Coupling Relation between Magma Mixing and Igneous Petrological Diversity: An Example of Bairiqili Felsic Pluton in East Kunlun Orogen
-
摘要: 壳-幔岩浆相互作用如何影响长英质火成岩的岩石学多样性是当前岩石学研究的焦点问题之一.以岩石类型丰富的东昆仑白日其利长英质岩体和暗色微粒包体为研究对象,开展系统的锆石U-Pb年代学、矿物学、全岩元素地球化学和Sr-Nd-Hf同位素研究,探讨和解析这一重要科学问题.LA-ICPMS锆石U-Pb年代学研究表明,暗色微粒包体(247.8±2.0 Ma)与二长花岗岩(247.5±1.4 Ma)、花岗闪长岩(248.8±2.1 Ma)和石英闪长岩(248.8±1.5 Ma)均侵位结晶于早三叠世.岩相学和矿物学研究表明,白日其利长英质岩石与包体的成因机制与壳-幔岩浆的机械或化学混合作用密切相关.元素地球化学和Sr-Nd-Hf同位素组成研究揭示,幔源镁铁质岩浆端元起源于受俯冲板片流体交代的富集地幔熔融,而壳源长英质岩浆端元则起源于东昆仑古老的变质杂砂岩基底.岩石成因分析揭示,幔源镁铁质岩浆侵入长英质晶粥岩浆房,促使长英质晶粥发生活化,随后壳-幔岩浆端元以不同比例和不同方式发生机械和化学混合等相互作用,从而形成镁铁质岩墙、包体、石英闪长岩和花岗闪长岩等多种岩石类型.晶粥状态下壳-幔岩浆相互作用是控制东昆仑长英质火成岩多样性和大陆地壳生长演化的重要方式.Abstract: How crust-mantle magma interaction controls the petrological diversity of the felsic igneous rocks is one of the key scientific issues in petrology research. In this study it takes the Bairiqili felsic pluton which is characterized by its various rock types, as well as its mafic microgranular enclaves (MMEs) in East Kunlun as the research object, and presents its zircon U-Pb chronology, mineralogy, whole-rock geochemistry and Sr-Nd-Hf isotopic data to discuss the key scientific issue. LA-ICPMS zircon U-Pb geochronology indicates that the MMEs (247.8±2.0 Ma), monzogranite (247.5±1.4 Ma), granodiorite (248.8±2.1 Ma) and quartz diorite (248.8±1.5 Ma) all emplaced and crystallized in Early Triassic. Petrographic and mineralogical studies show that the petrogenesis of the felsic rocks and MMEs is closely related to the crust-mantle magma mixing or mingling. Elemental and Sr-Nd-Hf isotopical geochemistry reveals that the mafic magma was originated from partial melting of the enriched mantle which was metasomatized by subduction-related fluid, while the felsic end-member magma was derived from partial melting of the ancient metagreywackes. This study proposes that the mantle-derived mafic magma firstly intruded into the felsic crystal mushy magma chamber, promoting the rejuvenation of this felsic crystal mush. Subsequently, the mixing and mingling interaction occurred between the crust and mantle end-member magmas in different proportions and in different ways, thus formed a variety of igneous rocks including mafic dyke, MMEs, quartz diorite and granodiorite. Crust-mantle magma interaction in crystal mushy state is an important way to control the petrological diversity of felsic rocks and the growth and evolution of continental crust in East Kunlun.
-
Key words:
- magma mixing /
- petrological diversity /
- granite /
- mafic microgranular enclave /
- East Kunlun
-
图 1 (a) 东昆仑造山带大地构造简图(据Roger et al., 2003修改);(b)东昆仑东段岩浆岩分布简图(据Xiong et al., 2019);(c)白日其利岩体地质简图
Fig. 1. Tectonic outline of East Kunlun (after Roger et al., 2003) (a), simplified map of eastern segment of East Kunlun showing the distribution of igneous rocks (after Xiong et al., 2019) (b) and simplified geological map of the Bairiqili pluton (c)
图 4 (a) 斜长石化学成分及代表性矿物的背散射图像;(b)斜长石的SiO2与An成分关系图;(c)角闪石的分类命名图(据Leake et al., 1997);(d)角闪石结晶温度与压力关系图
Fig. 4. Chemical compositions and BSE images for the plagioclases (a); SiO2 vs. An diagram of plagioclases (b); classification of the studied amphiboles (after Leake et al., 1997) (c); temperatures vs. pressures diagram for the studied amphiboles (d)
图 5 (a) 全岩SiO2-K2O图解;(b)A/CNK-A/NK图
a据Peccerillo and Taylor, 1976;b据Chappell and White 1974
Fig. 5. SiO2 vs. K2O diagram (a); A/CNK vs. A/NK diagram (b)
图 6 (a) 球粒陨石标准化稀土元素图;(b)原始地幔标准化微量元素蛛网图
a标准化值据Taylor and Mclennan, 1985;b标准化值据Sun and McDonough(1989)
Fig. 6. Chondrite-normalized REE patterns (a); primitive mantle-normalized trace element spider diagrams (b)
图 7 (a, b)花岗闪长岩与包体的锆石Hf同位素组成;(c)白日其利岩体与包体的全岩Sr-Nd同位素组成
二叠纪-三叠纪花岗岩资料据Xiong et al.(2019);洋岛玄武岩和基底岩石资料据郭安林等(2007)和巴金等(2012)
Fig. 7. Zircon Hf isotopic compositions of the studied granodiorite and MMEs (a, b); whole-rock Sr-Nd isotopes for the Bairiqili pluton and MMEs (c)
图 8 白日其利岩体和包体的(Ta/U)PM-(Nb/Th)PM图
原始地幔、大洋玄武岩、下地壳和上地壳值据Sun and McDonough(1989)和Rudnick and Gao(2003)
Fig. 8. Diagram of (Ta/U)PM vs. (Nb/Th)PM for the Bairiqili pluton and MMEs
图 10 白日其利花岗岩类、暗色微粒包体与闪长岩混合模拟(据Schiano et al., 2010)
Fig. 10. Mixing simulation for granitoids, MMEs and quartz diorite in the Bairiqili pluton (after Schiano et al., 2010)
-
[1] Altherr, R., Siebel, W., 2002. I-Type Plutonism in a Continental Back-Arc Setting: Miocene Granitoids and Monzonites from the Central Aegean Sea, Greece. Contributions to Mineralogy and Petrology, 143(4): 397-415. https://doi.org/10.1007/s00410-002-0352-y [2] Anderson, J.L., Barth, A.P., Wooden, J.L., et al., 2008. Thermometers and Thermobarometers in Granitic Systems. Reviews in Mineralogy and Geochemistry, 69(1): 121-142. https://doi.org/10.2138/rmg.2008.69.4 [3] Ba, J., Chen, N.S., Wang, Q.Y., et al., 2012. Nd-Sr-Pb Isotopic Compositions of Cordierite Granite on Southern Margin of the Qaidam Block, NW China, and Constraints on Its Petrogenesis, Tectonic Affinity of Source Region and Tectonic Implications. Earth Science, 37(Suppl. 1): 80-92(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX2012S1010.htm [4] Bachmann, O., Huber, C., 2019. The Inner Workings of Crustal Distillation Columns; the Physical Mechanisms and Rates Controlling Phase Separation in Silicic Magma Reservoirs. Journal of Petrology, 60(1): 3-18. https://doi.org/10.1093/petrology/egy103 [5] Barbarin, B., 2005. Mafic Magmatic Enclaves and Mafic Rocks Associated with Some Granitoids of the Central Sierra Nevada Batholith, California: Nature, Origin, and Relations with the Hosts. Lithos, 80(1-4): 155-177. https://doi.org/10.1016/j.lithos.2004.05.010 [6] Bergantz, G.W., Schleicher, J.M., Burgisser, A., et al., 2015. Open-System Dynamics and Mixing in Magma Mushes. Nature Geoscience, 8(10): 793-796. https://doi.org/10.1038/ngeo2534 [7] Burgisser, A., Bergantz, G.W., 2011. A Rapid Mechanism to Remobilize and Homogenize Highly Crystalline Magma Bodies. Nature, 471(7337): 212-215. https://doi.org/10.1038/nature09799 [8] Cashman, K.V., Sparks, R.S.J., Blundy, J.D., et al., 2017. Vertically Extensive and Unstable Magmatic Systems: A Unified View of Igneous Processes. Science, 355(6331): eaag3055. https://doi.org/10.1126/science.aag3055 [9] Chappell, B.W., White, A.J.R., 1974. Two Contrasting Granite Types. Pacific Geology, 8: 173-174. http://ci.nii.ac.jp/naid/80013136601/ [10] Chappell, B.W., White, A.J.R., Wyborn, D., et al., 1987. The Importance of Residual Source Material (Restite) in Granite Petrogenesis. Journal of Petrology, 28(6): 1111-1138. https://doi.org/10.1093/petrology/28.6.1111 [11] Chauvel, C., Marini, J.C., Plank, T., et al., 2009. Hf-Nd Input Flux in the Izu-Mariana Subduction Zone and Recycling of Subducted Material in the Mantle. Geochemistry, Geophysics, Geosystems, 10(1): Q01001. https://doi.org/10.1029/2008gc002101 doi: 10.1029/2008GC002101/abstract [12] Chen, Y.X., Pei, X.Z., Li, R.B., et al., 2011. Zircon U-Pb Age of Xiaomiao Formation of Proterozoic in the Eastern Section of the East Kunlun Orogenic Belt. Geoscience, 25(3): 510-521(in Chinese with English abstract). http://www.researchgate.net/publication/285650077_Zircon_U-Pb_age_of_Xiaomiao_Formation_of_Proterozoic_in_the_eastern_section_of_the_East_Kunlun_Orogenic_Belt [13] Clemens, J.D., 2018. Granitic Magmas with I-Type Affinities, from Mainly Metasedimentary Sources: The Harcourt Batholith of Southeastern Australia. Contributions to Mineralogy and Petrology, 173(11): 1-20. https://doi.org/10.1007/s00410-018-1520-z doi: 10.1007%2Fs00410-018-1520-z.pdf [14] Costa, F., Coogan, L.A., Chakraborty, S., et al., 2010. The Time Scales of Magma Mixing and Mingling Involving Primitive Melts and Melt-Mush Interaction at Mid-Ocean Ridges. Contributions to Mineralogy and Petrology, 159(3): 371-387. https://doi.org/10.1007/s00410-009-0432-3 [15] Gao, S., Rudnick, R.L., Yuan, H.L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432(7019): 892-897. https://doi.org/10.1038/nature03162 [16] Glazner, A.F., Bartley, J.M., Coleman, D.S., et al., 2020. Aplite Diking and Infiltration: A Differentiation Mechanism Restricted to Plutonic Rocks. Contributions to Mineralogy and Petrology, 175(4): 1-17. https://doi.org/10.1007/s00410-020-01677-1 [17] Guo, A.L., Zhang, G.W., Sun, Y.G., et al., 2007. Sr-Nd-Pb Isotopic Geochemistry of Late-Paleozoic Mafic Volcanic Rocks in the Surrounding Areas of the Gonghe Basin, Qinghai Province and Geological Implications. Acta Petrologica Sinica, 23(4): 747-754(in Chinese with English abstract). [18] Hammerli, J., Kemp, A.I.S., Shimura, T., et al., 2018. Generation of I-Type Granitic Rocks by Melting of Heterogeneous Lower Crust. Geology, 46(10): 907-910. https://doi.org/10.1130/g45119.1 doi: 10.1130/G45119.1 [19] Hanyu, T., Tatsumi, Y., Nakai, S., et al., 2006. Contribution of Slab Melting and Slab Dehydration to Magmatism in the NE Japan Arc for the Last 25 Ma: Constraints from Geochemistry. Geochemistry, Geophysics, Geosystems, 7(8): Q08002. https://doi.org/10.1029/2005GC001220 doi: 10.1029/2005GC001220 [20] Hoffmann, J.E., Kröner, A., Hegner, E., et al., 2016. Source Composition, Fractional Crystallization and Magma Mixing Processes in the 3.48-3.43 Ga Tsawela Tonalite Suite (Ancient Gneiss Complex, Swaziland): Implications for Palaeoarchaean Geodynamics. Precambrian Research, 276: 43-66. https://doi.org/10.1016/j.precamres.2016.01.026 [21] Hu, C.B., Li, M., Zha, X.F., et al., 2018. Genesis and Geological Significance of Late Paleozoic Mantle-Derived Magmatism in Qimantag, East Kunlun: A Case Study of Intrusion in Yingzhuagou. Earth Science, 43(12): 4334-4349. (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201812005.htm [22] Hu, Z.C., Liu, Y.S., Gao, S., et al., 2012. Improved In Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391-1399. https://doi.org/10.1039/c2ja30078h [23] Jagoutz, O., Kelemen, P.B., 2015. Role of Arc Processes in the Formation of Continental Crust. Annual Review of Earth and Planetary Sciences, 43(1): 363-404. https://doi.org/10.1146/annurev-earth-040809-152345 [24] Leake, B.E., Woolley, A.R., Arps, C.E.S., et al., 1997. Nomenclature of Amphiboles Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. European Journal of Mineralogy, 9(3): 623-651. https://doi.org/10.1127/ejm/9/3/0623 [25] Li, R.B., Pei, X.Z., Pei, L., et al., 2018. The Early Triassic Andean-Type Halagatu Granitoids Pluton in the East Kunlun Orogen, Northern Tibet Plateau: Response to the Northward Subduction of the Paleo-Tethys Ocean. Gondwana Research, 62: 212-226. https://doi.org/10.1016/j.gr.2018.03.005 [26] Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082 [27] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 [28] Ma, C.Q., Xiong, F.H., Yin, S., et al., 2015. Intensity and Cyclicity of Orogenic Magmatism: An Example from a Paleo-Tethyan Granitoid Batholith, Estern Kunlun, Northern Qinghai-Tibetan Plateau. Acta Petrologica Sinica, 31 (12): 3555-3568(in Chinese with English abstract). http://or.nsfc.gov.cn/handle/00001903-5/460848 [29] Mo, X.X., 2011. Magmatism and Evolution of the Tibetan Plateau. Geological Journal of China Universities, 17(3): 351-367 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-journal-china-universities_thesis/0201253565646.html [30] Mo, X.X., Luo, Z.H., Deng, J.F., et al., 2007. Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt. Geological Journal of China Universities, 13(3): 403-414(in Chinese with English abstract). http://adsabs.harvard.edu/abs/2011AGUFM.T51D2370M [31] Pearce, J.A., Norry, M.J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1): 33-47. https://doi.org/10.1007/BF00375192 [32] Peccerillo, A., Taylor, S.R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/BF00384745 [33] Petford, N., Cruden, A.R., McCaffrey, K.J.W., et al., 2000. Granite Magma Formation, Transport and Emplacement in the Earth's Crust. Nature, 408: 669-673. https://doi.org/10.1038/35047000 [34] Qin, Z.W., Ma, C.Q., Fu, J.M., et al., 2018. The Origin of Mafic Enclaves in Xiangjia Granitic Pluton of East Kunlun Orogenic Belt: Evidence from Petrography and Geochemistry. Earth Science, 43(7): 2420-2437(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201807016.htm [35] Roger, F., Arnaud, N., Gilder, S., et al., 2003. Geochronological and Geochemical Constraints on Mesozoic Suturing in East Central Tibet. Tectonics, 22(4): 1037. https://doi.org/10.1029/2002TC001466 doi: 10.1029/2002TC001466 [36] Rudnick, R., Gao, S., 2003. The Role of Lower Crustal Recycling in Continent Formation. Geochimica et Cosmochimica Acta, 67 (Suppl. ): 1-10. http://adsabs.harvard.edu/abs/2003GeCAS..67Q.403R [37] Schiano, P., Monzier, M., Eissen, J.P., et al., 2010. Simple Mixing as the Major Control of the Evolution of Volcanic Suites in the Ecuadorian Andes. Contributions to Mineralogy and Petrology, 160(2): 297-312. https://doi.org/10.1007/s00410-009-0478-2 [38] Schmidt, M.W., 1992. Amphibole Composition in Tonalite as a Function of Pressure: An Experimental Calibration of the Al-in-Hornblende Barometer. Contributions to Mineralogy and Petrology, 110(2-3): 304-310. https://doi.org/10.1007/BF00310745 [39] Spandler, C., Pirard, C., 2013. Element Recycling from Subducting Slabs to Arc Crust: A Review. Lithos, 170-171: 208-223. https://doi.org/10.1016/j.lithos.2013.02.016 [40] Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 doi: 10.1144/GSL.SP.1989.042.01.19 [41] Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford. [42] Wang, X.L., 2017. Some New Research Progresses and Main Scientific Problems of Granitic Rocks. Acta Petrologica Sinica, 33(5): 1445-1458(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201705005.htm [43] Wu, Y.B., Zheng, Y.F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49 (16): 1589-1604(in Chinese). doi: 10.1360/csb2004-49-16-1589 [44] Xia, R., Wang, C.M., Qing, M., et al., 2015. Zircon U-Pb Dating, Geochemistry and Sr-Nd-Pb-Hf-O Isotopes for the Nan'getan Granodiorites and Mafic Microgranular Enclaves in the East Kunlun Orogen: Record of Closure of the Paleo-Tethys. Lithos, 234-235: 47-60. https://doi.org/10.1016/j.lithos.2015.07.018 [45] Xiong, F.H., Ma, C.Q., Chen, B., et al., 2019. Intermediate-Mafic Dikes in the East Kunlun Orogen, Northern Tibetan Plateau: A Window into Paleo-Arc Magma Feeding System. Lithos, 340-341: 152-165. https://doi.org/10.1016/j.lithos.2019.05.012 [46] Xiong, F.H., Ma, C.Q., Zhang, J.Y., et al., 2011a. Zircon LA-ICP-MS U-Pb Dating of Bairiqili Gabbro Pluton in East Kunlun Orogenic Belt and Its Geological Significance. Geological Bulletin of China, 30(8): 1196-1202(in Chinese with English abstract). http://www.researchgate.net/publication/283869233_Zircon_LA-ICP-MS_U-Pb_dating_of_Bairiqili_gabbro_pluton_in_East_Kunlun_orogenic_belt_and_its_geological_significance [47] Xiong, F.H., Ma, C.Q., Zhang, J.Y., et al., 2011b. LA-ICP-MS Zircon U-Pb Dating, Elements and Sr-Nd-Hf Isotope Geochemistry of the Early Mesozoic Mafic Dyke Swarms in East Kunlun Orogenic Belt. Acta Petrologica Sinica, 27 (11): 3350-3364(in Chinese with English abstract). [48] Xiong, F.H., Ma, C.Q., Zhang, J.Y., et al., 2012. The Origin of Mafic Microgranular Enclaves and Their Host Granodiorites from East Kunlun, Northern Qinghai-Tibet Plateau: Implications for Magma Mixing during Subduction of Paleo-Tethyan Lithosphere. Mineralogy and Petrology, 104(3-4): 211-224. https://doi.org/10.1007/s00710-011-0187-1 [49] Xu, W.J., Xu, X.S., Wang, Y.J., et al., 2020. The Effects of Mafic-Felsic Magma Interaction on Magma Diversity: Insights from an Early Paleozoic Hornblendite-Quartz Monzonite Suite in the South China Block. Mineralogy and Petrology, 114(1): 71-90. https://doi.org/10.1007/s00710-019-00692-w [50] Yin, H.F., Zhang, K.X., 1997. Characteristics of the Eastern Kunlun Orogenic Belt. Earth Science, 22 (4): 339-342(in Chinese with English abstract). http://www.researchgate.net/publication/306203698_Characteristics_of_the_eastern_Kunlun_orogenic_belt [51] Zhang, J.Y., Ma, C.Q., Zhang, C., et al., 2014. Fractional Crystallization and Magma Mixing: Evidence from Porphyritic Diorite-Granodiorite Dykes and Mafic Microgranular Enclaves within the Zhoukoudian Pluton, Beijing. Mineralogy and Petrology, 108(6): 777-800. https://doi.org/10.1007/s00710-014-0336-4 [52] Zhao, X., Fu, L.B., Wei, J.H., et al., 2018. Geochemical Characteristics of An'nage Hornblende Gabbro from East Kunlun Orogenic Belt and Its Constraints on Evolution of Paleo-Tethys Ocean. Earth Science, 43(2): 354-370(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201802002.htm [53] 巴金, 陈能松, 王勤燕, 等, 2012. 柴南缘堇青石花岗岩的Nd-Sr-Pb同位素组成及其对岩石成因、源区构造属性和构造演化的启示. 地球科学, 37(增刊1): 80-92. doi: 10.3799/dqkx.2012.S1.008 [54] 陈有炘, 裴先治, 李瑞保, 等, 2011. 东昆仑造山带东段元古界小庙岩组的锆石U-Pb年龄. 现代地质, 25(3): 510-521. doi: 10.3969/j.issn.1000-8527.2011.03.013 [55] 郭安林, 张国伟, 孙延贵, 等, 2007. 青海省共和盆地周缘晚古生代镁铁质火山岩Sr-Nd-Pb同位素地球化学及其地质意义. 岩石学报, 23(4): 747-754. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200704007.htm [56] 胡朝斌, 李猛, 查显锋, 等, 2018. 东昆仑祁漫塔格晚古生代末期幔源岩浆活动成因及地质意义: 以鹰爪沟岩体为例. 地球科学, 43(12): 4334-4349. doi: 10.3799/dqkx.2018.120 [57] 马昌前, 熊富浩, 尹烁, 等, 2015. 造山带岩浆作用的强度和旋回性: 以东昆仑古特提斯花岗岩类岩基为例. 岩石学报, 31(12): 3555-3568. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201512004.htm [58] 莫宣学, 2011. 岩浆作用与青藏高原演化. 高校地质学报, 17(3): 351-367. doi: 10.3969/j.issn.1006-7493.2011.03.001 [59] 莫宣学, 罗照华, 邓晋福, 等, 2007. 东昆仑造山带花岗岩及地壳生长. 高校地质学报, 13(3): 403-414. doi: 10.3969/j.issn.1006-7493.2007.03.010 [60] 秦拯纬, 马昌前, 付建明, 等, 2018. 东昆仑香加花岗质岩体中镁铁质包体成因: 岩相学及地球化学证据. 地球科学, 43(7): 2420-2437. doi: 10.3799/dqkx.2018.549 [61] 王孝磊, 2017. 花岗岩研究的若干新进展与主要科学问题. 岩石学报, 33(5): 1445-1458. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201705005.htm [62] 吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 [63] 熊富浩, 马昌前, 张金阳, 等, 2011a. 东昆仑造山带白日其利辉长岩体LA-ICP-MS锆石U-Pb年龄及地质意义. 地质通报, 30(8): 1196-1202. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201108003.htm [64] 熊富浩, 马昌前, 张金阳, 等, 2011b. 东昆仑造山带早中生代镁铁质岩墙群LA-ICP-MS锆石U-Pb定年、元素和Sr-Nd-Hf同位素地球化学. 岩石学报, 27(11): 3350-3364. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201111016.htm [65] 殷鸿福, 张克信, 1997. 东昆仑造山带的一些特点. 地球科学, 22(4): 339-342. doi: 10.3321/j.issn:1000-2383.1997.04.001 [66] 赵旭, 付乐兵, 魏俊浩, 等, 2018. 东昆仑按纳格角闪辉长岩体地球化学特征及其对古特提斯洋演化的制约. 地球科学, 43(2): 354-370. doi: 10.3799/dqkx.2018.020 -
dqkxzx-46-6-2057-Table1-6.docx