Geochronology and Petrogenesis of Neoarchean Yanzhuang Syenogranites from Sushui Complex in the Zhongtiao Mountains: Implications for the Crustal Evolution of the North China Craton
-
摘要: 太古宙末期钾质花岗岩的广泛发育是陆壳成熟和稳定化的重要标志,对了解早期陆壳的形成与演化具有重要的意义.发育于华北克拉通南缘中条山地区涑水杂岩中的烟庄正长花岗岩的形成年龄和成因还没有被很好地限定,构造背景还存在争议.对烟庄花岗岩进行了锆石U-Pb年代学和Hf同位素以及全岩地球化学和Nd同位素研究.烟庄花岗岩锆石SHRIMP U-Pb年龄为2 515±7 Ma.岩石具有高硅(SiO2=73.05%~74.85%)、高钾(K2O=4.46%~5.86%)、富碱(ALK=8.32%~9.36%)、贫钙(CaO=0.55%~0.98%)、低TFeO*(0.73%~1.28%)和MgO(0.31%~0.52%)的特征,A/CNK=1.01~1.04,为弱过铝质的钾玄系列.稀土总量变化较大(ΣREE=63.80×10-6~250.02×10-6)),轻重稀土元素分异明显((La/Yb)N=25.44~92.87),Eu异常变化较大(Eu/Eu*=0.47~0.79).岩石低Sr、Ba,富集Rb、Th、U等元素,亏损Nb、Zr、Y、Yb、Cr、Co、Ni等元素,具有较高的Rb/Sr、Rb/Ba和Sr/Yb比值以及较低Sm/Nd和Nd/Th比值,具有高分异I型花岗岩的特征.烟庄花岗岩具有0附近的全岩εNd(t)值,岩浆锆石具有正的εHf(t)值(2.85~3.66),两阶段Hf模式年龄为2 258~2 883 Ma,多数在2 600~2 883 Ma之间.结合其他方面研究,烟庄花岗岩具有同碰撞和后碰撞花岗岩的特征,推测为新生地壳在由挤压向伸展转换的构造背景下部分熔融所形成,可能有少量地幔物质添加.这期钾质花岗岩的形成,标志着华北克拉通太古宙末期强烈岩浆活动的结束以及稳定陆壳的形成.Abstract: The formation of the voluminous syenogranites of the late Neoarchean is an important mark of maturation and stabilization of continental crust, and play a vital role in understanding the formation and evolution of early continental crust. However, the formation age and genesis of the Yanzhuang syenogranite in the Sushui Complex in the southern margin of the North China Craton are not well defined, and the tectonic setting remains controversial. This paper presents the zircon U-Pb ages and Hf isotopes as well as whole rock element and Nd isotope compositions of the Yanzhuang syenogranites. SHRIMP dating of zircon from the granite yields an age of 2 515±7 Ma. The rocks are high in SiO2 (73.05%-74.85%) and K2O (4.46%-5.86%) and low in CaO (0.55%-0.98%), total FeO (0.73%-1.28%) and MgO (0.31%-0.52%), with K2O+Na2O and A/CNK at 8.32%-9.36% and 1.01-1.04, respectively. They show variations in REE contents (ΣREE=63.8×10-6-250.02×10-6), with relative enrichment of LREE to HREE ((La/Yb)N=25.44-92.87) and somewhat negative Eu anomaly (Eu/Eu*=0.47-0.79). The rocks are low in Sr and Ba, and high in Rb, Th and U, with depletion in Nb, Zr, Y, Yb, Cr, Co and Ni. Thus they have high Rb/Sr, Rb/Ba and Sr/Yb ratios and low Sm/Nd and Nd/Th ratios, and show the characteristics of highly fractionated I type granite. The Yanzhuang syenogranite has whole-rock εNd(t) values of -1.09-0.89 and magmatic zircon εHf(t) values of 2.85-3.66, with Hf model TDM2 ages of 2 258-2 883 Ma (mainly 2 600-2 883 Ma). Combined with early work, this study indicates that the Yanzhuang syenogranite shows the feature of syn-collision and post-collision granites formed by partial melting of juvenile crust in a tectonic transition setting from compression to extension, probably with addition of a small amount of mantle material. The formation of voluminous syenogranites in this period marks the termination of the Archean intense magmatism and the stabilization of the North China Craton at the end of the Neoarchean.
-
Key words:
- Sushui Complex /
- Yanzhuang syenogranite /
- zircon U-Pb age /
- tectonic setting /
- North China Craton /
- geochemistry
-
图 1 华北克拉通构造分区图(a,据Zhao et al., 2005); 中条山地区前寒武纪地质简图(b,据白瑾等,1997;刘树文等, 2007)
Fig. 1. Tectonic framework of the North China Craton (a, after Zhao et al., 2005); Precambrian geological sketch map of Zhongtiao mountains in the North China Craton (b, after Bai et al., 1997; Liu et al., 2007)
图 4 烟庄正长花岗岩显微照片(左侧为单偏光,右侧为正交偏光,矿物缩写据沈其韩,2009)
a、b.粗中粒正长花岗岩(ZT121⁃1),斜长石发育交代净边结构;c、d.中粒正长花岗岩(ZT81⁃1), 斜长石强烈蚀变,黑云母定向排列且多转变为绿泥石;e.黑云母转变为绿泥石和白云母,并见有自形磷灰石(ZT121⁃1);f.钾长石的卡式双晶(ZT04⁃1);g、h.中细粒花岗岩特征(ZT22⁃2)
Fig. 4. Microphotographs of the Yanzhuang syenogranite samples in the Sushui Complex (left photographs are plane-polarized light, right photographs are cross-polarized light, mineral abbreviations after Shen, 2009)
图 5 烟庄花岗岩QAP图解(据Maniar and Piccoli, 1989)
IAG.岛弧花岗岩类;CAG.大陆弧花岗岩类;CCG.大陆碰撞花岗岩类;POG.后造山花岗岩类;RRG.与裂谷有关的花岗岩类;CEUG.与大陆造陆抬升有关的花岗岩类. I.石英碱性正长岩;II.石英正长岩;III.石英二长岩;IV.石英二长闪长岩;V.石英闪长岩;VI.英云闪长岩、奥长花岗岩;VII.花岗闪长岩;VIII.二长花岗岩;IX.正长花岗岩;X.碱性花岗岩
Fig. 5. QAP diagram of the Yanzhuang syenogranites in the Sushui Complex (after Maniar and Piccoli, 1989)
图 8 烟庄正长花岗岩稀土元素球粒陨石标准化分布型式图(a)和微量元素原始地幔标准化蛛网图(b)(标准化值根据Sun and McDonough, 1989)
Fig. 8. Chondrite-normalized REE patterns (a) and PM-normalized trace elements spider diagrams (b) of the Yanzhuang syenogranites samples from Sushui Complex (normalization values after Sun and McDonough, 1989)
图 9 烟庄花岗岩ACF(a)和Al2O3-Ga(b, 据Collins et al., 1982)判别图
Fig. 9. ACF (a) and Al2O3 vs. Ga (b, after Collins et al., 1982) diagram of the Yanzhuang granite samples from Sushui Complex
图 10 烟庄花岗岩10 000Ga/Al- Na2O+K2O(a)和10 000Ga/Al-FeOT/MgO(b)判别图(据Whalen et al., 1987)
Fig. 10. 10 000Ga/Al vs. Na2O+K2O (a) and 10 000Ga/Al vs. FeOT/MgO (b) diagram of the Yanzhuang syenogranite samples from Sushui Complex(after Whalen et al., 1987)
图 11 烟庄花岗岩10 000Ga/Al- Zr(a;据吴福元等,2017)和Zr+Nb+Ce+Y-(Na2O+K2O)/CaO(b;据Whalen et al., 1987)
Fig. 11. 10 000Ga/Al vs. Na2O+K2O (a; after Wu et al., 2017) and 10 000Ga/Al vs. FeOT/MgO (b; Whalen et al., 1987) diagram of the Yanzhuang syenogranite samples from Sushui Complex
图 14 烟庄花岗岩Rb-(Y+Yb)(a)和Rb-(Yb+Ta)(b)图解(底图据Pearce et al., 1984)
Syn⁃COLG.同碰撞花岗岩; Post⁃COLG.后碰撞花岗岩; VAG.火山弧花岗岩; WPG.板内花岗岩; ORG.洋脊花岗岩
Fig. 14. Rb vs. (Y+Yb) (a) and Rb vs. (Yb+Ta) (b) diagrams of the Yanzhuang syenogranite samples from Sushui Complex (after Pearce et al., 1984)
-
[1] Anderson, J. L., 1983. Proterozoic Anorogenic Granite Plutonism of North America. In: Medaris, J. L. G., Byers, C. W., Mickelson, D. M., Shanks, W. C., eds., Proterozoic Geology: Selected Papers from an International Proterozoic Symposium. Geological Society of America, New York. [2] Bai, J., Yu, Z. X., Yan, Y. Y., 1997. Prcambrian Geology of Zhongtiaoshan. Tianjin Science and Technology Press, Tianjin (in Chinese). [3] Bau, M., 1996. Controls on the Fractionation of Isovalent Trace Elements in Magmatic and Aqueous Systems: Evidence from Y/Ho, Zr/Hf, and Lanthanide Tetrad Effect. Contributions to Mineralogy and Petrology, 123(3): 323-333. https://doi.org/10.1007/s004100050159" target="_blank"> https://doi.org/10.1007/s004100050159 [4] Bea, F., Arzamastsev, A., Montero, P., et al., 2001. Anomalous Alkaline Rocks of Soustov, Kola: Evidence of Mantle⁃Derived Metasomatic Fluids Affecting Crustal Materials. Contributions to Mineralogy and Petrology, 140(5): 554-566. https://doi.org/10.1007/s004100000211" target="_blank"> https://doi.org/10.1007/s004100000211 [5] Bonin, B., 2007. A⁃Type Granites and Related Rocks: Evolution of a Concept, Problems and Prospects. Lithos, 97(1-2): 1-29. https://doi.org/10.1016/j.lithos.2006.12.007" target="_blank"> https://doi.org/10.1016/j.lithos.2006.12.007 [6] Chu, N. C., Taylor, R. N., Chavagnac, V. R., et al., 2002. Hf Isotope Ratio Analysis Using Multi⁃Collector Inductively Coupled Plasma Mass Spectrometry: An Evaluation of Isobaric Interference Corrections. Journal of Analytical Atomic Spectrometry, 17(12): 1567-1574. https://doi.org/10.1039/b206707b" target="_blank"> https://doi.org/10.1039/b206707b [7] Clemens, J. D., Stevens, G., 2012. What Controls Chemical Variation in Granitic Magmas?.Lithos, 134-135: 317-329. https://doi.org/10.1016/j.lithos.2012.01.001" target="_blank"> https://doi.org/10.1016/j.lithos.2012.01.001 [8] Collins, W. J., Beams, S. D., White, A. J. R., et al., 1982. Nature and Origin of A⁃Type Granites with Particular Reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189-200. https://doi.org/10.1007/BF00374895" target="_blank"> https://doi.org/10.1007/BF00374895 [9] Condie, K. C., Belousova, E., Griffin, W. L., et al., 2009. Granitoid Events in Space and Time: Constraints from Igneous and Detrital Zircon Age Spectra. Gondwana Research, 15(3-4): 228-242. https://doi.org/10.1016/j.gr.2008.06.001" target="_blank"> https://doi.org/10.1016/j.gr.2008.06.001 [10] Duan, Q. S., Song, H. X., Du, L. L., et al., 2020. The Magmatic Activity in Paleoproterozoic Global Magmatic Quiescence: Take the ~2.3 Ga Henglingguan Granites from Zhongtiao Mountains in the Southern North China Craton as an Example. Earth Science, 45(9):3372-3385 (in Chinese with English abstract). [11] Guo, L. S., Liu, S. W., Liu, Y. L., et al., 2008. Zircon Hf Isotopic Features of TTG Gneisses and Formation Environment of Precambrian Sushui Complex in Zhongtiao Mountains. Acta Petrologica Sinica, 24(1):139-148 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200801011 [12] He, X. X., Tang, S. H., Zhu, X. K., et al., 2007. Precise Measurement of Nd Isotopic Ratios by Means of Multi-Collector Magnetic Sector Inductively Coupled Plasma Mass Spectrometry. Acta Geoscientica Sinica, 28(4): 405-410 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb200704012 [13] Hou, K. J., Li, Y. H., Zou, T. R., et al., 2007. Laser ablation⁃MC⁃ICP⁃MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications. Acta Petrologica Sinica, 23(10): 2595-2604 (in Chinese with English abstract). http://www.dbpia.co.kr/Journal/ArticleDetail/NODE01232700 [14] Liu, C. S., Chen, X. M., Chen, P. R., et al., 2003. Subdivision, Discrimination Criteria and Genesis for a Type Rock Suites. Geological Journal of China Universities, 9(4): 573-591. (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200304011 [15] Liu, S. W., Zhang, C., Liu, C. H., et al., 2007. EPMA Th⁃U⁃Pb Dating of Monazite for Zhongtiao and Lueliang Precambrian Metanmorphic Complexes. Earth Science Frontiers, 14(1): 64-74 (in Chinese with English abstract). doi: 10.1016/S1872-5791(07)60003-7 [16] Liu, X. M., Gao, S., Diwu, C. R., et al., 2007. Simultaneous in⁃situ Determination of U⁃Pb Age and Trace Elements in Zircon by LA⁃ICP⁃MS in 20 μm Spot Size. Chinese Science Bulletin, 52(2):228-235 (in Chinese). doi: 10.1360/csb2007-52-2-228 [17] Ludwig, K.R., 2001. Squid 1. 02: A User's Manual. Berkeley Geochronology Center Special Publication No. 2. Berkeley Geochronology Center, Berkeley. [18] Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)1010635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)1010635:tdog>2.3.co;2 [19] Miao, P. S., Zhao, F. Q., 2013. Journal of Stratigraphy, a Comparative Study of Paleoproterozoic Strata in Zhongtiao Mountain and Its Adjacent Areas. Journal of Stratigraphy, 37(4): 639 (in Chinese). [20] Mo, X. X., 2019. Magmatism and Deep Geological Process. Earth Science, 44(5): 1487-1493 (in Chinese with English abstract).. http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201905007.htm [21] Nelson, D. R., 1999. Compilation of SHRIMP U⁃Pb Geochronology Data. Geological Survey of Western Australia Record, Perth. [22] Nutman, A. P., Friend, C. R. L., Hiess, J., 2010. Setting of the 2 560 Ma Qô rqut Granite Complex in the Archean Crustal Evolution of Southern West Greenland. American Journal of Science, 310(9): 1081-1114. https://doi.org/10.2475/09.2010.12" target="_blank"> https://doi.org/10.2475/09.2010.12 [23] Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956" target="_blank"> https://doi.org/10.1093/petrology/25.4.956 [24] Rudnick, R. L., Gao, S., 2003. The Composition of the Continental Crust. In: Rudnick, R. L., ed., The Crust. Treatise on Geochemistry. Elsevier, Oxford. [25] Shen, Q. H., 2009. The Recommendation of a Systematic List of Mineral Abbreviations. Acta Petrologica et Mineralogica, 28(5): 495-500 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200905012.htm [26] Song, B., Zhang, Y. H., Wan, Y. S., et al., 2002. Mount Making and Procedure of the SHRIMP Dating. Geological Review, 48(S1): 26-30 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP2002S1006.htm [27] Sun, D. Z., Li, H. M., Lin, Y. X., et al., 1991. Precambrian Geochronology, Chronotectonic Framework and Model of Chronocrustal Structure of the Zhongtiao Mountains. Acta Geologica Sinica, 65(3): 216-231 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1755-6724.1992.mp5001002.x [28] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19" target="_blank"> https://doi.org/10.1144/gsl.sp.1989.042.01.19 [29] Taylor, S. R., McLennan, S. M., 1995. The Geochemical Evolution of the Continental Crust. Reviews of Geophysics, 33(2): 241-265. https://doi.org/10.1029/95RG00262" target="_blank"> https://doi.org/10.1029/95RG00262 [30] Tian, W., Liu, S. W., Liu, C. H., et al., 2005. Zircon SHRIMP Geochronology and Geochemistry of TTG Rocks in Sushui Complex from Zhongtiao Mountains with Its Geological Implications. Progress in Natural Science, 15(12): 1476-1484 (in Chinese). [31] Tian, W., Liu, S. W., Zhang, H. F., 2006. Paleoproterozoic Potassic Granitoids in the Sushui Complex from the Zhongtiao Mountains, Northern China: Geochronology, Geochemistry and Petrogenesis. Acta Geologica Sinica (English Edition), 80(6): 875-885. https://doi.org/10.1111/j.1755⁃6724.2006.tb00309.x doi: 10.1111/j.1755⁃6724.2006.tb00309.x [32] Wan, Y. S., Dong, C. Y., Liu, D. Y., et al., 2012. Zircon Ages and Geochemistry of Late Neoarchean Syenogranites in the North China Craton: A Review. Precambrian Research, 222-223: 265-289. https://doi.org/10.1016/j.precamres.2011.05.001" target="_blank"> https://doi.org/10.1016/j.precamres.2011.05.001 [33] Wang, T., Zheng, Y. D., Liu, S. W., et al., 2002. Mylonitic Potassic Granitoids from the Yagan Metamorphic Core Complex on Sino⁃Mongolian Border: A Mark of Transition from Contractile to Extensional Tectonic Regime. Acta Petrologica Sinica, 18(2): 177-186 (in Chinese with English abstract). [34] Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295-304. https://doi.org/10.1016/0012⁃821X(83)90211⁃X doi: 10.1016/0012⁃821X(83)90211⁃X [35] Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A⁃Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202" target="_blank"> https://doi.org/10.1007/BF00402202 [36] Williams, I. S., 1998. U⁃Th⁃Pb Geochronology by Ion Microprobe. In: Mickibben, M. A., Shanks Ⅲ, W. C., Ridley, W. I., eds., Applications of Micro Analytical Techniques to Understanding Mineralizing Processes.Review of Economic Geology, 7: 1-35. https://doi.org/10.5382/rev.07.01" target="_blank"> https://doi.org/10.5382/rev.07.01 [37] Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu⁃Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract). http://www.oalib.com/paper/1492671 [38] Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Science China Earth Sciences, 47(7): 745-765 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-JDXG201707001.htm [39] Wu, F. Y., Zhang, Y. B., Yang, J. H., et al., 2008. Zircon U⁃Pb and Hf Isotopic Constraints on the Early Archean Crustal Evolution in Anshan of the North China Craton. Precambrian Research, 167(3-4): 339-362. https://doi.org/10.1016/j.precamres.2008.10.002" target="_blank"> https://doi.org/10.1016/j.precamres.2008.10.002 [40] Yang, C. H., Du, L. L., Ren, L. D., et al., 2011. Petrogenesis and Geodynamic Setting of Jiandeng Potassic Granite at the End of the Neoarchean in Zanhuang Complex, North China Craton. Earth Science Frontiers, 18(2): 62-78 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201102006 [41] Yang, C. H., Du, L. L., Ren, L. D., et al., 2013. Delineation of the Ca. 2.7 Ga TTG Gneisses in the Zanhuang Complex, North China Craton and Its Geological Implications. Journal of Asian Earth Sciences, 72: 178-189. https://doi.org/10.1016/j.jseaes.2012.09.031" target="_blank"> https://doi.org/10.1016/j.jseaes.2012.09.031 [42] Yang, C. H., Du, L. L., Ren, L. D., et al., 2015a. Early Precambrian Stratigraphic Division and Magamtic Evolution in the North Chian Craton. Science Press, Beijing (in Chinese). [43] Yang, C. H., Du, L. L., Ren, L. D., et al., 2015b. The Age and Tectonic Setting of Metavolcanic Rocks in the Tongkuangyu Deposit, Zhongtiao Mountain, and Their Constraints on Copper Mineralization. Acta Geoscientica Sinica, 36(5): 613-633 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201505012 [44] Yang, C. H., Du, L. L., Song, H. X., et al., 2018. Stratigraphic Division and Correlation of the Pleoproterozoic Strata in the North China Craton: A Review. Acta Petrologica Sinica, 34(4): 1019-1057 (in Chinese with English abstract). https://www.researchgate.net/publication/330637994_Stratigraphic_division_and_correlation_of_the_Pleoproterozoic_strata_in_the_North_China_Craton_A_review [45] Yu, S. Q., Liu, S. W., Tian, W., et al., 2006. SHRIMP Zircon U⁃Pb Chronology and Geochemistry of the Henglingguan and Beiyu Granitoids in the Zhongtiao Mountains, Shanxi Province. Acta Geologica Sinica (English Edition), 80(6): 912-922. https://doi.org/10.1111/j.1755⁃6724.2006.tb00312.x doi: 10.1111/j.1755⁃6724.2006.tb00312.x [46] Yuan, H. L., Gao, S., Liu, X. M., et al., 2004. Accurate U⁃Pb Age and Trace Element Determinations of Zircon by Laser Ablation⁃Inductively Coupled Plasma⁃Mass Spectrometry. Geostandards and Geoanalytical Research, 28(3): 353-370. https://doi.org/10.1111/j.1751-908X.2004.tb00755.x [47] Zhang, H. F., Zhai, M. G., Santosh, M., et al., 2011. Geochronology and Petrogenesis of Neoarchean Potassic Meta⁃Granites from Huai'an Complex: Implications for the Evolution of the North China Craton. Gondwana Research, 20(1): 82-105. https://doi.org/10.1016/j.gr.2011.01.009" target="_blank"> https://doi.org/10.1016/j.gr.2011.01.009 [48] Zhang, Q., Wang, Y., Li, C. D., et al., 2006. Granite Classification on the Basis of Sr and Yb Contents and Its Implications. Acta Petrologica Sinica, 22(9): 2249-2269 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200609001 [49] Zhang, R. Y., Sun, Y., 2017. Formation and Evolution of Early Precambrian Basement in the Southern North China Craton. Acta Petrologica Sinica, 33(10): 3027-3041 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201710004 [50] Zhang, R. Y., Zhang, C. L., Diwu, C. R., et al., 2012. Zircon U⁃Pb Geochronology, Geochemistry and Its Geological Implications for the Precambrian Granitoids in Zhongtiao Mountain, Shanxi Province. Acta Petrologica Sinica, 28(11): 3559-3573 (in Chinese with English abstract). http://www.researchgate.net/publication/285840892_Zircon_U-Pb_geochronology_geochemistry_and_its_geological_implications_for_the_Precambrian_granitoids_in_Zhongtiao_Mountain_Shanxi_Province [51] Zhang, R. Y., Zhang, C. L., Sun, Y., 2013. Crustal Reworking in the North China Craton at ~2.5 Ga: Evidence from Zircon UPb Ages, Hf Isotopes and Whole⁃Rock Geochemistry of the TTG Gneisses in the Zhongtiao Mountain. Acta Petrologica Sinica, 29(7): 2265-2280 (in Chinese with English abstract). [52] Zhao, B., Wang, D. H., Hou, K. J., et al., 2012. Isochronology Study on Sushui Complex in Zhongtiao Mountains and Its Geological Significance. Journal of Earth Sciences and Environment, 34(1): 1-8 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xagcxyxb201201001 [53] Zhao, F. Q., 2006. Geochronologic and Geochemical Constraints on the Paleoproterozoic Crustal Evolution of Zhongtiao Mountains from Shanxi Province (Dissertation). China University of Geosciences, Beijing (in Chinese). [54] Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 136(2): 177-202. https://doi.org/10.1016/j.precamres.2004.10.002" target="_blank"> https://doi.org/10.1016/j.precamres.2004.10.002 [55] Zhao, Y., Li, N. B., Jiang, Y. H., et al., 2017. Petrogenesis of the Late Archean (~2.5 Ga) Na⁃ and K⁃Rich Granitoids in the Zhongtiao⁃Wangwu Region and Its Tectonic Significance for the Crustal Evolution of the North China Craton. Precambrian Research, 303: 590-603. https://doi.org/10.1016/j.precamres.2017.07.037" target="_blank"> https://doi.org/10.1016/j.precamres.2017.07.037 [56] Zhou, Y. Y., Zhao, T. P., Wang, C. Y., et al., 2011. Geochronology and Geochemistry of 2.5 to 2.4 Ga Granitic Plutons from the Southern Margin of the North China Craton: Implications for a Tectonic Transition from Arc to Post⁃Collisional Setting. Gondwana Research, 20(1): 171-183. https://doi.org/10.1016/j.gr.2011.03.004" target="_blank"> https://doi.org/10.1016/j.gr.2011.03.004 [57] Zhu, X. Y., Zhai, M. G., Chen, F. K., et al., 2013. ∼2.7 Ga Crustal Growth in the North China Craton: Evidence from Zircon U⁃Pb Ages and Hf Isotopes of the Sushui Complex in the Zhongtiao Terrane. The Journal of Geology, 121(3): 239-254. https://doi.org/10.1086/669977" target="_blank"> https://doi.org/10.1086/669977 [58] 白瑾, 余致信, 颜耀阳, 等, 1997.中条山前寒武纪地质.天津:天津科学技术出版社. [59] 段庆松, 宋会侠, 杜利林, 等, 2020.古元古代全球静寂期岩浆活动——以华北克拉通南缘中条山~2.3 Ga横岭关花岗岩为例.地球科学, 45(9): 3372-3385. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDAUTO&filename=DQKX202009016&v=6n79NuKJ8dLyX7dh6AEcUp8DaZHHKM20tjbgkyYBXrI2lzcbVF4Ph2a5YY4lJJj9 [60] 郭丽爽, 刘树文, 刘玉琳, 等, 2008.中条山涑水杂岩中TTG片麻岩的锆石Hf同位素特征及其形成环境.岩石学报, 24(1): 139-148. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200801011 [61] 何学贤, 唐索寒, 朱祥坤, 等, 2007.多接收器等离子体质谱(MC⁃ICPMS)高精度测定Nd同位素方法.地球学报, 28(4): 405-410. http://www.cnki.com.cn/Article/CJFDTotal-DQXB200704012.htm [62] 侯可军, 李延河, 邹天人, 等, 2007. LA⁃MC⁃ICP⁃MS锆石Hf同位素的分析方法及地质应用.岩石学报, 23(10): 2595-2604. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200710026.htm [63] 刘昌实, 陈小明, 陈培荣, 等, 2003. A型岩套的分类、判别标志和成因.高校地质学报, 9(4): 573-591. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200304011 [64] 刘树文, 张臣, 刘超辉, 等, 2007.中条山-吕梁山前寒武纪变质杂岩的独居石电子探针定年研究.地学前缘, 14(1): 64-74. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200701006 [65] 柳小明, 高山, 第五春荣, 等, 2007.单颗粒锆石的20 μm小斑束原位微区LA⁃ICP⁃MS U⁃Pb年龄和微量元素的同时测定.科学通报, 52(2):228-235. http://www.cnki.com.cn/Article/CJFDTotal-KXTB200702017.htm [66] 苗培森, 赵凤清, 2013.中条山及其邻区古元古代地层对比研究.地层学杂志, 37(4):639. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8237602 [67] 莫宣学, 2019.岩浆作用与地球深部过程.地球科学, 44(5): 1487-1493. doi: 10.3799/dqkx.2019.972 [68] 沈其韩, 2009.推荐一个系统的矿物缩写表.岩石矿物学杂志, 28(5): 495-500. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz200905011 [69] 宋彪, 张玉海, 万渝生, 等, 2002.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质论评, 48(S1): 26-30. http://www.cnki.com.cn/Article/CJFDTotal-DZLP2002S1006.htm [70] 孙大中, 李惠民, 林源贤, 等, 1991.中条山前寒武纪年代学、年代构造格架和年代地壳结构模式的研究.地质学报, 65(3): 216-231. http://www.cnki.com.cn/Article/CJFDTotal-DZXE199103001.htm [71] 田伟, 刘树文, 刘超辉, 等, 2005.中条山涑水杂岩中TTG系列岩石的锆石SHRIMP年代学和地球化学及其地质意义.自然科学进展, 15(12): 1476-1484. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrkxjz200512010 [72] 王涛, 郑亚东, 刘树文, 等, 2002.中蒙边界亚干变质核杂岩糜棱状钾质花岗岩——早中生代收缩与伸展构造体制的转换标志.岩石学报, 18(2): 177-186. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200202005 [73] 吴福元, 李献华, 郑永飞, 等, 2007. Lu⁃Hf同位素体系及其岩石学应用.岩石学报23(2): 185-220. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200702002.htm [74] 吴福元, 刘小驰, 纪伟强, 等, 2017.高分异花岗岩的识别与研究.中国科学(D辑), 47(7): 745-765. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201707001 [75] 杨崇辉, 杜利林, 任留东, 等, 2011.赞皇杂岩中太古宙末期菅等钾质花岗岩的成因及动力学背景.地学前缘18(2): 62-78. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201102006 [76] 杨崇辉, 杜利林, 任留东, 等, 2015a.华北克拉通早前寒武纪地层划分对比及岩浆演化.北京:科学出版社. [77] 杨崇辉, 杜利林, 任留东, 等, 2015b.中条山铜矿峪变质火山岩的时代、构造背景及对成矿的制约.地球学报, 36(5): 613-633. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201505012 [78] 杨崇辉, 杜利林, 宋会侠, 等, 2018.华北克拉通古元古代地层划分与对比.岩石学报34(4): 1019-1057. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201804010 [79] 张旗, 王焰, 李承东, 等, 2006.花岗岩的Sr⁃Yb分类及其地质意义.岩石学报, 22(9): 2249-2269. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200609000.htm [80] 张瑞英, 孙勇, 2017.华北克拉通南部早前寒武纪基底形成与演化.岩石学报, 33(10): 3027-3041. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201710004 [81] 张瑞英, 张成立, 第五春荣, 等, 2012.中条山前寒武纪花岗岩地球化学、年代学及其地质意义.岩石学报, 28(11): 3559-3573. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201211010 [82] 张瑞英, 张成立, 孙勇, 2013.华北克拉通~2.5 Ga地壳再造事件:来自中条山TTG质片麻岩的证据.岩石学报, 29(7): 2265-2280. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201307002.htm [83] 赵斌, 王登红, 侯可军, 等, 2012.中条山涑水杂岩的同位素年代学研究及其地质意义.地球科学与环境学报, 34(1): 1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xagcxyxb201201001 [84] 赵凤清, 2006.山西中条山地区古元古代地壳演化的年代学和地球化学制约(博士学位论文).北京: 中国地质大学. -
dqkxzx-45-9-3161-附表.doc