.68 39.82 3.98 BL-5 黄铁矿 4.28 18.621 ±0.002 15.663 ±0.002 39.991 ±0.007 0.576 9.57 42.21 4.27 BL-6 黄铁矿 4.41 18.646 ±0.005 15.726 ±0.003 39.196 ±0.007 0.582 9.69 39.50 3.95 BL-7 黄铁矿 4.41 18.631 ±0.002 15.692 ±0.002 39.072 ±0.005 0.579 9.62 38.75 3.90 BL-8 黄铁矿 4.41 18.642 ±0.005 15.708 ±0.004 39.119 ±0.011 0.58 9.65 39.03 3.91 BL-9 方铅矿 4.34 18.779 ±0.004 15.865 ±0.003 39.628 ±0.008 0.588 9.95 41.88 4.07 BL-10 方铅矿 3.34 18.695 ±0.003 15.770 ±0.004 39.328 1 ±0.011 0.583 9.77 40.19 3.98 BL-11 方铅矿 3.12 18.590 ±0.003 15.636 ±0.003 39.918 ±0.010 0.575 9.52 41.82 4.25 BL-12 方铅矿 2.94 18.603 ±0.003 15.662 ±0.004 38.990 ±0.008 0.577 9.57 38.28 3.87 BL-13 方铅矿 3.20 18.647 ±0.001 15.708 ±0.001 39.133 ±0.004 0.58 9.65 39.06 3.92 BL-14 方铅矿 3.47 18.620 ±0.002 15.674 ±0.002 39.000 ±0.004 0.578 9.59 38.34 3.87 BL-15 方铅矿 3.23 18.596 ±0.004 15.641 ±0.003 38.883 ±0.008 0.576 9.53 37.69 3.83 BL-16 方铅矿 2.94 18.619 ±0.001 15.655 ±0.001 38.931 ±0.004 0.576 9.55 37.89 3.84 BL-17 黄铁矿 4.48 18.706 ±0.004 15.757 ±0.004 39.253 ±0.009 0.581 9.74 39.69 3.94 -
[1] Bartos, P.J., 2000.The Pallacos of Cerro Rico de Potosi, Bolivia:A New Deposit Type.Economic Geology, 95(3):645-654. https://doi.org/10.2113/gsecongeo.95.3.645 [2] Cai, J.H., Zhou, W.N., Zhang, J.Z., 1996.Typomorphic Characteristics of Sphalerites in the Yinshan Copper, Lead and Zinc Polymetallic Deposit, Jiangxi.Journal of Guilin Institute of Technology, 16(4):370-375(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GLGX604.007.htm [3] Cao, Y., Nie, F.J., Liu, Y.F., et al., 2013.New Research Progress on Cerro Rico Deposit in Bolivia.Geological Science and Technology Information, 32(5):87-94(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DZKQ201305015.htm [4] Columba, M.C., Cunningham, C.G., 1993.Geologic Model for the Mineral Deposits of the La Joya District, Oruro, Bolivia.Economic Geology, 88(3):701-708. https://doi.org/10.2113/gsecongeo.88.3.701 [5] Ding, S., 2017.The Diagenesis and Metallogenesis of Sinongduo Epithermal Ag-Pb-Zn Deposit in Gangdese Belt, Tibet (Dissertation).Chengdu University of Technology, Chengdu(in Chinese with English abstract). [6] Doe, B.R., Zartman, R.E., 1979.Plumbotectonics:The Planerozoic.Wiley-Interscience, New York, 22-70. [7] Hou, Z.Q., Duan, L.F., Lu, Y.J., et al., 2015a.Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen.Economic Geology, 110(6):1541-1575. https://doi.org/10.2113/econgeo.110.6.1541 [8] Hou, Z.Q., Yang, Z.M., Lu, Y.J., et al., 2015b.A Genetic Linkage between Subduction-and Collision-Related Porphyry Cu Deposits in Continental Collision Zones.Geology, 43(3):247-250. https://doi.org/10.1130/g36362.1 [9] Huang, H.X., Zhang, L.K., Liu, H., et al., 2019.Major Types, Mineralization and Potential Prospecting Areas in Western Section of the Gangdise Metallogenic Belt, Tibet.Earth Science, 44(6):1876-1887(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.364 [10] Jiang, J, S., 2018.Genesis of Pb-Zn Polymetallic Deposits in the Linzizong Area, Western Gangdese Belt, Tibet (Dissertation).China University of Geosciences, Wuhan(in Chinese with English abstract). [11] Jiang, J.S., Zheng, Y.Y., Gao, S.B., et al., 2015.Genesis of Chazangcuo Cu-Pb-Zn Deposit, Tibet:Constraints from C-H-O-S-Pb Isotope Geochemistry.Earth Science, 40(6):1006-1016(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2015.084 [12] Kuang, Y.Q., 1991.Some Problems on the Application of Trace-Element Geochemistry.Geology and Exploration, 27(3):48-52(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT199103009.htm [13] Li, H.F., Tang, J.X., Hu, G.Y., et al., 2019.Fluid Inclusions, Isotopic Characteristics and Geochronology of the Sinongduo Epithermal Ag-Pb-Zn Deposit, Tibet, China.Ore Geology Reviews, 107:692-706. https://doi.org/10.1016/j.oregeorev.2019.02.033 [14] Li, Z.Z., Qin, K.Z., Zhao, J.X., et al., 2019.Basic Characteristics, Research Progresses and Prospects of Sn-Ag-Base Metal Metallogenic System.Acta Petrologica Sinica, 35(7):1979-1998(in Chinese with English abstract). doi: 10.18654/1000-0569/2019.07.03 [15] Liu, T.G., Ye, L., Zhou, J.X., et al., 2009.Relationship between Color and Cd-Fe Correlation of Sphalerite.Acta mineralogica Sinica, 29(Suppl.1):68-69(in Chinese with English abstract). [16] Liu, X., Li, X.G., Zhu, X.Y., et al., 2017.Mineralization Process of the Baiyinchagan Tin Polymetallic Deposit in Inner Mongolia Ⅱ:Chronology of Ore-Bearing Porphyry, Geochemical Characteristics and Geological Implications of the Granite Porphyry.Mineral Exploration, 8(6):981-996(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSJS201706008.htm [17] Liu, Y.C., Ji, X.H., Hou, Z.Q., et al., 2015.The Establishment of an Independent Pb-Zn Mineralization System Related to Magmatism:A Case Study of the Narusongduo Pb-Zn Deposit in Tibet.Acta Petrologica et Mineralogica, 34(4):539-556(in Chinese with English abstract). [18] Liu, Y.F., Nie, F.J., Jiang, S.H., et al., 2012.Bairendaba Pb-Zn-Ag Polymetallic Deposit in Inner Mongolica:The Mineralization Zoning and Its Origin.Journal of Jilin University (Earth Science Edition), 42(4):1055-1068(in Chinese with English abstract). http://www.researchgate.net/publication/287841082_Bairendaba_Pb-Zn-Ag_polymetallic_deposit_in_Inner_Mongolia_The_mineralization_zoning_and_its_origin?ev=auth_pub [19] Liu, Y.J., Cao, L.M., Li, Z.L., et al., 1984.Element Geochemistry.Science Press, Beiing, 360-420(in Chinese). [20] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology, 257(1-2):34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 [21] Mao, J.W., Yuan, S.D., Xie, G.Q., et al., 2019.New Advances on Metallogenic Studies and Exploration on Critical Minerals of China in 21st Century.Mineral Deposits, 38(5):935-969(in Chinese with English abstract). [22] Ou, B., Wei Q.R., Xu, H., et al., 2018.Petrogenesis of Early Cretaceous Volcanic Rocks in the Gezhang Area, Namling Connty, Tibet, China.Earth Science Frontiers, 25(6):165-181(in Chinese with English abstract). [23] Pan, G.T., Mo, X.X., Hou, Z.Q., et al., 2006.Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution.Acta Petrologica Sinica, 22(3):521-533(in Chinese with English abstract). http://www.researchgate.net/publication/279572099_Spatial-temporal_framework_of_the_Gangdese_Orogenic_Belt_and_its_evolution [24] Pavlova, G.G., Borisenko, A.S., 2009.The Age of Ag-Sb Deposits of Central Asia and Their Correlation with Other Types of Ore Systems and Magmatism.Ore Geology Reviews, 35(2):164-185. https://doi.org/10.1016/j.oregeorev.2008.11.006 [25] Rice, C.M., Steele, G.B., Barfod, D.N., et al., 2006.Duration of Magmatic, Hydrothermal, and Supergene Activity at Cerro Rico de Potosi, Bolivia.Economic Geology, 100(8):1647-1656. https://doi.org/10.2113/gsecongeo.100.8.1647 [26] Seltmann, R., Soloviev, S., Shatov, V., et al., 2010.Metallogeny of Siberia:Tectonic, Geologic and Metallogenic Settings of Selected Significant Deposits.Australian Journal of Earth Sciences, 57(6):655-706. https://doi.org/10.1080/08120099.2010.505277 [27] Sillitoe, R.H., Steele, G.B., Thompson, J.F.H., et al., 1998.Advanced Argillic Lithocaps in the Bolivian Tin-Silver Belt.Mineralium Deposita, 33(6):539-546. https://doi.org/10.1007/s001260050170 [28] Sun, X., Hollings, P., Lu, Y.J., 2020.Geology and Origin of the Zhunuo Porphyry Copper Deposit, Gangdese Belt, Southern Tibet.Mineralium Deposita. https://doi.org/10.1007/s00126-020-00970-0 [29] Tang, J.X., Ding, S., Meng, Z., et al., 2016.The First Discovery of the Low Sulfidation Epithermal Deposit in Linzizong Volcanic, Tibet:A Case Study of the Sinongduo Ag Polymetallic Deposit.Acta Geoscientica Sinica, 37(4):461-470(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB201604010.htm [30] Wang, L.Y., Zheng, Y.Y., Gao, S.B., et al., 2016.The Discovery of the Early Cretaceous Zenong Group Volcanic Rocks and Geological Significance in Jiwa Area in South of the Central Lhasa Subterrane.Acta Petrologica Sinica, 32(5):1543-1555(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201605019.htm [31] Wang, R., Jeremy, P.R., Zhou, L.M., et al., 2015.The Role of Indian and Tibetan Lithosphere in Spatial Distribution of Cenozoic Magmatism and Porphyry Cu-Mo Deposits in the Gangdese Belt, Southern Tibet.Earth-Science Reviews, 150:68-94. https://doi.org/10.1016/j.earscirev.2015.07.003 [32] Wang, R., Weinberg, R.F., Collins, W.J., et al., 2018.Origin of Postcollisional Magmas and Formation of Porphyry Cu Deposits in Southern Tibet.Earth-Science Reviews, 181:122-143. https://doi.org/10.1016/j.earscirev.2018.02.019 [33] Wu, S., Zheng, Y.Y., Sun, X., 2016.Subduction Metasomatism and Collision-Related Metamorphic Dehydration Controls on the Fertility of Porphyry Copper Ore-Forming High Sr/Y Magma in Tibet.Ore Geology Reviews, 73:83-103. https://doi.org/10.1016/j.oregeorev.2015.10.023 [34] Wu, Y.B., Zheng, Y.F., 2004.Genetic Mineralogy of Zircon and Its Constrains on the Interpretation of U-Pb Ages.Chinese Science Bulletin, 49(16):1589-1604(in Chinese). doi: 10.1360/csb2004-49-16-1589 [35] Xia, Q.L., Wang, X.Q., Chang, L.H., 2018.Spatio-Temporal Distribution Features and Mineral Resource Potential Assessment of Tin Deposits in China.Earth Science Frontiers, 25(3):59-66(in Chinese with English abstract). http://www.researchgate.net/publication/327766811_Spatio-temporal_distribution_features_and_mineral_resource_potential_assessment_of_tin_deposits_in_China [36] Xu, G.F., Shao, J.L., 1979.Typomorphic Characteristics of Pyrite and Its Practical Significance.Geological Review, 15(3):541-546(in Chinese). [37] Yang, Y., Luo, T.Y., Huang, Z.L., et al., 2010.Sulfur and Lead Isotope Compositions of the Narusongduo Silver Zinc-Lead Deposit in Tibet:Implications for the Sources of Plutons and Metals in the Deposit.Acta Mineralogica Sinica, 30(3):311-318(in Chinese with English abstract). http://www.researchgate.net/publication/282821095_Sulfur_and_lead_compositions_of_the_Narusonggou_silver_zinc-lead_deposit_in_Tibet_Implications_for_the_sources_of_plutons_and_metals_in_the_deposit [38] Yang, Z.M., Cooke, D.R., 2019.Porphyry Copper Deposits in China.Soc. Econ. Geol. Spec. Publ., 22:133-187. [39] Yang, Z.M., Lu, Y.J., Hou, Z.Q., et al., 2015.High-Mg Diorite from Qulong in Southern Tibet:Implications for the Genesis of Adakite-Like Intrusions and Associated Porphyry Cu Deposits in Collisional Orogens.Journal of Petrology, 56(2):227-254. https://doi.org/10.1093/petrology/egu076 [40] Yang, Z.Y., Tang, J.X., Zhang, L.J., et al., 2020.Geological and Geochemical Characteristics of Lithocaps in Sinongduo Area, Tibet:Implications for the Mineralization in Linzizong Group Volcanic Rocks.Earth Science, 45(3):789-803(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2019.044 [41] Zartman, R.E., Doe, B.R., 1981.Plumbotectonics:The Model.Tectonophysics, 75(1-2):135-162. https://doi.org/10.1016/0040-1951(81)90213-4 [42] Zhai, D.G., Liu, J.J., Zhang, H.Y., et al., 2018.A Magmatic-Hydrothermal Origin for Ag-Pb-Zn Vein Formation at the Bianjiadayuan Deposit, Inner Mongolia, NE China:Evidences from Fluid Inclusion, Stable (C-H-O) and Noble Gas Isotope Studies.Ore Geology Reviews, 101:1-16. https://doi.org/10.1016/j.oregeorev.2018.07.005 [43] Zhang, T.F., Guo, S., Xin, H.T., et al., 2019.Petrogenesis and Magmatic Evolution of Highly Fractionated Granite and Their Constraints on Sn-(Li-Rb-Nb-Ta) Mineralization in the Weilasituo Deposit, Inner Mongolia, Southern Graeat Xing'an Range, China.Earth Science, 44(1):248-267(in Chinese with English abstract). https://doi.org./10.3799/dqkx.2018.246 [44] Zhao, P.L., Yuan, S.D., Mao, J.W., et al., 2018.Constraints on the Timing and Genetic Link of the Large-Scale Accumulation of Proximal W-Sn-Mo-Bi and Distal Pb-Zn-Ag Mineralization of the World-Class Dongpo Orefield, Nanling Range, South China.Ore Geology Reviews, 95:1140-1160. https://doi.org/10.1016/j.oregeorev.2017.12.005 [45] Zheng, Y.C., Fu, Q., Hou, Z.Q., et al., 2015a.Metallogeny of the Northeastern Gangdese Pb-Zn-Ag-Fe-Mo-W Polymetallic Belt in the Lhasa Terrane, Southern Tibet.Ore Geology Reviews, 70:510-532. https://doi.org/10.1016/j.oregeorev.2015.04.004 [46] Zheng, Y.Y., Sun, X., Gao, S.B., et al., 2014.Multiple Mineralization Events at the Jiru Porphyry Copper Deposit, Southern Tibet:Implications for Eocene and Miocene Magma Sources and Resource Potential.Journal of Asian Earth Sciences, 79:842-857. https://doi.org/10.1016/j.jseaes.2013.03.029 [47] Zheng, Y.Y., Sun, X., Gao, S.B., et al., 2015b.Metallogenesis and the Minerogenetic Series in the Gangdese Polymetallic Copper Belt.Journal of Asian Earth Sciences, 103:23-39. https://doi.org/10.1016/j.jseaes.2014.11.036 [48] Zhu, D.C., Mo, X.X., Zhao, Z.D., et al., 2008.Zircon U-Pb Geochronology of Zenong Group Volcanic Rocks in Coqen Area of the Gangdese, Tibet and Tectonic Significance.Acta Petrologica Sinica, 24(3):401-412(in Chinese with English abstract). http://www.researchgate.net/publication/279715809_Zircon_U-Pb_geochronology_of_Zenong_Group_volcanic_rocks_in_Coqen_area_od_the_Gangdese_Tibet_and_tectonic_significance [49] Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2011.The Lhasa Terrane:Record of a Microcontinent and Its Histories of Drift and Growth.Earth and Planetary Science Letters, 301(1-2):241-255. https://doi.org/10.1016/j.epsl.2010.11.005 [50] 蔡劲宏, 周卫宁, 张锦章, 1996.江西银山铜铅锌多金属矿床闪锌矿的标型特征.桂林工学院学报, 16(4):370-375. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX604.007.htm [51] 曹毅, 聂凤军, 刘翼飞, 等, 2013.玻利维亚塞德里克银矿床研究新进展.地质科技情报, 32(5):87-94. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201305015.htm [52] 丁帅, 2017.西藏冈底斯成矿带斯弄多浅成低温热液型银铅锌矿床成岩与成矿作用研究义(博士学位论文).成都: 成都理工大学. [53] 黄瀚霄, 张林奎, 刘洪, 等, 2019.西藏冈底斯成矿带西段矿床类型、成矿作用和找矿方向.地球科学, 44(6):1876-1887. doi: 10.3799/dqkx.2018.364 [54] 姜军胜, 2018.冈底斯西段林子宗群火山岩区铅锌多金属矿床成因及成矿潜力分析(博士学位论文).武汉: 中国地质大学. [55] 姜军胜, 郑有业, 高顺宝, 等, 2015.西藏查藏错铜铅锌矿床成因:C-H-O-S-Pb同位素制约.地球科学, 40(6):1006-1016. doi: 10.3799/dqkx.2015.084 [56] 匡耀求, 1991.微量元素地球化学应用中的若干问题.地质与勘探, 27(3):48-52. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT199103009.htm [57] 李真真, 秦克章, 赵俊兴, 等, 2019.锡-银多金属成矿系统的基本特征、研究进展与展望.岩石学报, 35(7):1979-1998. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201907003.htm [58] 刘铁庚, 叶霖, 周家喜, 等, 2009.闪锌矿的颜色与Cd-Fe相关性的关系.矿物学报, 29(增刊1):68-69. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2009S1037.htm [59] 刘新, 李学刚, 祝新友, 等, 2017.内蒙古白音查干锡多金属矿床成矿作用研究Ⅱ:成矿花岗斑岩年代学、地球化学特征及地质意义.矿产勘查, 8(6):981-996. doi: 10.3969/j.issn.1674-7801.2017.06.008 [60] 刘翼飞, 聂凤军, 江思宏, 等, 2012.内蒙古拜仁达坝铅-锌-银矿床:元素分带及其成因.吉林大学学报(地球科学版), 42(4):1055-1068. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201204021.htm [61] 刘英超, 纪现华, 侯增谦, 等, 2015.一个与岩浆作用有关的独立铅锌成矿系统的建立:以西藏纳如松多铅锌矿床为例.岩石矿物学杂志, 34(4):539-556. doi: 10.3969/j.issn.1000-6524.2015.04.008 [62] 刘英俊, 曹励明, 李兆麟, 等, 1984.元素地球化学.北京:科学出版社, 360-420. [63] 毛景文, 袁顺达, 谢桂青, 等, 2019.21世纪以来中国关键金属矿产找矿勘查与研究新进展.矿床地质, 38(5):935-969. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201905001.htm [64] 欧波, 魏启荣, 许欢, 等, 2018.西藏南木林县格张地区早白垩世火山岩岩石成因.地学前缘, 25(6):165-181. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201806016.htm [65] 潘桂棠, 莫宣学, 侯增谦, 等, 2006.冈底斯造山带的时空结构及演化.岩石学报, 22(3):521-533. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603001.htm [66] 唐菊兴, 丁帅, 孟展, 等, 2016.西藏林子宗群火山岩中首次发现低硫化型浅成低温热液型矿床:以斯弄多银多金属矿为例.地球学报, 37(4):461-470. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201604010.htm [67] 王力圆, 郑有业, 高顺宝, 等, 2016.中部拉萨地体南侧吉瓦地区早白垩世则弄群火山岩的发现及意义.岩石学报, 32(5):1543-1555. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201605019.htm [68] 吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1604. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200416001.htm [69] 夏庆霖, 汪新庆, 常力恒, 等, 2018.中国锡矿床时空分布特征与潜力评价.地学前缘, 25(3):59-66. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201803007.htm [70] 徐国风, 邵洁涟, 1979.黄铁矿的标型特征及其实际意义.地质与勘探, 15(3):541-546. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP198006015.htm [71] 杨勇, 罗泰义, 黄智龙, 等, 2010.西藏纳如松多银铅矿S、Pb同位素组成:对成矿物质来源的指示.矿物学报, 30(3):311-318. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201003007.htm [72] 杨宗耀, 唐菊兴, 张乐骏, 等, 2020.西藏斯弄多地区岩帽地质地球化学特征:林子宗群火山岩中成矿的指示.地球科学, 45(3):789-803. doi: 10.3799/dqkx.2019.044 [73] 张天福, 郭硕, 辛后田, 等, 2019.大兴安岭南段维拉斯托高分异花岗岩体的成因与演化及其对Sn-(Li-Rb-Nb-Ta)多金属成矿作用的制约.地球科学, 44(1):248-267. doi: 10.3799/dqkx.2018.246 [74] 朱弟成, 莫宣学, 赵志丹, 等, 2008.西藏冈底斯带措勤地区则弄群火山岩锆石U-Pb年代学格架及构造意义.岩石学报, 24(3):401-412. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200803001.htm