• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    吕梁山——华北克拉通中部中生代基底卷入褶皱系统

    张北航 张进 曲军峰 赵衡 王艳楠 李锦轶 牛鹏飞 赵硕 郑荣国 李岩峰 云龙 张义平 惠洁

    张北航, 张进, 曲军峰, 赵衡, 王艳楠, 李锦轶, 牛鹏飞, 赵硕, 郑荣国, 李岩峰, 云龙, 张义平, 惠洁, 2021. 吕梁山——华北克拉通中部中生代基底卷入褶皱系统. 地球科学, 46(7): 2423-2448. doi: 10.3799/dqkx.2020.235
    引用本文: 张北航, 张进, 曲军峰, 赵衡, 王艳楠, 李锦轶, 牛鹏飞, 赵硕, 郑荣国, 李岩峰, 云龙, 张义平, 惠洁, 2021. 吕梁山——华北克拉通中部中生代基底卷入褶皱系统. 地球科学, 46(7): 2423-2448. doi: 10.3799/dqkx.2020.235
    Zhang Beihang, Zhang Jin, Qu Junfeng, Zhao Heng, Wang Yannan, Li Jinyi, Niu Pengfei, Zhao Shuo, Zheng Rongguo, Li Yanfeng, Yun Long, Zhang Yiping, Hui Jie, 2021. Lüliangshan: A Mesozoic Basement Involved Fold System in the Central North China Craton. Earth Science, 46(7): 2423-2448. doi: 10.3799/dqkx.2020.235
    Citation: Zhang Beihang, Zhang Jin, Qu Junfeng, Zhao Heng, Wang Yannan, Li Jinyi, Niu Pengfei, Zhao Shuo, Zheng Rongguo, Li Yanfeng, Yun Long, Zhang Yiping, Hui Jie, 2021. Lüliangshan: A Mesozoic Basement Involved Fold System in the Central North China Craton. Earth Science, 46(7): 2423-2448. doi: 10.3799/dqkx.2020.235

    吕梁山——华北克拉通中部中生代基底卷入褶皱系统

    doi: 10.3799/dqkx.2020.235
    基金项目: 

    中国地质科学院基本科研业务费 YYMF201604

    详细信息
      作者简介:

      张北航(1990-), 男, 博士, 研究方向为构造变形与区域构造.ORCID: 0000-0002-9739-5664.E-mail: chungbh@yeah.net

      通讯作者:

      张进, ORCID: 0000-0002-4943-2862.E-mail: zhangjinem@sina.com

    • 中图分类号: P54

    Lüliangshan: A Mesozoic Basement Involved Fold System in the Central North China Craton

    • 摘要: 位于华北克拉通中部的吕梁山的形成代表了华北克拉通在晚侏罗世-早白垩世的挤压变形事件,为了更好地理解该期变形的样式、时代、机制和背景,对吕梁山地区开展了详细的野外调查,同时搜集了前人的低温热年代学工作.结果表明,吕梁山是一个中生代期间形成的发育有典型单褶(monocline)构造的陆内基底卷入型大型褶皱系统.早前寒武纪造山作用在基底中形成早期面理(片麻理、片理、劈理以及节理),这些面理在后期近东西向挤压作用下再次活动形成了基底断裂,并导致了上覆沉积地层褶皱变形,吕梁山不同地区褶皱的古应力场方向总体为SE(122°)~NW(302°).吕梁山单褶构造的构造样式、形成机制以及分布,与北美西部的Laramide造山带中的厚皮构造相似,形成的构造环境也类似.吕梁山褶皱及其单褶构造总体形成于晚侏罗世期间古太平洋板块向西低角度俯冲的环境中,该期俯冲也导致了华北克拉通同期陆内挤压变形.

       

    • 图  1  山西地质图(a,修改自马丽芳, 2002)与地貌图及吕梁山单褶分布(b)

      Fig.  1.  Geological map of Shanxi Province (a, modified from Ma, 2002), topography map and the distribution of monocline in the Lüliangshan (b)

      图  2  山西剖面图

      剖面位置见图 1a,图例同图 1a

      Fig.  2.  Cross sections of the Shanxi Province

      图  3  Homocline(a)与monocline(b)

      Kelley et al.(1955)修改

      Fig.  3.  Homocline (a) and monocline (b)

      图  4  大同云冈剖面单褶

      a.观音寺剖面及单褶陡倾地层;b.单褶西翼小断裂.

      Fig.  4.  Monocline developed in Yungang profile in Datong

      图  5  大同云冈剖面中的基底变形

      a.花岗岩基底断层露头;b.花岗岩基底断层面;c.花岗岩基底中的节理及节理再活动形成断层的断层面解;d.花岗岩基底中的断层面及断层面解;断层面解中黑色实线代表断层面,红点代表T轴,蓝点代表P轴,下文相同;赤平投影为下半球投影,蓝点和红点分别代表断层面和节理面极点

      Fig.  5.  Basement deformation of Yungang profile in Datong

      图  6  口泉断裂鹅毛口剖面及可能的演化模型

      a. 鹅毛口露头;b. 鹅毛口剖面;c. 鹅毛口断裂上盘背斜(单褶)发育模式;d. 鹅毛口背斜(单褶)模拟

      Fig.  6.  Kouquan fault in E'maokou profile and the possible evolution model

      图  7  鹅毛口地区口泉断裂不同断层

      a.后期左行走滑断层及褶皱枢纽(赤平投影为下半球投影,红点代表褶皱枢纽);b.后期左行走滑断层切割早期逆冲断层

      Fig.  7.  Different faults of the Kouquan fault in E'maokou profile

      图  8  朔州西侧单褶构造

      Fig.  8.  Monocline developed in western Shuzhou

      图  9  宁武-静乐盆地北东方向恒山隆起北西侧逆冲断层

      a.单褶剖面;b.单褶露头;c.单褶北翼平缓地层

      Fig.  9.  Thrust faults of the north-western Hengshan located at the north-eastern Ningwu-Jingle Basin

      图  10  宁武-静乐构造带北段单褶构造

      剖面根据孙思磊和张兆琪(2019)修改

      Fig.  10.  Monocline developed in the north part of the Ningwu-Jingle tectonic zone

      图  11  东寨单褶基底变形特征分布

      a.东寨单褶剖面素描;b.单褶西翼下方花岗片麻岩基底节理;c.单褶下方花岗片麻岩内的断层;d~e,g.单褶东翼下方花岗片麻岩内密集节理与小断层;f.单褶下部基底花岗片麻岩内不同面状构造赤平投影(下半球投影,蓝点、黑点、红点分别代表面理、节理、断层面极点);h.单褶东翼东部弱变形花岗片麻岩;i.单褶西侧弱变形的粗粒花岗岩;j.单褶东翼寒武系灰岩内小型逆冲断层及其上部张性破裂

      Fig.  11.  Characteristics of the basement deformation of Dongzhai monocline

      图  12  东寨基底卷入褶皱前缘基底变形特征

      a.东寨单褶基底花岗片麻岩内早期片麻理再活动形成的双冲构造素描(赤平投影为下半球投影,大圆为变质成因面理,红点代表其极点);b.双冲构造照片;c基底花岗片麻岩内密集节理和切割节理的断层(平行片麻理);d.基底内切割节理的逆冲断层素描(赤平投影为下半球投影,红点、黑点、黄点分别代表节理、面理、断层面极点)

      Fig.  12.  Characteristics of the basement deformation at the front of the basement-involved fold in Dongzhai

      图  13  芦草沟-新堡剖面

      a.单褶西翼缓倾的寒武系厚层砂岩;b.单褶向东变陡的寒武-奥陶系灰岩;c.单褶东翼陡倾的石炭-二叠系含煤碎屑岩;d.芦草沟-新堡剖面;e.单褶西翼下方前寒武纪滹沱群变质砂岩内的两组节理及赤平投影(赤平投影为下半球投影,大圆为节理面,红点代表节理面极点);f.两组节理中的一组节理再活动形成的逆冲断层;g.单褶东翼近于平缓的三叠纪厚层砂岩

      Fig.  13.  Profile of Lucaogou-Xinpu

      图  14  隰县黄土吕梁山西缘单褶

      a. 黄土吕梁山西缘单褶剖面(赤平投影为下半球投影,大圆为节理面);b.单褶西部近于倒转的寒武-奥陶系灰岩;c.单褶上部近于水平的寒武系厚层砂岩;d.单褶枢纽(下半球投影,大圆为褶皱两翼,红点代表褶皱枢纽);e.单褶下方基底片麻岩中的节理;f.平行节理再活动的逆冲断层及断层面解

      Fig.  14.  Monocline developed in the west margin of the Lüliangshan in Huangtu Town, Xi County

      图  15  靳家川离石断裂及单褶

      a.露头素描;b.逆冲断层及断层面解;c.断层带内的早期双冲构造(赤平投影为下半球投影,大圆为断层面)

      Fig.  15.  Lishi fault and monocline in Jinjiachuan

      图  16  蒲县峡村离石断裂及单褶

      a.离石断裂及单褶剖面露头素描;b.离石断裂素描;c.离石断裂露头及断裂赤平投影(赤平投影为下半球投影,大圆为断层面);d.离石断裂露头次级断裂

      Fig.  16.  Lishi fault and monocline in Xiacun Town, Pu County

      图  17  中阳县弓阳镇基底花岗片麻岩内断层

      a. 弓阳剖面素描;b.褶皱核部基底花岗岩内密集节理(赤平投影为下半球投影,大圆为断层面);c.节理再活动形成的双冲构造;d.双冲构造断层面上的逆冲擦痕

      Fig.  17.  Thrust faults in granitic gneiss in Gongyang Town, Zhongyang County

      图  18  中阳枝柯基底断层

      a. 枝柯基底断层剖面(赤平投影为下半球投影,大圆为断层面和变质面理,红点和黑点分别代表其极点);b. 枝柯基底露头,发育明显的片理;c. 枝柯基底断层露头

      Fig.  18.  Thrust fault in basement in Zhike Town, Zhongyang County

      图  19  吕梁山南端基底卷入型褶皱

      a.固镇剖面素描;b.固镇单褶陡倾寒武系;c.固镇断层面解;d. 固镇北侧单褶下部逆冲断层;e.西磑口剖面素描;f.西磑口断层面解;g.西磑口单褶模型;h.西磑口单褶基底强变形花岗片麻岩(赤平投影为下半球投影,大圆为断层面);i.西磑口单褶陡倾寒武系灰岩

      Fig.  19.  Basement-involved fold in southern margin of the Lüliangshan

      图  20  狐偃山单褶

      Fig.  20.  Huyanshan monocline

      图  21  狐偃山单褶盖层(a,b)与基底(c,d)中的断层及断层面解

      赤平投影为下半球等面积投影,大圆为断层面

      Fig.  21.  Faults in overlying sedimentary cover (a, b) and basement (c, d) of the Huyanshan monocline, and their fault plane solution

      图  22  吕梁山monocline分布与基底构造面关系

      赤平投影为下半球等面积投影;橙色大圆和黑色大圆分别代表面理和节理;a. 古应力场方向;b. 平均古应力场方向玫瑰花图

      Fig.  22.  The relationship between the distribution of the monoclines and the structural plane in basement in the Lüliangshan

      图  23  吕梁山地区低温热年代学数据分布

      Fig.  23.  Location of the low-temperature thermochronological data in the Lüliangshan

      图  24  吕梁山不同段磷灰石裂变径迹年龄与样品海拔高度关系(a~c)以及与径迹平均长度的关系(d)

      不同段的位置见图 23d

      Fig.  24.  Fission track ages-altitude plots (a-c) and fission track ages-mean track length plots (d) of the samples from different parts of the Lüliangshan

      图  25  北美西部Laramide构造(a)与吕梁山厚皮构造的对比(b)

      北美西部构造图修改自Dickinson et al.(1988)

      Fig.  25.  Comparison between the Laramide tectonic belt in western America (a) and the thick-skinned structures in Lüliangshan (b)

      图  26  华北克拉通中部与北美西部Laramide构造带厚皮构造对比

      a. 华北克拉通中部北西-南东向地质-地球物理剖面(地形资料根据SRTM-90 DEM;地壳结构根据唐有彩等,2010);b. 北美西部剖面(据Brown,1988修改);c. 晚侏罗世华北克拉通中部变形构造背景

      Fig.  26.  Comparison of thick-shinned structure between the central North China Craton and the Laramide structures in western North America

    • [1] Bai, Y.B., and Sun, D.S., 1996. Structural Feature and Evolution of Lishi Fractural Zone. Oil & Gas Geology, 17(1): 77-80 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT601.014.htm
      [2] Berg, R.R., 1962. Mountain Flank Thrusting in Rocky Mountain Foreland, Wyoming and Colorado. AAPG Bulletin, 46: 2019-2032. https://doi.org/10.1306/bc743947-16be-11d7-8645000102c1865d
      [3] Bureau of Geology and Mineral Resources of Shanxi Province, 1989. Regional Geology of Shanxi Province. Geological Publishing House, Beijing(in Chinese).
      [4] Bird, P., 1988. Formation of the Rocky Mountains, Western United States: A Continuum Computer Model. Science, 239(4847): 1501-1507. https://doi.org/10.1126/science.239.4847.1501
      [5] Brown, W.G., 1988. Deformational Style of Laramide Uplifts in the Wyoming Foreland. In: Schmidt, C.J., Perry, W.J., eds., Interaction of the Rocky Mountain Foreland and the Cordilleran Thrust Belt. Geological Society of America Memoir 171, 1-25.
      [6] Clinkscales, C., Kapp, P., 2019. Structural Style and Kinematics of the Taihang-Lüliangshan Fold Belt, North China: Implications for the Yanshanian Orogeny. Lithosphere, 11(6): 767-783. https://doi.org/10.1130/l1096.1
      [7] Darby, B. J., Ritts, B. D., 2002. Mesozoic Contractional Deformation in the Middle of the Asian Tectonic Collage: The Intraplate Western Ordos Fold-Thrust Belt, China. Earth and Planetary Science Letters, 205(1/2): 13-24. https://doi.org/10.1016/s0012-821x(02)01026-9
      [8] Davis, G.H., 1978. Monocline Fold Pattern of the Colorado Plateau. In: Laramide Folding Associated With Basement Block Faulting in the Western United States, Matthews, V. Ⅲ. Geological Society of America Memoir 151, 215-234(in Chinese).
      [9] Davis, G. A., Wang, C., Zheng, Y. D., et al., 1998. The Enigmatic Yinshan Fold-and-Thrust Belt of Northern China: New Views on Its Intraplate Contractional Styles. Geology, 26(1): 43. https://doi.org/10.1130/0091-7613(1998)026<0043:teyfat>2.3.co;2 doi: 10.1130/0091-7613(1998)026<0043:teyfat>2.3.co;2
      [10] Daly, R.A., 1916. Homocline and Monocline. GSA Bulletin, 27: 89-92.
      [11] Dennis, J.G., 1967. International Tectonic Dictionary, English Terminology. American Association of Petroleum Geologists Memoir, 7: 1-196. http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1968ESRv....4...73P&db_key=AST&link_type=ABSTRACT
      [12] Dickinson, W. R., Klute, M. A., Hayes, M. J., et al., 1988. Paleogeographic and Paleotectonic Setting of Laramide Sedimentary Basins in the Central Rocky Mountain Region. Geological Society of America Bulletin, 100(7): 1023-1039. https://doi.org/10.1130/0016-7606(1988)100<1023:papsol>2.3.co;2 doi: 10.1130/0016-7606(1988)100<1023:papsol>2.3.co;2
      [13] Dong, S. W., Zhang, Y. Q., Zhang, F. Q., et al., 2015. Late Jurassic-Early Cretaceous Continental Convergence and Intracontinental Orogenesis in East Asia: A Synthesis of the Yanshan Revolution. Journal of Asian Earth Sciences, 114(B11): 750-770. https://doi.org/10.1016/j.jseaes.2015.08.011
      [14] Du, J.F., Li, Y.F., Pang, Z.B., et al., 2011. The Characteristic of the Xiaikou Thrust in the Southern Lüliangshan. Huabei Land and Resources, 42(1): 1-3 (in Chinese).
      [15] English, J. M., Johnston, S. T., 2004. The Laramide Orogeny: What were the Driving Forces? International Geology Review, 46(9): 833-838. https://doi.org/10.2747/0020-6814.46.9.833
      [16] Erslev, E.A., 1991. Trishear Fault-Propagation Folding. Geology, 19(6): 617. https://doi.org/10.1130/0091-7613(1991)019<0617:tfpf>2.3.co;2 doi: 10.1130/0091-7613(1991)019<0617:tfpf>2.3.co;2
      [17] Faure, M., Lin, W., Chen, Y., 2012. Is the Jurassic (Yanshanian) Intraplate Tectonics of North China Due to Westward Indentation of the North China Block? Terra Nova, 24(6): 456-466. https://doi.org/10.1111/ter.12002
      [18] Feng, Q.Q., Qiu, N.S., Chang, J., et al., 2018. Tectonothermal Evolution of Fangshan Pluton: Constraints from (U-Th)/He Ages. Earth Science, 43(6): 1972-1982 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201806015.htm
      [19] Geng, Y.S., Wan, Y.S., Shen, Q.H., et al., 2000. Chronological Framework of the Early Precambrian Import Events in the Lüliang Area, Shanxi Province. Acta Geologica Sinica, 74(3): 216-223 (in Chinese with English abstract). http://www.researchgate.net/publication/279587613_Chronological_framework_of_the_early_Precambrian_important_events_in_the_Luliang_area_Shanxi_Province
      [20] Green, P.F., Duddy, I.R., Gleadow, A.J.W., et al., 1989. Apatite Fission Track Analysis as a Paleotemperature Indicator for Hydrocarbon Exploration. In: Naeser, N.D., McCulloch, T.H., eds., Thermal History of Sedimentary Basins: Methods and Case Histories. Springer, New York, 181-195.
      [21] Hills, E.S., 1953. Outlines of Structural Geology. Wiley, New York, 182.
      [22] Huang, Z.G., and Yang, Z.Y., 2017. Tectonic-Thermal History Reconstruction of Ningwu-Jingle Coal-Bearing Basin. Chinese Journal of Geology, 52(1): 46-57 (in Chinese with English abstract). http://www.researchgate.net/publication/316250849_Tectonic-thermal_history_reconstruction_of_Ningwu-Jingle_coal-bearing_basin
      [23] Huang, Z.G., Zheng, Q.R., Sun, E.H., et al., 2018. Fission Track Evidence of Tectonic Evolution of the Paleoproterozoic Granitic Pluton in the North Central Part of Lüliang. Acta Geologica Sinica, 92(6): 1216-1227 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-geologica-sinica_thesis/0201252700558.html
      [24] Kelley, V.C., 1955. Monoclines of the Colorado Plateau. GSA Bulletin, 66: 789-803. https://doi.org/10.1130/0016-7606(1955)66[789:motcp]2.0.co;2
      [25] Li, C. M., Zhang, C. H., Cope, T. D., et al., 2016. Out-of-Sequence Thrusting in Polycyclic Thrust Belts: An Example from the Mesozoic Yanshan Belt, North China Craton. Tectonics, 35(9): 2082-2116. https://doi.org/10.1002/2016tc004187
      [26] Li, J.X., Liu, C.Y., Yue, L.P., et al., 2015. Apatite Fission Track Evidence for the Cenozoic Uplift of the Lüliang Mountains and A Discussion on the Uplift Mechanism. Geology in China, 42(4): 960-972 (in Chinese with English abstract). http://www.researchgate.net/publication/285219367_Apatite_fission_track_evidence_for_the_Cenozoic_uplift_of_the_Lliang_Mountains_and_a_discussion_on_the_uplift_mechanism
      [27] Li, S.P., Zheng, Z.K., 1986. Analysis of the Emaokou Thrust. Collection of Structural Geology, Vol. 6. Geological Publishing House, Beijing, 52-62 (in Chinese).
      [28] Li, X. M., Song, Y. G., 2010. Late Cretaceous-Cenozoic Exhumation History of the Lüliang Mountains, North China Craton: Constraint from Fission-Track Thermochronology. Acta Geologica Sinica-English Edition, 84(2): 296-305. https://doi.org/10.1111/j.1755-6724.2010.00145.x
      [29] Liu, G.X., 1985. Compressional Tectonic Zones on the Linfen-Weihe Graben Margin and its Geological Significance. In Collection of Structural Geology, Vol. 4. Beijing, Geological Publishing House, 61-70 (in Chinese).
      [30] Liu, W.S., Qin, M.K., Qi, F.C., et al., 2008. Analysis on the Meso-Neozoic Subsidence and Uplift History of the Periphery of Ordos Basin Using Apatite Fission Track. Uranium Geology, 24(4): 221-232 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YKDZ200804005.htm
      [31] Livaccari, R. F., 1991. Role of Crustal Thickening and Extensional Collapse in the Tectonic Evolution of the Sevier-Laramide Orogeny, Western United States. Geology, 19(11): 1104. https://doi.org/10.1130/0091-7613(1991)019<1104:roctae>2.3.co;2 doi: 10.1130/0091-7613(1991)019<1104:roctae>2.3.co;2
      [32] Ma, L.F., 2002. Geological Atlas of China. Geological Publishing House, Beijing (in Chinese).
      [33] Maxson, J., Tikoff, B., 1996. Hit-and-Run Collision Model for the Laramide Orogeny, Western United States. Geology, 24(11): 968. https://doi.org/10.1130/0091-7613(1996)024<0968:harcmf>2.3.co;2 doi: 10.1130/0091-7613(1996)024<0968:harcmf>2.3.co;2
      [34] Mitra, S., and Mount, V.S., 1998. Foreland Basement-Involved Structures. AAPG Bulletin, 82(1): 70-109. http://aapgbull.geoscienceworld.org/content/82/1/70
      [35] Oldow, J. S., Bally, A. W., Avé Lallemant, H. G., 1990. Transpression, Orogenic Float, and Lithospheric Balance. Geology, 18(10): 991. https://doi.org/10.1130/0091-7613(1990)018<0991:tofalb>2.3.co;2 doi: 10.1130/0091-7613(1990)018<0991:tofalb>2.3.co;2
      [36] Powell, J. W., 1873. Some Remarks on the Geological Structure of a District of Country Lying to the North of the Grand Canyon of the Colorado. American Journal of Science, s3-5(30): 456-465. https://doi.org/10.2475/ajs.s3-5.30.456
      [37] Price, R. A., 1981. The Cordilleran Foreland Thrust and Fold Belt in the Southern Canadian Rocky Mountains. Geological Society, London, Special Publications, 9(1): 427-448. https://doi.org/10.1144/gsl.sp.1981.009.01.39
      [38] Ren, Z.L., Xiao, H., Liu, L., 2005. Fission Track Evidence for the Tectonic Thermal History of the Qinshui Basin. Science Bulletin, 51(S1): 87-92 (in Chinese). http://d.wanfangdata.com.cn/Periodical/kxtb-e2005z1016
      [39] Ren, X.M., Zhu, W.B., Zhu, X.Q., et al., 2015. Mesozoic-Cenozoic Uplift-Exhumation History in Luliangshan Area of Shanxi: Evidence from Apatite Fission Track. Journal of Earth Sciences and Environment, 37(4): 63-73 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XAGX201504010.htm
      [40] Richardson, N. J., Densmore, A. L., Seward, D., et al., 2008. Extraordinary Denudation in the Sichuan Basin: Insights from Low-Temperature Thermochronology Adjacent to the Eastern Margin of the Tibetan Plateau. Journal of Geophysical Research, 113(B4): 4409. https://doi.org/10.1029/2006jb004739
      [41] Schmidt, C.J., Genovese, P.W., Chase, R.B., 1993. Role of Basement Fabric and Cover-Rock Lithology on the Geometry and Kinematics of Twelve Folds in the Rocky Mountain Foreland. In: Schmidt, C.J., Chase, R.B., Erslev, E.A., eds., Laramide Basement Deformation in the Rocky Mountain Foreland of the Western United States. Geological Society of America Special Paper 280, New York, 1-44.
      [42] Spang, J.H., and Evans, J.P., 1988. Geometrical and Mechanical Constraints on Basement-Involved Thrusts in the Rocky Mountain Foreland Province. In: Schmidt, C.J., Perry, W.J., eds., Interaction of the Rocky Mountain Foreland and the Cordilleran Thrust Belt. Geological Society of America Memoir 171, New York, 41-51.
      [43] Stone, D.S., 1993. Basement-Involved Thrust-Generated Folds as Seismically Imaged in the Subsurface of the Central Rocky Mountain Foreland. In: Schmidt, C.J., Chase, R.B., Erslev, E.A., eds., Laramide Basement Deformation in the Rocky Mountain Foreland of the Western United States. Geological Society of America Special Paper 280, New York, 271-318.
      [44] Stearns, D.W., 1978. Faulting and Forced Folding in the Rocky Mountain Foreland. In: Laramide Folding Associated with Basement Block Faulting in the Western United States, Matthews, V. Ⅲ, Geological Society of America Memoir 151, New York, 1-38.
      [45] Sun, S.L., Zhang, Z.Q., 2019. Mesozoic Tectonic Characteristics and its Restriction on Mineralization in Northern Lüliang Mountain of Shanxi Province. Geological Survey of China, 6(3): 56-62 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZDC201903007.htm
      [46] Tang, Y.C., Feng, Y.G., Chen, Y.S., et al., 2010. Receiver Function Analysis at Shanxi Rift. Chinese Journal of Geophysics, 53(9): 2102-2109 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX201009011.htm
      [47] Tindall, S. E., Davis, G. H., 1999. Monocline Development by Oblique-Slip Fault-Propagation Folding: The East Kaibab Monocline, Colorado Plateau, Utah. Journal of Structural Geology, 21(10): 1303-1320. https://doi.org/10.1016/s0191-8141(99)00089-9
      [48] Van, H., 1896. Principles of North American Pre-Cambrian Geology. U.S. Geology Survey 16th Annual Report, New York, 1894-1895.
      [49] Wang, C.C., 1925. An Outline of the Geological Structure of Shansi. Bulletin of Geological Society of China. 4: 67-80. http://www.geojournals.cn/dzxbcn/ch/reader/view_abstract.aspx?file_no=19250110
      [50] Wang, T., Zheng, Y. D., Zhang, J. J., et al., 2011. Pattern and Kinematic Polarity of Late Mesozoic Extension in Continental NE Asia: Perspectives from Metamorphic Core Complexes. Tectonics, 30(6): 1-27. https://doi.org/10.1029/2011tc002896
      [51] Wang, Y. N., Zhang, J., Zhang, B. H., et al., 2018. Cenozoic Exhumation History of South China: A Case Study from the Xuefeng Mt. Range. Journal of Asian Earth Sciences, 151(3): 173-189. https://doi.org/10.1016/j.jseaes.2017.10.039
      [52] Wei, C.J., 2018. Paleoproterozoic Metamorphism and Tectonic Evolution in Wutai-Hengshan Region, Trans-North China Orogen. Earth Science, 43(1): 24-43 (in Chinese with English abstract). http://www.researchgate.net/publication/324674652_Paleoproterozoic_Metamorphism_and_Tectonic_Evolution_in_Wutai-Hengshan_Region_Trans-North_China_Orogen
      [53] Wise, D.U., Obi, C.M., 1992. Laramide Basement Deformation in an Evolving Stress field, Bighorn Mountain Front, Five Springs area, Wyoming. AAPG Bulletin, 76: 1586-1600. https://doi.org/10.1306/bdff928a-1718-11d7-8645000102c1865d
      [54] Willsey, S. P., Umhoefer, P. J., Hilley, G. E., 2002. Early Evolution of an Extensional Monocline by a Propagating Normal Fault: 3D Analysis from Combined Field Study and Numerical Modeling. Journal of Structural Geology, 24(4): 651-669. https://doi.org/10.1016/s0191-8141(01)00120-1
      [55] Wu, F. Y., Yang, J. H., Xu, Y. G., et al., 2019. Destruction of the North China Craton in the Mesozoic. Annual Review of Earth and Planetary Sciences, 47(1): 173-195. https://doi.org/10.1146/annurev-earth-053018-060342
      [56] Wu, L., Wang, F., Yang, J. H., et al., 2020. Meso-Cenozoic Uplift of the Taihang Mountains, North China: Evidence from Zircon and Apatite Thermochronology. Geological Magazine, 157(7): 1097-1111. https://doi.org/10.1017/s0016756819001377
      [57] Yeck, W. L., Sheehan, A. F., Anderson, M. L., et al., 2014. Structure of the Bighorn Mountain Region, Wyoming, from Teleseismic Receiver Function Analysis: Implications for the Kinematics of Laramide Shortening. Journal of Geophysical Research: Solid Earth, 119(9): 7028-7042. https://doi.org/10.1002/2013jb010769
      [58] Yin, A., 1994. Mechanics of Monoclinal Systems in the Colorado Plateau during the Laramide Orogeny. Journal of Geophysical Research: Solid Earth, 99(B11): 22043-22058. https://doi.org/10.1029/94jb01408
      [59] Yonkee, W. A., Weil, A. B., 2015. Tectonic Evolution of the Sevier and Laramide Belts within the North American Cordillera Orogenic System. Earth-Science Reviews, 150(L17301): 531-593. https://doi.org/10.1016/j.earscirev.2015.08.001
      [60] Zhang, C.H., Li, C.M., Deng, H.L., et al., 2011. Mesozoic Contraction Deformation in the Yanshan and Northern Taihang Mountains and Its Implications to the Destruction of the North China Craton. Science China: Earth Sciences, 41(5): 593-617 (in Chinese with English abstract). doi: 10.1007/s11430-011-4180-7
      [61] Zhang, C. H., Li, C. M., Deng, H. L., et al., 2011. Mesozoic Contraction Deformation in the Yanshan and Northern Taihang Mountains and Its Implications to the Destruction of the North China Craton. Science China Earth Sciences, 54(6): 798-822. https://doi.org/10.1007/s11430-011-4180-7
      [62] Zhang, J., Li, J. Y., Li, Y. F., et al., 2014. Mesozoic-Cenozoic Multi-Stage Intraplate Deformation Events in the Langshan Region and their Tectonic Implications. Acta Geologica Sinica-English Edition, 88(1): 78-102. https://doi.org/10.1111/1755-6724.12184
      [63] Zhang, J., Qu, J. F., Zhang, B. H., et al., 2020. Mesozoic Intraplate Deformation of the Central North China Craton: Mechanism and Tectonic Setting. Journal of Asian Earth Sciences, 192(7): 104269. https://doi.org/10.1016/j.jseaes.2020.104269
      [64] Zhang, K. J., 2012. Destruction of the North China Craton: Lithosphere Folding-Induced Removal of Lithospheric Mantle?. Journal of Geodynamics, 53(5): 8-17. https://doi.org/10.1016/j.jog.2011.07.005
      [65] Zhang, Y.Q., Dong, S.W., Zhao, Y., et al., 2007. Jurassic Tectonics of North China: A Synthetic View. Acta Geologica Sinica, 81(11): 1462-1480 (in Chinese with English abstract).
      [66] Zhang, Z.Q., Wang, Q., Liu, C.R., 2011. On Uplift-Flexural Fold Structure in Wujiayao of Ningwu in Shanxi. Journal of Geology, 35(4): 349-353 (in Chinese with English abstract).
      [67] Zhao, C.Y., 1990. The Development and Evolution of Meso-Cenozoic Structures in the Shanxi Block. In: Zhao, G.C., Liu, C.Y., Tao, Y., eds., The Development and Evolution of Sedimentary Basins in the Norht China Craton and Their Carbon Occurrence. Xi'an, Northwest University Press, 75-84 (in Chinese).
      [68] Zhao, M.W., Hans, J.B., Hans, A., 1996. Thermal and Tectonic History of the Ordos Basin, China: Evidence from Apatite Fission Track Analysis Vitrinite Reflectance, and K-Ar Dating. AAPG Bulletin, 80: 1110-1134. https://doi.org/10.1306/64ed8caa-1724-11d7-8645000102c1865d
      [69] Zhao, G. C., Wilde, S. A., Cawood, P. A., et al., 1998. Thermal Evolution of Archean Basement Rocks from the Eastern Part of the North China Craton and its Bearing on Tectonic Setting. International Geology Review, 40(8): 706-721. https://doi.org/10.1080/00206819809465233
      [70] Zhao, G.C., Sun, M., Wilde, S.A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 136(2): 177-202. doi: 10.1016/j.precamres.2004.10.002
      [71] Zhao, J.F., Liu, C.Y., Mountney, N., et al., 2015. Timing of Uplift and Evolution of the Lüliang Mountains, North China Craton. Science China: Earth Sciences, 45(10): 1427-1438 (in Chinese). http://qikan.cqvip.com/Qikan/Article/Detail?id=667604037
      [72] Zhu, R.X., Xu, Y.G., Zhu, G., et al., 2012. Destruction of the North China Craton. Science China: Earth Science, 42(8): 1135-1159 (in Chinese with English abstract).
      [73] Zhu, R.X., Zhang, H.F., Zhu, G., et al., 2017. Craton Destruction and Related Resources. International Journal of Earth Sciences, 106(7): 2233-2257. doi: 10.1007/s00531-016-1441-x
      [74] Zorin, Y.A., 1999. Geodynamics of the Western Part of the Mongolia-Okhotsk Collisional Belt, Trans-Baikal Region (Russia) and Mongolia. Tectonophysics, 306(1): 33-56. doi: 10.1016/S0040-1951(99)00042-6
      [75] 白玉宝, 孙冬胜, 1996. 离石断裂带构造特征及演化. 石油与天然气地质, 17(1): 77-80. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT601.014.htm
      [76] 杜晋锋, 李屹峰, 庞志斌, 等, 2011. 吕梁山南端山前西磑口逆冲推覆构造带特征. 华北国土资源, 42(1): 1-3. doi: 10.3969/j.issn.1672-7487.2011.01.001
      [77] 冯乾乾, 邱楠生, 常健, 等, 2018. 房山岩体构造-热演化: 来自(U-Th)/He年龄的约束. 地球科学, 43(6): 1972-1982. doi: 10.3799/dqkx.2018.562
      [78] 耿元生, 万渝生, 沈其韩, 等, 2000. 吕梁地区早前寒武纪主要地质事件的年代框架. 地质学报, 74(3): 216-223. doi: 10.3321/j.issn:0001-5717.2000.03.003
      [79] 黄志刚, 杨振宇, 2017. 宁武-静乐含煤盆地构造-热演化史恢复. 地质科学, 52(1): 46-57.
      [80] 黄志刚, 郑庆荣, 孙二虎, 等, 2018. 吕梁山脉中北段古元古代花岗岩体隆升演化的裂变径迹证据. 地质学报, 92(6): 1216-1227. doi: 10.3969/j.issn.0001-5717.2018.06.008
      [81] 李建星, 刘池洋, 岳乐平, 等, 2015. 吕梁山新生代隆升的裂变径迹证据及其隆升机制探讨. 中国地质, 42(4): 960-972. doi: 10.3969/j.issn.1000-3657.2015.04.013
      [82] 李树屏, 郑仲科, 1986. 鹅毛口推覆构造和逆掩断层剖析. 构造地质论丛(6). 北京: 地质出版社, 52-62.
      [83] 刘光勋, 1985. 汾渭地堑边缘挤压构造带及其地质意义. 构造地质论丛(4). 北京: 地质出版社, 61-70.
      [84] 刘武生, 秦明宽, 漆富成, 等, 2008. 运用磷灰石裂变径迹分析鄂尔多斯盆地周缘中新生代沉降隆升史. 铀矿地质, 24(4): 221-227. doi: 10.3969/j.issn.1000-0658.2008.04.006
      [85] 马丽芳, 2002. 中国地质图集. 北京: 地质出版社.
      [86] 任战利, 肖晖, 刘丽, 2005. 沁水盆地构造-热演化史的裂变径迹证据. 科学通报, 51(S1): 87-92. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2005S1016.htm
      [87] 任星民, 朱文斌, 朱晓青, 等, 2015. 山西吕梁山地区中-新生代隆升剥露过程: 磷灰石裂变径迹证据. 地球科学与环境学报, 37(4): 63-73. doi: 10.3969/j.issn.1672-6561.2015.04.010
      [88] 山西省地质矿产局, 1989. 山西省区域地质志. 北京: 地质出版社.
      [89] 孙思磊, 张兆琪, 2019. 山西吕梁山北段中生代构造特征及对成矿的制约. 中国地质调查, 6(3): 56-62. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC201903007.htm
      [90] 唐有彩, 冯永革, 陈永顺, 等, 2010. 山西断陷带地壳结构的接收函数研究. 地球物理学报, 53(9): 2102-2109. doi: 10.3969/j.issn.0001-5733.2010.09.010
      [91] 魏春景, 2018. 华北中部造山带五台-恒山地区古元古代变质作用与构造演化. 地球科学, 43(1): 24-43. doi: 10.3969/j.issn.1672-6561.2018.01.005
      [92] 赵俊峰, 刘池洋, Mountney, N., 等, 2015. 吕梁山隆升时限与演化过程研究. 中国科学: 地球科学, 45(10): 1427-1438. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201510001.htm
      [93] 赵重远, 1990. 山西地块中新生代构造及其形成和演化. 见: 赵重远, 刘池洋, 姚远, 主编. 华北克拉通沉积盆地形成与演化及其油气赋存. 西安: 西北大学出版社, 75-84.
      [94] 张长厚, 李程明, 邓洪菱, 等, 2011. 燕山-太行山北段中生代收缩变形与华北克拉通破坏. 中国科学: 地球科学, 41(5): 593-617. doi: 10.3969/j.issn.1000-3045.2011.05.016
      [95] 张岳桥, 董树文, 赵越, 等, 2007. 华北侏罗纪大地构造: 综评与新认识. 地质学报, 81(11): 1462-1480. doi: 10.3321/j.issn:0001-5717.2007.11.002
      [96] 张兆琪, 王权, 刘成如, 2011. 山西宁武贾家窑隆起-挠褶构造研究. 地质学刊, 35(4): 349-353. doi: 10.3969/j.issn.1674-3636.2011.04.349
      [97] 朱日祥, 徐义刚, 朱光, 等, 2012. 华北克拉通破坏. 中国科学: 地球科学, 42(8): 1135-1159. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201208002.htm
    • 加载中
    图(26)
    计量
    • 文章访问数:  976
    • HTML全文浏览量:  237
    • PDF下载量:  75
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-08-07
    • 刊出日期:  2021-07-15

    目录

      /

      返回文章
      返回