• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    中上扬子地区奥陶纪-志留纪之交火山作用对有机质富集的影响

    卢贤志 沈俊 郭伟 冯庆来

    卢贤志, 沈俊, 郭伟, 冯庆来, 2021. 中上扬子地区奥陶纪-志留纪之交火山作用对有机质富集的影响. 地球科学, 46(7): 2329-2340. doi: 10.3799/dqkx.2020.258
    引用本文: 卢贤志, 沈俊, 郭伟, 冯庆来, 2021. 中上扬子地区奥陶纪-志留纪之交火山作用对有机质富集的影响. 地球科学, 46(7): 2329-2340. doi: 10.3799/dqkx.2020.258
    Lu Xianzhi, Shen Jun, Guo Wei, Feng Qinglai, 2021. Influence of Mercury Geochemistry and Volcanism on the Enrichment of Organic Matter near the Ordovician Silurian Transition in the Middle and Upper Yangtze. Earth Science, 46(7): 2329-2340. doi: 10.3799/dqkx.2020.258
    Citation: Lu Xianzhi, Shen Jun, Guo Wei, Feng Qinglai, 2021. Influence of Mercury Geochemistry and Volcanism on the Enrichment of Organic Matter near the Ordovician Silurian Transition in the Middle and Upper Yangtze. Earth Science, 46(7): 2329-2340. doi: 10.3799/dqkx.2020.258

    中上扬子地区奥陶纪-志留纪之交火山作用对有机质富集的影响

    doi: 10.3799/dqkx.2020.258
    基金项目: 

    国家科技重大专项项目 2017ZX05036-002

    国家科技重大专项项目 2016ZX05060-004

    详细信息
      作者简介:

      卢贤志(1997-), 男, 硕士研究生, 从事地层学、古生物学及烃源岩的研究.ORCID: 0000-0002-5792-8817.E-mail: xz.lu@cug.edu.cn

      通讯作者:

      沈俊, E-mail: shenjun@cug.edu.cn

    • 中图分类号: P535

    Influence of Mercury Geochemistry and Volcanism on the Enrichment of Organic Matter near the Ordovician Silurian Transition in the Middle and Upper Yangtze

    • 摘要: 为了研究火山作用对黑色泥岩有机质富集机制的影响,以重庆市武隆区焦页143-5井岩心为研究对象,借助汞元素含量、总硫、总有机碳和钡元素含量等手段,分析上扬子地区奥陶系与志留系之交(五峰组-龙马溪组)火山活动和有机质富集的耦合关系.结果表明,汞元素富集层位(龙马溪组底部)对应着海洋生产力指标(总有机碳和生源钡)的高值,同时,上扬子地区多个剖面的火山凝灰岩的厚度分布与有机碳含量空间分布有很好的对应关系,亦表明火山作用与有机质富集具有紧密联系.因此,认为多期次的、广泛的火山喷发可能是奥陶纪与志留纪之交中上扬子地区有机质富集的重要原因.

       

    • 图  1  (a) 晚奥陶世(∼444 Ma)全球古地理图;(b)晚奥陶世华南板块古地理图(Chen et al., 2004);(c)研究剖面地理位置

      图中红色五星为研究钻井位置

      Fig.  1.  (a) Global paleogeographic map for Late Ordovician (∼444 Ma); (b) Late Ordovician paleogeographic map of the South China Craton (Chen et al., 2004); (c) Location of JY143⁃5 core in Chongqing

      图  2  JY143⁃5井五峰组-龙马溪组地化指标变化曲线

      a. 汞浓度(10-9);b. 总有机碳含量(%);c. 总硫(%);d. 汞和总硫比值[10-9(%)];e. 钡和铝比值[10-6(%)]

      Fig.  2.  Geochemical profiles of Jingwufeng⁃Longmaxi formations

      图  3  汞和其他元素含量相关图

      a. 汞(Hg)和总硫(TS);b. 汞(Hg)总有机碳(TOC);c. 汞(Hg)和铝(Al);d. 汞(Hg)和锰(Mn);括号里的数字表示样本数

      Fig.  3.  Correlation diagram of mercury and other elements

      图  4  JY143⁃5钻井和其他剖面汞元素记录

      阴影部分表示汞富集层位;焦页、盐志和漆辽数据来自Shen et al.(2019b);秀山数据来自胡东平(2017)

      Fig.  4.  Hg concentrations distributions in different sections

      图  5  扬子板块凝灰岩时空分布

      古地理图引自Chen et al., (2004),有修改,图例见图 1;据苏文博等(2002)陆扬博等(2017)舒逸等(2017)王玉满等(2017, 2019);熊国庆等(2017)

      Fig.  5.  Temporal and spatial distribution of tuff of the Yangtze Block

      图  6  中上扬子地区凝灰岩层数(a)、总有机碳(TOC)含量分布(b)以及TOC含量统计(c)

      Fig.  6.  Volcanic ash beds (a), TOC (b) and box plot of concentrations of total organic carbon (TOC) (c)

    • [1] Bishop, J. K. B., 1988. The Barite-Opal-Organic Carbon Association in Oceanic Particulate Matter. Nature, 332(6162): 341-343. https://doi.org/10.1038/332341a0
      [2] Canfield, D. E., 1994. Factors Influencing Organic Carbon Preservation in Marine Sediments. Chemical Geology, 114(3/4): 315-329. https://doi.org/10.1016/0009-2541(94)90061-2
      [3] Chen, X., Fan, J.X., Zhang, Y.D., et al., 2015. Subdivision and Delineation of the Wufeng and Lungmachi Black Shales in the Subsurface Areas of the Yangtze Platform. Journal of Stratigraphy, 39(4): 351-359(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DCXZ201504001.htm
      [4] Chen, X., Rong, J. Y., Li, Y., et al., 2004. Facies Patterns and Geography of the Yangtze Region, South China, through the Ordovician and Silurian Transition. Palaeogeography, Palaeoclimatology, Palaeoecology, 204(3/4): 353-372. https://doi.org/10.1016/s0031-0182(3)00736-3
      [5] Dickens, G.R., Fewless, T., Thomas, E., et al., 2003. Excess Barite Accumulation during the Paleocene-Eocene Thermal Maximum: Massive Input of Dissolved Barium from Seafloor Gas Hydrate Reservoirs. Special Papers-Geological Societyof America, New York, 11-24.
      [6] Dymond, J., Suess, E., Lyle, M., 1992. Barium in Deep-Sea Sediment: A Geochemical Proxy for Paleoproductivity. Paleoceanography, 7(2): 163-181. https://doi.org/10.1029/92pa00181
      [7] Fan, J.X., Melchin, M.J., Chen, X., et al., 2012. Biostratigraphy and Geography of the Ordovician-Silurian Lungmachi Black Shales in South China. Science China Earth Science, 54: 1854-1863(in Chinese with English abstract).
      [8] Froelich, P. N., Klinkhammer, G. P., Bender, M. L., et al., 1979. Early Oxidation of Organic Matter in Pelagic Sediments of the Eastern Equatorial Atlantic: Suboxic Diagenesis. Geochimica et Cosmochimica Acta, 43(7): 1075-1090. https://doi.org/10.1016/0016-7037(79)90095-4
      [9] Grasby, S. E., Them, T. R., Chen, Z. H., et al., 2019. Mercury as a Proxy for Volcanic Emissions in the Geologic Record. Earth-Science Reviews, 196(16): 102880. https://doi.org/10.1016/j.earscirev.2019.102880
      [10] Guo, W., Feng, Q.L., Maliha, Z.K., 2021. Organic Matter Enrichment Mechanism of Black Shale in Wufeng-Longmaxi Formations: A Case Study from Jiaoye 143-5 Well at Chongqing. Earth Science, 46(2): 572-582(in Chinese with English abstract).
      [11] Guo, X.S., Guo, T.L., Wei, Z.H., et al., 2012. Some Thoughts on Shale Gas Exploration and Evaluation in South China. Chinese Journal of Engineering Science, 14(6): 101-105, 112(in Chinese with English abstract).
      [12] Hu, D.P., 2017. C, S, Sr and Hg Cycles in the Late Ordovician-Early Silurian Oceans(Dissertation). University of Science and Technology of China, Hefei, 165(in Chinese with English abstract).
      [13] Huang, F.X., Chen, H.D., Hou, M.C., et al., 2011. Filling Process and Evolutionary Model of Sedimentary Sequence of Middle-Upper Yangtze Craton in Caledonian (Cambrian-Silurian). Acta Petrologica Sinica, 27(8): 2299-2317(in Chinese with English abstract). http://www.oalib.com/paper/1475149
      [14] Li, Y.F., Shao, D.Y., Lv, H.G., et al., 2015. A Relationship between Elemental Geochemical Characteristics and Organic Matter Enrichment in Marine Shale of Wufeng Formation-Longmaxi Formation, Sichuan Basin. Acta Petrolei Sinica, 36(12): 1470-1483(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201512002.htm
      [15] Li, Y.X., Qiao, D.W., Jiang, W.L., et al., 2011. Gas Content of Gas-Bearing Shale and Its Geological Evaluation Summary. Geological Bulletin of China, 30(2/3): 308-317(in Chinese with English abstract).
      [16] Lindenthal, A., Langmann, B., Pätsch, J., et al., 2013. The Ocean Response to Volcanic Iron Fertilisation after the Eruption of Kasatochi Volcano: A Regional-Scale Biogeochemical Ocean Model Study. Biogeosciences, 10(6): 3715-3729. https://doi.org/10.5194/bg-10-3715-2013
      [17] Liu, B.J., Zhou, M.K., Wang, R.Z., 1990. Early Palaeozoic Palaeogeography and Tectonic Evolution of South China. Bulletin of the Chinese Academy of Geological Sciences, 1990(1): 97-98(in Chinese). http://www.researchgate.net/publication/313036556_Early_palaeozoic_palaeogeography_and_tectonic_evoluton_of_south_China
      [18] Lu, Y.B., Ma, Y.Q., Wang, Y.X., et al., 2017. The Sedimentary Response to the Major Geological Events and Lithofacies Characteristics of Wufeng Formation-Longmaxi Formation in the Upper Yangtze Area. Earth Science, 42(7): 1169-1184(in Chinese with English abstract).
      [19] Müller, P. J., Suess, E., 1979. Productivity, Sedimentation Rate, and Sedimentary Organic Matter in the Oceans-I. Organic Carbon Preservation. Deep Sea Research Part A Oceanographic Research Papers, 26(12): 1347-1362. https://doi.org/10.1016/0198-0149(79)90003-7
      [20] Pyle, D. M., Mather, T. A., 2003. The Importance of Volcanic Emissions for the Global Atmospheric Mercury Cycle. Atmospheric Environment, 37(36): 5115-5124. https://doi.org/10.1016/j.atmosenv.2003.07.011
      [21] Ravichandran, M., 2004. Interactions between Mercury and Dissolved Organic Matter: A Review. Chemosphere, 55(3): 319-331. https://doi.org/10.1016/j.chemosphere.2003.11.011
      [22] Schoepfer, S. D., Shen, J., Wei, H. Y., et al., 2015. Total Organic Carbon, Organic Phosphorus, and Biogenic Barium Fluxes as Proxies for Paleomarine Productivity. Earth-Science Reviews, 149(9): 23-52. https://doi.org/10.1016/j.earscirev.2014.08.017
      [23] Selin, N. E., 2009. Global Biogeochemical Cycling of Mercury: A Review. Annual Review of Environment and Resources, 34(1): 43-63. https://doi.org/10.1146/annurev.environ.051308.084314
      [24] Shen, J., Shi, Z.Y., Feng, Q.L., 2011. Review on Geochemical Proxies in Paleo-Productivity Studies. Geological Science and Technology Information, 30(2): 69-77(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201102013.htm
      [25] Shen, J., Lei, Y., Algeo, T.J., et al., 2013. Volcanic Effects on Microplankton during the Permian-Triassic Transition (Shangsi and Xinmin, South China). Palaios, 28(8): 552-567. https://doi.org/10.2110/palo.2013.p13-014r
      [26] Shen, J., Schoepfer, S. D., Feng, Q. L., et al., 2015. Marine Productivity Changes during the End-Permian Crisis and Early Triassic Recovery. Earth-Science Reviews, 149(Q04025): 136-162. https://doi.org/10.1016/j.earscirev.2014.11.002
      [27] Shen, J., Algeo, T. J., Planavsky, N. J., et al., 2019a. Mercury Enrichments Provide Evidence of Early Triassic Volcanism Following the End-Permian Mass Extinction. Earth-Science Reviews, 195(11): 191-212. https://doi.org/10.1016/j.earscirev.2019.05.010
      [28] Shen, J., Algeo, T. J., Chen, J. B., et al., 2019b. Mercury in Marine Ordovician/Silurian Boundary Sections of South China is Sulfide-Hosted and Non-Volcanic in Origin. Earth and Planetary Science Letters, 511(1): 130-140. https://doi.org/10.1016/j.epsl.2019.01.028
      [29] Shen, J., Chen, J. B., Algeo, T. J., et al., 2019c. Evidence for a Prolonged Permian-Triassic Extinction Interval from Global Marine Mercury Records. Nature Communications, 10(1): 1563. https://doi.org/10.1038/s41467-019-09620-0
      [30] Shen, J., Feng, Q. L., Algeo, T. J., et al., 2020. Sedimentary Host Phases of Mercury (Hg) and Implications for Use of Hg as a Volcanic Proxy. Earth and Planetary Science Letters, 543: 116333. https://doi.org/10.1016/j.epsl.2020.116333
      [31] Shu, Y., Lu, Y.C., Liu, Z.H., et al., 2017. Development Characteristics of Bentonite in Marine Shale and Its Effect on Shale Reservoir Quality: A Case Study of Wufeng Formation to Member 1 of Longmaxi Formation, Fuling Area. Acta Petrolei Sinica, 38(12): 1371-1380(in Chinese with English abstract). http://www.researchgate.net/publication/325538040_Development_characteristics_of_bentonite_in_marine_shale_and_its_effect_on_shale_reservoir_quality_a_case_study_of_Wufeng_Formation_to_Member_1_of_Longmaxi_Formation_Fuling_area
      [32] Su, W.B., He, L.Q., Wang, Y.B., et al., 2002. K-Bentonite Beds and High-Resolution Integrated Stratigraphy of the Uppermost Ordovician Wufeng and the Lowest Silurian Longmaxi Formations in South China. Science in China(Series D : Earth Science), 32(3): 207-219(in Chinese with English abstract).
      [33] Su, W. B., Huff, W. D., Ettensohn, F. R., et al., 2009. K-Bentonite, Black-Shale and Flysch Successions at the Ordovician-Silurian Transition, South China: Possible Sedimentary Responses to the Accretion of Cathaysia to the Yangtze Block and Its Implications for the Evolution of Gondwana. Gondwana Research, 15(1): 111-130. https://doi.org/10.1016/j.gr.2008.06.004
      [34] Wang, Y.M., Li, X.J., Dong, D.Z., et al., 2017. Main Factors Controlling the Sedimentation of High-Quality Shale in Wufeng-Longmaxi Fm, Upper Yangtze Region. Natural Gas Industry, 37(4): 9-20(in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S2352854017301250
      [35] Wang, Y.M., Li, X.J., Wang, H., et al., 2019. Developmental Characteristics and Geological Significance of the Bentonite in the Upper Ordovician Wufeng-Lower Silurian Longmaxi Formation in Eastern Sichuan Basin, SW China. Petroleum Exploration and Development, 46(4): 1-13(in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1876380419602260
      [36] Wu, L.Y., Lu, Y.C., Jiang, S., et al., 2018. Effects of Volcanic Activities in Ordovician Wufeng-Silurian Longmaxi Period on Organic-Rich Shale in the Upper Yangtze Area, South China. Petroleum Exploration and Development, 45(5): 806-816(in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1876380418300892
      [37] Xiong, G.Q., Wang, J., Li, Y.Y., et al., 2017. Ziron U-Pb Dating and Its Geological Signification of Bentonite from Late Ordovician Wufeng Formation and Earlier Silurian Longmaxi Formation in Western Section Dabashan Mountain. Sedimentary Geology and Tethyan Geology, 37(2): 46-58(in Chinese with English abstract).
      [38] Xu, Z.Y., Jiang, S., Xiong, S.Y., et al., 2015. Characteristics and Depositional Model of the Lower Paleozoic Organic Rich Shale in the Yangtze Continental Block. Acta Sedimentologica Sinica, 33(1): 21-35(in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/cjxb201501003
      [39] Zheng, H.R., Gao, B., Peng, Y.M., et al., 2013. Sedimentary Evolution and Shale Gas Exploration Direction of the Lower Silurian in Middle-Upper Yangtze Area. Journal of Palaeogeography, 15(5): 645-656(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDLX201305011.htm
      [40] Zou, C.N., Dong, D.Z., Wang, Y.M., et al., 2015. Shale Gas in China: Characteristics, Challenges and Prospects (Ⅰ). Petroleum Exploration and Development, 42(6): 689-701(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK201506002.htm
      [41] 陈旭, 樊隽轩, 张元动, 等, 2015. 五峰组及龙马溪组黑色页岩在扬子覆盖区内的划分与圈定. 地层学杂志, 39(4): 351-359.
      [42] 樊隽轩, Michael, J. M., 陈旭, 等, 2012. 华南奥陶-志留系龙马溪组黑色笔石页岩的生物地层学. 中国科学(D辑: 地球科学), 42(1): 130-139.
      [43] 郭伟, 冯庆来, Maliha, Z.K., 2021. 重庆焦页143-5井五峰组-龙马溪组黑色页岩有机质富集机制. 地球科学, 46(2): 572-582. doi: 10.3799/dqkx.2020.049
      [44] 郭旭升, 郭彤楼, 魏志红, 等, 2012. 中国南方页岩气勘探评价的几点思考. 中国工程科学, 14(6): 101-105, 112. doi: 10.3969/j.issn.1009-1742.2012.06.014
      [45] 胡东平, 2017. 晚奥陶-早志留世海洋的碳、硫、锶和汞循环(博士毕业论文). 合肥: 中国科学技术大学, 165.
      [46] 黄福喜, 陈洪德, 侯明才, 等, 2011. 中上扬子克拉通加里东期(寒武-志留纪)沉积层序充填过程与演化模式. 岩石学报, 27(8): 2299-2317.
      [47] 李艳芳, 邵德勇, 吕海刚, 等, 2015. 四川盆地五峰组—龙马溪组海相页岩元素地球化学特征与有机质富集的关系. 石油学报, 36(12): 1470-1483. doi: 10.7623/syxb201512002
      [48] 李玉喜, 乔德武, 姜文利, 等, 2011. 页岩气含气量和页岩气地质评价综述. 地质通报, 30(2/3): 308-317.
      [49] 刘宝珺, 周名魁, 王汝植, 1990. 中国南方早古生代古地理轮廓及构造演化. 中国地质科学院院报, (1): 97-98.
      [50] 陆扬博, 马义权, 王雨轩, 等, 2017. 上扬子地区五峰组-龙马溪组主要地质事件及岩相沉积响应. 地球科学, 42(7): 1169-1184. doi: 10.3799/dqkx.2017.095
      [51] 沈俊, 施张燕, 冯庆来, 2011. 古海洋生产力地球化学指标的研究. 地质科技情报, 30(2): 69-77. doi: 10.3969/j.issn.1000-7849.2011.02.012
      [52] 舒逸, 陆永潮, 刘占红, 等, 2017. 海相页岩中斑脱岩发育特征及对页岩储层品质的影响. 石油学报, 38(12): 1371-1380. doi: 10.7623/syxb201712004
      [53] 苏文博, 何龙清, 王永标, 等, 2002. 华南奥陶-志留系五峰组及龙马溪组底部斑脱岩与高分辨综合地层. 中国科学(D辑: 地球科学), 32(3): 207-219.
      [54] 王玉满, 李新景, 董大忠, 等, 2017. 上扬子地区五峰组-龙马溪组优质页岩沉积主控因素. 天然气工业, 37(4): 9-20.
      [55] 王玉满, 李新景, 王皓, 等, 2019. 四川盆地东部上奥陶统五峰组-下志留统龙马溪组斑脱岩发育特征及其地质意义. 石油勘探与开发, 46(4): 1-13.
      [56] 吴蓝宇, 陆永潮, 蒋恕, 等, 2018. 上扬子地区奥陶系五峰组-志留系龙马溪组沉积期火山活动对页岩有机质富集程度的影响. 石油勘探与开发, 45(5): 806-816.
      [57] 熊国庆, 王剑, 李园园, 等, 2017. 大巴山西段上奥陶统-下志留统五峰组-龙马溪组斑脱岩锆石U-Pb年龄及其地质意义. 沉积与特提斯地质, 37(2): 46-58. doi: 10.3969/j.issn.1009-3850.2017.02.006
      [58] 徐政语, 蒋恕, 熊绍云, 等, 2015. 扬子陆块下古生界页岩发育特征与沉积模式. 沉积学报, 33(1): 21-35.
      [59] 郑和荣, 高波, 彭勇民, 等, 2013. 中上扬子地区下志留统沉积演化与页岩气勘探方向. 古地理学报, 15(5): 645-656.
      [60] 邹才能, 董大忠, 王玉满, 等, 2015. 中国页岩气特征、挑战及前景(一). 石油勘探与开发, 42(6): 689-701. doi: 10.11698/PED.2015.06.01
    • 加载中
    图(6)
    计量
    • 文章访问数:  721
    • HTML全文浏览量:  227
    • PDF下载量:  78
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-08-28
    • 刊出日期:  2021-07-15

    目录

      /

      返回文章
      返回