Inversion of Sea Surface Flow Field in Southern South China Sea Based on Satellite Remote Sensing Data
-
摘要: 海表流场可直接影响海表的气候变化,且对于研究海气相互作用、热通量输送等具有重要意义.通过利用Jason-2号与HY-2号卫星高度计数据以及Metop卫星的ASCAT与HY-2号卫星散射计数据反演海表流场.利用距离加权平均法生成分辨率为0.25°×0.25°的网格,通过数据融合分别得到海表高度场与海面风场,在此基础上构建地转流和Ekman流反演数学模型.利用Jason-2与HY-2号卫星高程计数据反演地转流,利用ASCAT与HY-2号卫星散射计数据得出风应力驱动的Ekman流,合并两者得到海表流场.通过对研究海域海表流速的反演结果与OSCAR海流产品的对比分析,发现越靠近赤道的位置,其流速误差较大,最大相对误差达到了0.6 m/s.实验结果表明利用卫星遥感数据反演海洋表层流场能较为准确地表现实际海表流场的基本特征.Abstract: The sea surface flow field can directly affect the climate change of the sea surface,and is of great significance to the study of air-sea interaction and heat flux transfer. This paper uses altimeter data from Jason-2 and HY-2 satellite,scatterometer data from ASCAT of Metop and HY-2 satellite to estimate the sea surface flow field. The grid with resolution of 0.25°×0.25° is generated by the method of weighted average distance,the sea surface elevation field and wind field are obtained by data fusing. On this basis,the inversion mathematical models of the geostrophic flow and the Ekman flow are constructed. The geostrophic flow is retrieved from Jason-2 and Hy-2 altimeter data,and the wind-driven Ekman flow is obtained from the ASCAT and Hy-2 scatterometer data,the combination of both date results in the sea surface flow field. By comparing the inversion results of the sea surface flow in the study area with OSCAR current products,it is found that the closer to the equator,the greater the error of the velocity of the sea surface flow. The maximum relative error reached 0.6 m/s. The experimental results show that the sea surface flow field estimated by satellite remote sensing data can exactly describe the basic characters of actual sea surface flow field.
-
图 1 研究海域地理位置
地图取自自然资源部网站《中国地图 1:4 200万32开》,审图号:GS(2016)1545号
Fig. 1. Geographical location of the study area
表 1 高程计数据融合
Table 1. Altimeter data fusion
Jason⁃2 Value1 Value1 Nan Nan HY⁃2 Value2 Nan Value2 Nan 融合处理 加权平均 Value1 Value2 Nan 表 2 散射计数据融合
Table 2. Scatterometer data fusion
ASCAT Value1 Value1 Nan Nan HY⁃2 Value2 Nan Value2 Nan 融合处理 加权平均 Value1 Value2 Nan -
[1] Chen, Y.D., Zhang, R., Jiang, G.R., 2006. Evaluation and Analysis of Mid-Depth Currents of the Equatorial Pacific Using ARGO Float Position Information. Marine Forecasts, 3(4):37-46 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYYB200604005.htm [2] Ding, R.R., Zuo, J.C., Du, L., et al., 2007. Sea Level Change in the South China Sea and Its Relations to the Steric Height Variation and Wind. Periodical of Ocean University of China, 37(S2):23-30 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=QDHY2007S2005&dbcode=CJFD&year=2007&dflag=pdfdown [3] Ekman, V.W., 1905. On the Influence of the Earth's Rotation on Ocean Currents. Arch. Math. Astron. Phys, 2:1-52. [4] El-Nabulsi, R. A., 2019. Geostrophic Flow and Wind-Driven Ocean Currents Depending on the Spatial Dimensionality of the Medium. Pure and Applied Geophysics, 176(6):2739-2750. https://doi.org/10.1007/s00024-018-2080-x [5] Guo, Z.Z., Yin, K.L., Fu, S., et al., 2019. Evaluation of Landslide Susceptibility Based on GIS and WOE-BP Model. Earth Science, 44(12):4299-4312 (in Chinese with English abstract). http://www.researchgate.net/publication/324390254_Evaluation_of_Landslide_Susceptibility_Based_on_GIS_and_WOE-BP_Model [6] He, J.L., Cai, S.Q., 2012. Study on the Hydrological Characteristic Parameters and Flow Field East of the Luzon Strait Using ARGO Profiling Floats. Journal of Tropical Oceanography, 31(1):18-27 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-RDHY201201004.htm [7] Jiang, Z.H., Huang, S.X., Liu, G., et al., 2011. Research on the Development of Surface Wind Speed Retrieval from Satellite Radar Altimeter. Marine Science Bulletin, 30(5):88-594 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=HUTB201105020&dbcode=CJFD&year=2011&dflag=pdfdown [8] Johnson, E. S., Bonjean, F., Lagerloef, G. S. E., et al., 2007. Validation and Error Analysis of OSCAR Sea Surface Currents. Journal of Atmospheric and Oceanic Technology, 24(4):688-701. https://doi.org/10.1175/jtech1971.1 [9] Lagerloef, G. S. E., Mitchum, G. T., Lukas, R. B., et al., 1999. Tropical Pacific Near-Surface Currents Estimated from Altimeter, Wind, and Drifter Data. Journal of Geophysical Research:Oceans, 104(C10):23313-23326. https://doi.org/10.1029/1999jc900197 [10] Lan, Y.G., Lang, S.Y., Lin, M.S., et al., 2018. Application of Microwave Scatter Meter Onboard HY-2A Satellite in Typhoon Remote Sensing Monitoring. Satellite Application, (5):40-42 (in Chinese with English abstract). [11] Li, L., Gai, Y.H., Ouyang, M., et al., 2019. Technologies with Two Azimuths in West Area of South China Sea:A Case Study of Zhusan Sag. Earth Science, 44(8):2590-2596 (in Chinese with English abstract). [12] Liu, W., Zhang, R., Wang, H.Z., et al., 2012. Sea Surface Flow Field Retrieval and Estimation Based on Satellite Remote Sensing Data. Progress in Geophysics, 27(5):1989-1994 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ201205019.htm [13] Lukas, R., Firing, E., 1984. The Geostrophic Balance of the Pacific Equatorial Undercurrent. Deep Sea Research Part A Oceanographic Research Papers, 31(1):61-66. https://doi.org/10.1016/0198-0149(84)90072-4 [14] Mao, Q.W., Shi, P., Qi, Y.Q., 1999. Sea Surface Dynamic Topography and Geostrophic Current over the South China Sea from Geosat Altimeter Observation. Acta Oceanologica Sinica, 21(1):11-16 (in Chinese with English abstract). http://ci.nii.ac.jp/naid/10025551999 [15] Pedlosky, J., 2013. An Inertial Model of the Interaction of Ekman Layers and Planetary Islands. Journal of Physical Oceanography, 43(7):1398-1406. https://doi.org/10.1175/jpo-d-13-028.1 [16] Picaut, J., Hayes, S. P., McPhaden, M. J., 1989. Use of the Geostrophic Approximation to Estimate Time-Varying Zonal Currents at the Equator. Journal of Geophysical Research, 94(C3):3228. https://doi.org/10.1029/jc094ic03p03228 [17] Shrira, V. I., Almelah, R. B., 2019. Upper-Ocean Ekman Current Dynamics:A New Perspective. Journal of Fluid Mechanics, 887:1-23. https://doi.org/10.1017/jfm.2019.1059 [18] Song, X.X., Wang, J., Chu, X.Q., et al., 2019. Estimation of Sea Surface Velocities from SAR Images Using the Doppler Shift. Remote Sensing Technology and Application, 34(2):293-302 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YGJS201902009.htm [19] van Meurs, P., Niiler, P. P., 1997. Temporal Variability of the Large-Scale Geostrophic Surface Velocity in the Northeast Pacific. Journal of Physical Oceanography, 27(10):2288-2297. https://doi.org/10.1175/1520-0485(1997)027 < 2288:tvotls>2.0.co; 2 doi: 10.1175/1520-0485(1997)027<2288:tvotls>2.0.co;2 [20] Wang, D.L., Yao, X.H., Meng, L., et al., 2014. Validation and Analysis of Wind Field Products of HY-2. Marine Forecasts, 31(4):47-53 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYYB201404007.htm [21] Wang, H.P., Wang, C.M., Xiang, J., et al., 2014. Validation of Quik SCAT Satellite Scatterometer Winds and Characteristics of Monthly Mean Wind Speed in South China Sea. Journal of the Meteorological Sciences, 34(1):54-59 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-QXKX201401008.htm [22] Wang, J.H., Yu, H., Miao, C.S., et al., 2016. Analysis and Simulation of the Wind Fields Impact on Sea Level Features of Yellow Sea and East China Sea. Transactions of Atmospheric Sciences, 39(1):90-101 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NJQX201601011.htm [23] Wang, W.C., Wen, H.J., Liu, H.L., et al., 2019. The Determination Method of High Precision Geostrophic Currents in East China Sea. Science of Surveying and Mapping, 44(8):37-43 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-CHKD201908006.htm [24] Zhang, G. S., Perrie, W., Zhang, B., et al., 2020. Monitoring of Tropical Cyclone Structures in Ten Years of RADARSAT-2 SAR Images. Remote Sensing of Environment, 236:111449. https://doi.org/10.1016/j.rse.2019.111449 [25] Zheng, G.Z., Le, X.D., Wang, H.P., et al., 2017. Inversion of Water Depth from WorldView-02 Satellite Imagery Based on BP and RBF Neural Network. Earth Science, 42(12):2345-2353 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201712018.htm [26] 陈奕德, 张初, 蒋国荣, 2006.利用ARGO浮标定位信息估算分析赤道太平洋中层流场状况.海洋预报, 23(4):37-46. doi: 10.3969/j.issn.1003-0239.2006.04.005 [27] 丁荣荣, 左军成, 杜凌, 等, 2007.南海海平面变化及其比容高度和风场间的关系.中国海洋大学学报, 37(S2):23-30. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY2007S2005.htm [28] 郭子正, 殷坤龙, 付圣, 等, 2019.基于GIS与WOE-BP模型的滑坡易发性评价.地球科学, 44(12):4299-4312. doi: 10.3799/dqkx.2016.032 [29] 何建玲, 蔡树群, 2012.利用ARGO数据计算吕宋海峡以东海域水文特性参数和流场.热带海洋学报, 31(1):18-27. https://www.cnki.com.cn/Article/CJFDTOTAL-RDHY201201004.htm [30] 姜祝辉, 黄思训, 刘刚, 等, 2011.星载雷达高度计反演海面风速进展.海洋通报, 30(5):588-594. doi: 10.3969/j.issn.1001-6392.2011.05.019 [31] 李列, 盖永浩, 欧阳敏, 等, 2019.南海西部双方位地震资料处理关键技术实践:以珠三凹陷为例.地球科学, 44(8):2590-2596. doi: 10.3799/dqkx.2019.140 [32] 兰友国, 郎姝燕, 林明森, 等, 2018.海洋二号卫星A星微波散射计在台风遥感监测中的应用.卫星应用, (5):40-42. doi: 10.3969/j.issn.1674-9030.2018.05.011 [33] 刘巍, 张韧, 王辉赞, 等, 2012.基于卫星遥感资料的海洋表层流场反演与估算.地球物理学进展, 27(5):1989-1994. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201205019.htm [34] 毛庆文, 施平, 1999.GEOSAT卫星遥感资料研究南海海面动力髙度场和地转流场.海洋学报, 21(1):11-16. doi: 10.3321/j.issn:0253-4193.1999.01.002 [35] 宋晓霞, 王静, 储小青, 等, 2019.基于多普勒频移的SAR海表流场反演.遥感技术与应用, 34(2):293-302. https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS201902009.htm [36] 王东良, 姚小海, 孟雷, 等, 2014.海洋二号卫星散射计风场产品真实性检验及分析.海洋预报, 31(4):47-53. https://www.cnki.com.cn/Article/CJFDTOTAL-HYYB201404007.htm [37] 王坚红, 于华, 苗春生, 等, 2016.近海面风场对黄东海域海平面特征影响的分析与模拟.大气科学学报, 39(1):90-101. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201601011.htm [38] 王文超, 文汉江, 刘焕玲, 等, 2019.我国东部海域高精度地转流的确定方法.测绘科学, 44(8):37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201908006.htm [39] 王慧鹏, 王春明, 项杰, 等, 2014.QuikSCAT卫星散射计矢量风检验及南海月平均风场特征分析.气象科学, 34(1):54-59. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX201401008.htm [40] 郑贵洲, 乐校东, 王红平, 等, 2017.基于WorliView-02高分影像的BP和RBF神经网络遥感水深反演.地球科学, 42(12):2345-2353. doi: 10.3799/dqkx.2017.552