• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    西藏隆格尔铁矿床成岩成矿时代及对区域多期铁成矿作用的启示:地球化学、锆石U-Pb及金云母Ar-Ar同位素定年约束

    高顺宝 郑有业 田坎 陈鑫 姜晓佳 顾艳荣

    高顺宝, 郑有业, 田坎, 陈鑫, 姜晓佳, 顾艳荣, 2021. 西藏隆格尔铁矿床成岩成矿时代及对区域多期铁成矿作用的启示:地球化学、锆石U-Pb及金云母Ar-Ar同位素定年约束. 地球科学, 46(6): 1941-1959. doi: 10.3799/dqkx.2020.216
    引用本文: 高顺宝, 郑有业, 田坎, 陈鑫, 姜晓佳, 顾艳荣, 2021. 西藏隆格尔铁矿床成岩成矿时代及对区域多期铁成矿作用的启示:地球化学、锆石U-Pb及金云母Ar-Ar同位素定年约束. 地球科学, 46(6): 1941-1959. doi: 10.3799/dqkx.2020.216
    Gao Shunbao, Zheng Youye, Tian Kan, Chen Xin, Jiang Xiaojia, Gu Yanrong, 2021. Geochronology of Magmatic Intrusions and Mineralization of Lunggar Iron Deposit in Tibet and Its Implications for Regional Multi-Stage Iron Mineralization: Geochemistry, Zircon U-Pb and Phlogopite Ar-Ar Isotopic Dating Constraints. Earth Science, 46(6): 1941-1959. doi: 10.3799/dqkx.2020.216
    Citation: Gao Shunbao, Zheng Youye, Tian Kan, Chen Xin, Jiang Xiaojia, Gu Yanrong, 2021. Geochronology of Magmatic Intrusions and Mineralization of Lunggar Iron Deposit in Tibet and Its Implications for Regional Multi-Stage Iron Mineralization: Geochemistry, Zircon U-Pb and Phlogopite Ar-Ar Isotopic Dating Constraints. Earth Science, 46(6): 1941-1959. doi: 10.3799/dqkx.2020.216

    西藏隆格尔铁矿床成岩成矿时代及对区域多期铁成矿作用的启示:地球化学、锆石U-Pb及金云母Ar-Ar同位素定年约束

    doi: 10.3799/dqkx.2020.216
    基金项目: 

    国家地质调查项目 DD20190159-33

    国家重点研发计划项目 2016YFC0600300

    详细信息
      作者简介:

      高顺宝(1980-), 男, 博士, 主要从事青藏高原区域成矿作用及找矿评价研究.ORCID: 0000-0001-5853-3692.E-mail: gaoshunbao2002@163.com

    • 中图分类号: P581

    Geochronology of Magmatic Intrusions and Mineralization of Lunggar Iron Deposit in Tibet and Its Implications for Regional Multi-Stage Iron Mineralization: Geochemistry, Zircon U-Pb and Phlogopite Ar-Ar Isotopic Dating Constraints

    • 摘要: 为了查明冈底斯成矿带隆格尔富铁矿床的成矿时代、形成环境及其对区域铁成矿作用的指示,对该矿床开展了岩石地球化学、锆石U-Pb年代学和Lu-Hf同位素及金云母Ar-Ar定年分析,结果表明:(1)矿区存在早白垩世花岗闪长岩(116.3 Ma)和晚白垩世闪长岩(94.3~93.8 Ma)两个阶段的岩浆活动,主矿体金云母40Ar/39Ar等时线年龄为93.71±2.96 Ma,表明该铁矿形成于晚白垩世;(2)与主矿体成矿相关的闪长岩具较低SiO2含量(52.17%~55.32%),富集LREE及Rb、Ba、Pb等大离子亲石元素,亏损HREE和Nb、Ta、Ti等高场强元素,属于高钾钙碱性和准铝质岩石系列,锆石εHf(t)介于1.4~3.6,Mg#指数极高(0.59~0.64),暗示成矿岩体有较多的幔源物质加入,具有壳幔混合特征;(3)结合冈底斯带其他铁矿床时代,可以将冈底斯铁成矿作用划分为~115 Ma、~94 Ma和50~65 Ma三期,隆格尔铁矿床属于冈底斯带新一期(晚白垩世)富铁成矿作用;(4)对比冈底斯成矿带多阶段矽卡岩型铁成矿作用发现,隆格尔铁矿成矿岩体与其他时期铁矿具有明显的地球化学差异,幔源物质较多的中基性岩浆相对于酸性岩浆可能更容易形成富铁矿床.

       

    • 图  1  西藏冈底斯带主要铁矿床分布图

      铁矿床名称:(1)查加寺;(2)哥布弄巴;(3)隆格尔;(4)洛布勒;(5)尼雄;(6)恰功;(7)加多捕勒;(8)列廷冈;(9)勒青拉;(10)加拉普;(11)娘热;(12)夺底沟;底图据Zheng et al.(2014)

      Fig.  1.  Distribution of major Fe deposits in the Gangdese belt, Tibet

      图  2  隆格尔矿床地质简图

      据西藏自治区仲巴县隆格尔铁矿普查报告(2008,内部报告)

      Fig.  2.  Geological map of Lunggar deposit

      图  3  隆格尔矿床典型岩矿石特征照片

      a.黑云母二长花岗岩及闪长质包体;b.花岗闪长岩;c.闪长岩;d.花岗闪长岩显微镜下照片(单偏光);e和f.闪长岩显微镜下照片(正交);g.含磁铁矿透辉石矽卡岩;h.含磁铁矿石榴子石矽卡岩;i.含磁铁矿金云母方解石矽卡岩;j.自形磁铁矿与石英脉;k.磁铁矿体与大理岩呈截然接触关系;l.致密块状高品位磁铁矿矿石(TFe > 60%);m.脉石矿物充填于磁铁矿裂隙中;n.他形磁铁矿填充在脉石矿物之中;o.半自形-自形粒状磁铁矿;ηγ.黑云母二长花岗岩;γδ.花岗闪长岩;δ.闪长岩或闪长质包体;mb.大理岩;Hb.角闪石;Bi.黑云母;Pl.斜长石;Di.透辉石;Gr.石榴子石;Phl.金云母;Q.石英;Cal.方解石;Mt.磁铁矿

      Fig.  3.  Typical characteristics of intrusive rocks and ores in Lunggar deposit

      图  4  (a) (K2O+Na2O)-SiO2图解、(b) Al2O3/(Na2O+K2O)-Al2O3/(CaO+Na2O+K2O)图解和(c) SiO2-K2O图解

      a据Middlemost(1994);b据Maniar and Piccoli(1989);c据Roberts and Clemens(1993).~115 Ma铁成矿岩体(尼雄、洛布勒)数据张晓倩等(2010)于玉帅等(2011a)高顺宝(2015);~65~50 Ma铁成矿岩体(加多捕勒、恰功、加拉普、列廷冈)数据于玉帅等(2011b)李应栩等(2011)付强等(2013)杨毅等(2014)Gao et al.(2019)

      Fig.  4.  (K2O+Na2O) vs. SiO2 (a), Al2O3/(Na2O+K2O) vs. Al2O3/(CaO+Na2O+K2O) (b), SiO2 vs. K2O (c)

      图  5  隆格尔矿床侵入岩稀土配分模式图(a)和微量元素蛛网图(b)

      球粒陨石和原始地幔数据引自Sun and McDonough(1989).~115 Ma铁成矿岩体(尼雄、洛布勒)数据张晓倩等(2010)于玉帅等(2011a, 2019),高顺宝(2015);~65~50 Ma铁成矿岩体(加多捕勒、恰功、加拉普、列廷冈)数据于玉帅等(2011b)李应栩等(2011)付强等(2013)杨毅等(2014)Gao et al.(2019)

      Fig.  5.  Chondrite-normalized REE pattern(a) and primitive mantle-normalized spidergram (b) for the intrusions in Lunggar deposit

      图  6  隆格尔矿床侵入岩锆石阴极发光图像

      Fig.  6.  CL images of zircons of the intrusions in Lunggar deposit

      图  7  隆格尔矿床侵入岩锆石U-Pb年龄

      Fig.  7.  U-Pb concordancy diagrams of the intrusions in Lunggar deposit

      图  8  隆格尔矿床金云母40Ar/39Ar坪年龄(a)和等时线年龄(b)

      Fig.  8.  40Ar/39Ar plateau age (a) and isochron age (b) of phlogopite from Lunggar deposit

      图  9  冈底斯带主要铁矿床形成时代分布(数据引自表 5)

      Fig.  9.  Formation time of the major Fe deposits of the Gangdese belt (data quoted from Table 5)

      图  10  (a) SiO2-Mg#图解;(b)Cr-Ni图解;(c)t-εHf(t)图解;(d)t-地幔贡献率图解

      中拉萨地体相关数据据Zhu et al.(2011)Hou et al.(2015);古拉萨结晶基底据Zhu et al.(2011). ~115 Ma铁成矿岩体(尼雄、洛布勒)数据张晓倩等(2010)于玉帅等(2011a)高顺宝(2015).~65~50 Ma铁成矿岩体(加多捕勒、恰功、加拉普、列廷冈)数据李应栩等(2011)于玉帅等(2011b)付强等(2013)杨毅等(2014)Gao et al.(2019)

      Fig.  10.  SiO2 vs. Mg# (a); Cr vs. Ni (b); t vs. εHf(t) (c); t vs. mantle contribution (d)

      表  1  隆格尔矿床侵入岩主量元素(10-2)和微量元素(10-6)分析结果

      Table  1.   Major elements (10-2) and trace elements (10-6) of intrusive rocks in Lunggar deposit

      样号 LGR-YT1 LGRYT2 LGR-YT3 ~115 Ma铁成矿岩体平均值 65~50 Ma铁成矿岩体平均值
      花岗闪长岩 闪长岩
      SiO2 67.47 55.32 52.17 68.85 68.42
      TiO2 0.61 0.98 0.98 0.45 0.53
      Al2O3 15.50 14.60 15.38 14.61 14.72
      Fe2O3 0.34 2.17 1.87 3.19 1.57
      FeO 1.52 6.05 6.50 1.81 1.71
      MnO 0.06 0.17 0.19 0.07 0.07
      MgO 1.69 6.41 8.13 1.21 1.20
      CaO 4.00 8.28 8.85 3.30 2.68
      Na2O 2.77 2.09 2.34 3.46 3.21
      K2O 4.57 1.81 1.69 3.24 4.46
      P2O5 0.14 0.22 0.26 0.12 0.13
      H2O+ 0.89 1.53 1.27 1.24 0.83
      CO2 0.17 0.10 0.10 0.11 0.08
      LOI 0.96 1.01 0.67 0.93 1.46
      TOTAL 100.69 100.73 100.40 101.31 100.76
      σ 2.20 1.24 1.77 1.74 2.53
      A/NCK 0.92 0.71 0.71 0.96 1.00
      Mg# 0.62 0.59 0.64 0.35 0.36
      TFeO 1.83 7.98 8.17 4.05 3.11
      DI 89.53 60.59 56.26 76.52 88.24
      La 30.62 29.60 29.41 33.17 35.53
      Ce 71.92 54.78 57.24 59.89 73.79
      Pr 11.12 6.31 7.66 6.27 8.28
      Nd 51.53 23.31 31.50 22.78 30.96
      Sm 13.30 4.52 6.66 4.24 5.75
      Eu 2.35 1.19 1.76 1.04 1.03
      Gd 12.41 4.33 5.68 4.25 5.58
      Tb 2.05 0.74 0.85 0.72 0.85
      Dy 10.67 4.19 4.44 4.32 4.72
      Ho 2.06 0.85 0.85 0.88 0.94
      Er 5.61 2.55 2.41 2.66 2.66
      Tm 0.84 0.42 0.38 0.42 0.42
      Yb 5.08 2.75 2.44 2.85 2.72
      Lu 0.70 0.41 0.36 0.46 0.40
      ∑REE 220.26 135.96 151.64 143.96 173.63
      δEu 0.55 0.81 0.85 0.75 0.57
      Rb 153.33 89.91 78.43 131.75 146.77
      Ba 658.7 334.1 462.8 586.75 492.07
      Th 10.84 7.67 9.15 16.22 21.80
      U 1.74 1.05 1.19 1.75 3.48
      Nb 9.26 6.38 12.49 8.50 12.99
      Ta 0.63 0.46 1.22 0.77 1.16
      Sr 235.9 321.4 425.1 258.00 391.56
      Hf 10.4 4.5 7.7 3.39 8.42
      Zr 180.1 68.8 133.8 165.25 184.11
      Y 54.43 24.38 23.09 27.34 26.50
      K 37 974 15 048 14 017 26 873 37 011
      Ti 3 662 5 844 5 848 2 677 3 190
      Cu 4.34 53.31 13.41 3.44 13.50
      Mo 0.22 0.27 0.63 0.48 0.68
      Pb 46.98 87.81 98.48 50.80 45.22
      Zn 46.98 87.81 98.48 50.80 45.22
      Cr 7.27 367.60 393.50 7.80 12.03
      Co 4.50 30.55 34.56 7.18 8.92
      Ni 3.93 66.99 131.23 3.63 6.01
      注:σ=(K2O+Na2O)2/(SiO2-43);A/NCK=Al2O3/(CaO+Na2O+K2O);δEu=Eun/(Smn+Gdn)1/2;Mg#=Mg2+/(Mg2++Fe2+(Total)).
      下载: 导出CSV

      表  2  隆格尔矿床侵入岩LA-ICP-MS锆石U-Pb定年分析结果

      Table  2.   U-Pb LA-ICP-MS analyses of the zircon from intrusive rocks in Lunggar deposit

      测点 Th U Th/U 207Pb/235U 206Pb/238U 207Pb/235U 206Pb/238U
      Ratio Ratio Ma Ma
      LGR-YT1, 花岗闪长岩
      LGR-YT1-1 384 389 0.99 0.122 6 0.006 8 0.018 4 0.000 3 117.4 6.2 117.6 1.6
      LGR-YT1-5 178 236 0.75 0.121 7 0.010 3 0.018 2 0.000 3 116.6 9.3 116.2 1.7
      LGR-YT1-6 210 297 0.71 0.121 8 0.009 9 0.017 9 0.000 4 116.7 9.0 114.1 2.2
      LGR-YT1-7 369 345 1.07 0.121 6 0.009 4 0.018 3 0.000 3 116.5 8.5 116.6 1.8
      LGR-YT1-8 440 361 1.22 0.120 6 0.007 9 0.018 2 0.000 3 115.6 7.2 116.1 1.7
      LGR-YT1-9 259 302 0.86 0.142 7 0.021 7 0.018 3 0.000 3 135.5 19.3 116.7 2.2
      LGR-YT1-10 823 615 1.34 0.121 7 0.005 0 0.018 2 0.000 2 116.6 4.6 116.4 1.4
      LGR-YT1-11 281 289 0.98 0.124 0 0.013 8 0.018 4 0.000 5 118.7 12.5 117.6 3.1
      LGR-YT1-12 217 237 0.92 0.121 3 0.011 4 0.018 2 0.000 3 116.3 10.3 116.3 2.0
      LGR-YT1-14 217 242 0.90 0.121 6 0.009 2 0.018 2 0.000 3 116.5 8.3 116.5 1.9
      LGR-YT1-15 324 297 1.09 0.121 5 0.011 7 0.018 0 0.000 3 116.4 10.6 115.2 1.6
      LGR-YT1-17 301 310 0.97 0.121 5 0.009 2 0.018 2 0.000 2 116.5 8.3 116.3 1.6
      LGR-YT1-18 169 217 0.78 0.121 9 0.010 0 0.018 2 0.000 3 116.8 9.0 116.3 2.1
      LGR-YT1-19 573 592 0.97 0.119 6 0.007 1 0.017 9 0.000 3 114.7 6.4 114.6 1.6
      LGR-YT1-20 212 254 0.84 0.120 0 0.010 4 0.018 2 0.000 3 115.0 9.4 116.2 1.9
      LGR-YT1-21 188 215 0.87 0.126 2 0.033 8 0.018 4 0.000 4 120.6 30.5 117.5 2.8
      LGR-YT1-22 410 375 1.09 0.121 5 0.008 2 0.018 2 0.000 3 116.4 7.4 116.5 1.8
      LGR-YT1-23 203 225 0.90 0.120 8 0.010 1 0.018 1 0.000 3 115.8 9.1 115.7 1.9
      LGR-YT1-24 157 207 0.76 0.122 7 0.011 0 0.018 2 0.000 3 117.5 9.9 116.2 2.0
      LGR-YT1-25 140 193 0.72 0.119 3 0.013 0 0.018 1 0.000 4 114.4 11.8 115.9 2.3
      LGR-YT2, 闪长岩
      LGR-YT2-1 524 504 1.04 0.097 8 0.007 3 0.014 7 0.000 2 94.8 6.8 94.4 1.5
      LGR-YT2-2 292 325 0.90 0.097 3 0.006 9 0.014 8 0.000 2 94.3 6.4 94.4 1.4
      LGR-YT2-3 475 493 0.96 0.096 3 0.010 4 0.014 5 0.000 4 93.3 9.6 93.1 2.4
      LGR-YT2-4 407 405 1.01 0.097 7 0.005 8 0.014 8 0.000 2 94.7 5.3 94.7 1.5
      LGR-YT2-5 452 435 1.04 0.098 1 0.006 0 0.014 7 0.000 2 95.0 5.5 94.1 1.3
      LGR-YT2-6 289 374 0.77 0.097 9 0.007 6 0.014 8 0.000 2 94.8 7.0 94.6 1.5
      LGR-YT2-7 898 543 1.65 0.097 3 0.005 3 0.014 8 0.000 2 94.3 4.9 94.5 1.2
      LGR-YT2-8 681 756 0.90 0.097 5 0.005 0 0.014 7 0.000 2 94.5 4.7 94.3 1.1
      LGR-YT2-10 811 486 1.67 0.098 6 0.006 1 0.014 8 0.000 2 95.5 5.6 94.4 1.3
      LGR-YT2-11 593 696 0.85 0.097 7 0.005 3 0.014 7 0.000 2 94.6 4.9 94.3 1.2
      LGR-YT2-12 1016 857 1.19 0.097 5 0.004 0 0.014 7 0.000 2 94.5 3.7 94.4 1.1
      LGR-YT2-13 545 574 0.95 0.100 1 0.008 4 0.014 6 0.000 2 96.9 7.8 93.6 1.4
      LGR-YT2-14 902 550 1.64 0.097 5 0.005 0 0.014 8 0.000 2 94.4 4.6 94.4 1.1
      LGR-YT2-15 694 444 1.56 0.097 6 0.007 5 0.014 8 0.000 2 94.6 6.9 94.5 1.4
      LGR-YT2-16 1 835 827 2.22 0.097 5 0.004 4 0.014 8 0.000 2 94.5 4.1 94.5 1.1
      LGR-YT2-19 548 481 1.14 0.097 4 0.006 3 0.014 8 0.000 2 94.4 5.9 94.6 1.4
      LGR-YT2-20 683 473 1.45 0.096 7 0.005 9 0.014 7 0.000 2 93.7 5.5 93.8 1.1
      LGR-YT2-21 525 584 0.90 0.097 8 0.005 3 0.014 8 0.000 2 94.8 4.9 94.5 1.1
      LGR-YT2-22 1 444 2 681 0.54 0.097 5 0.003 3 0.014 7 0.000 1 94.5 3.1 94.3 0.9
      LGR-YT2-23 766 813 0.94 0.097 8 0.004 6 0.014 8 0.000 2 94.7 4.2 94.7 1.2
      LGR-YT2-24 1 183 1 655 0.72 0.097 2 0.003 2 0.014 7 0.000 2 94.2 3.0 94.4 1.1
      LGR-YT3, 闪长岩
      LGR-YT3-1 417 259 1.61 0.097 9 0.004 2 0.014 8 0.000 3 94.8 3.9 95.0 2.1
      LGR-YT3-3 520 321 1.62 0.100 5 0.007 5 0.014 7 0.000 2 97.2 6.9 93.9 1.4
      LGR-YT3-4 679 405 1.68 0.095 2 0.004 2 0.014 6 0.000 2 92.3 3.9 93.4 1.5
      LGR-YT3-5 564 444 1.27 0.099 4 0.004 4 0.014 8 0.000 3 96.2 4.0 94.8 1.9
      LGR-YT3-6 1 041 829 1.26 0.097 9 0.003 5 0.014 7 0.000 2 94.9 3.3 94.2 1.3
      LGR-YT3-7 415 298 1.39 0.098 6 0.003 9 0.014 7 0.000 3 95.5 3.6 94.2 1.7
      LGR-YT3-9 522 370 1.41 0.093 7 0.004 5 0.014 1 0.000 2 91.0 4.2 90.5 1.4
      LGR-YT3-10 1 385 647 2.14 0.093 5 0.003 2 0.014 7 0.000 2 90.8 3.0 94.2 1.5
      LGR-YT3-12 445 274 1.63 0.096 8 0.005 0 0.014 6 0.000 3 93.8 4.6 93.2 1.7
      LGR-YT3-13 700 412 1.70 0.101 7 0.004 5 0.014 8 0.000 2 98.4 4.1 95.0 1.6
      LGR-YT3-14 509 345 1.48 0.094 9 0.004 1 0.014 5 0.000 2 92.1 3.8 92.6 1.4
      LGR-YT3-15 452 297 1.52 0.096 2 0.004 9 0.014 7 0.000 2 93.2 4.5 93.8 1.4
      LGR-YT3-16 962 577 1.67 0.090 9 0.003 1 0.014 7 0.000 2 88.4 2.9 94.0 1.3
      LGR-YT3-17 373 252 1.48 0.100 9 0.005 9 0.015 1 0.000 3 97.6 5.5 96.7 2.1
      LGR-YT3-18 814 475 1.71 0.100 8 0.004 2 0.014 8 0.000 3 97.5 3.9 94.8 1.8
      LGR-YT3-19 1 173 602 1.95 0.098 9 0.004 5 0.014 4 0.000 2 95.8 4.2 92.3 1.3
      LGR-YT3-20 459 283 1.62 0.104 5 0.005 3 0.014 8 0.000 3 100.9 4.9 95.0 1.8
      LGR-YT3-21 585 366 1.60 0.095 2 0.004 4 0.014 6 0.000 3 92.3 4.1 93.2 1.9
      LGR-YT3-22 461 342 1.35 0.098 2 0.004 5 0.014 9 0.000 3 95.1 4.1 95.4 2.0
      LGR-YT3-23 676 378 1.79 0.089 2 0.004 7 0.014 9 0.000 3 86.8 4.4 95.5 1.7
      LGR-YT3-24 442 254 1.74 0.106 6 0.005 8 0.015 1 0.000 4 102.9 5.3 96.7 2.2
      LGR-YT3-25 589 465 1.27 0.098 0 0.004 4 0.014 4 0.000 3 94.9 4.1 92.0 1.9
      LGR-YT3-26 358 280 1.28 0.098 6 0.005 4 0.014 9 0.000 4 95.5 5.0 95.2 2.3
      LGR-YT3-27 358 258 1.39 0.098 4 0.004 9 0.014 3 0.000 3 95.3 4.5 91.4 2.1
      LGR-YT3-28 525 409 1.28 0.096 9 0.004 2 0.014 5 0.000 3 93.9 3.9 92.6 1.7
      LGR-YT3-29 394 401 0.98 0.097 7 0.004 2 0.014 7 0.000 3 94.7 3.9 93.8 1.9
      LGR-YT3-31 478 397 1.20 0.096 4 0.004 5 0.014 8 0.000 3 93.4 4.1 94.8 1.7
      下载: 导出CSV

      表  3  隆格尔矿床侵入岩Hf同位素测试结果

      Table  3.   Hf isotope results of intrusive rocks in Lunggar deposit

      测点号 t(Ma) 176Lu/177Hf 176Yb/177Hf 176Hf/177Hf εHf(0) εHf(t) tDM
      (Ma)
      tDMC
      (Ma)
      fLu/Hf
      LGR-YT1, 花岗闪长岩
      1 117.6 0.002 013 0.045 529 0.282 750 0.000 009 -0.8 1.6 732 1 068 -0.94
      2 114.1 0.001 805 0.044 129 0.282 719 0.000 011 -1.9 0.5 772 1 138 -0.95
      3 116.6 0.001 741 0.042 268 0.282 723 0.000 011 -1.7 0.7 765 1 128 -0.95
      4 116.4 0.001 359 0.030 877 0.282 738 0.000 011 -1.2 1.2 735 1 092 -0.96
      5 117.6 0.001 485 0.034 895 0.282 713 0.000 014 -2.1 0.4 774 1 148 -0.96
      6 116.3 0.001 072 0.027 998 0.282 722 0.000 011 -1.8 0.7 753 1 128 -0.97
      7 116.5 0.000 996 0.023 151 0.282 711 0.000 011 -2.2 0.3 766 1 150 -0.97
      8 115.2 0.001 493 0.035 584 0.282 749 0.000 010 -0.8 1.6 722 1 068 -0.96
      9 126.7 0.001 618 0.038 550 0.282 742 0.000 011 -1.1 1.6 735 1 078 -0.95
      10 116.3 0.001 516 0.035 213 0.282 717 0.000 011 -1.9 0.5 768 1 140 -0.95
      11 116.3 0.001 184 0.028 919 0.282 681 0.000 010 -3.2 -0.8 813 1 220 -0.96
      12 114.6 0.000 947 0.022 856 0.282 724 0.000 009 -1.7 0.8 747 1 122 -0.97
      13 116.2 0.001 153 0.026 934 0.282 708 0.000 012 -2.3 0.2 774 1 160 -0.97
      14 116.5 0.001 897 0.044 158 0.282 739 0.000 011 -1.2 1.2 745 1 093 -0.94
      15 115.7 0.001 456 0.034 804 0.282 716 0.000 011 -2.0 0.4 769 1 142 -0.96
      16 116.2 0.000 934 0.212 702 0.282 745 0.000 014 -1.0 1.5 718 1 075 -0.97
      17 115.9 0.001 374 0.033 068 0.282 680 0.000 012 -3.2 -0.8 818 1 222 -0.96
      LGR-YT2, 闪长岩
      1 94.4 0.001 065 0.024 814 0.282 765 0.000 014 -0.3 1.8 691 1 043 -0.97
      2 94.7 0.001 808 0.046 548 0.282 787 0.000 009 0.5 2.5 674 997 -0.95
      3 94.1 0.001 052 0.024 469 0.282 771 0.000 008 -0.0 2.0 682 1 029 -0.97
      4 94.5 0.001 919 0.051 127 0.282 785 0.000 009 0.5 2.4 678 1 001 -0.94
      5 94.3 0.001 068 0.025 712 0.282 760 0.000 010 -0.4 1.6 698 1 054 -0.97
      6 99.1 0.000 845 0.021 332 0.282 790 0.000 010 0.6 2.7 653 984 -0.97
      7 94.3 0.000 815 0.018 782 0.282 781 0.000 008 0.3 2.3 665 1 007 -0.98
      8 94.4 0.001 101 0.027 640 0.282 782 0.000 010 0.3 2.3 668 1 005 -0.97
      9 94.4 0.001 557 0.040 275 0.282 785 0.000 010 0.4 2.4 673 1 001 -0.95
      10 94.5 0.000 765 0.018 513 0.282 793 0.000 013 0.7 2.8 647 979 -0.98
      11 94.5 0.002 458 0.063 302 0.282 786 0.000 010 0.5 2.4 687 1 001 -0.93
      12 107 0.000 774 0.018 516 0.282 808 0.000 009 1.3 3.6 626 937 -0.98
      13 94.6 0.001 285 0.031 264 0.282 755 0.000 011 -0.6 1.4 709 1 066 -0.96
      14 93.8 0.001 081 0.025 561 0.282 798 0.000 008 0.9 2.9 646 970 -0.97
      15 94.5 0.001 156 0.029 935 0.282 790 0.000 010 0.6 2.6 657 987 -0.97
      16 94.3 0.001 323 0.032 217 0.282 789 0.000 009 0.6 2.6 663 991 -0.96
      17 94.7 0.000 842 0.019 491 0.282 795 0.000 010 0.8 2.8 645 975 -0.97
      注:εHf(t)=10 000×{[(176Hf/177Hf)S-(176Lu/177Hf)S×(eλt-1)]/[(176Hf/177Hf)CHUR, 0-(176Lu/177Hf)CHUR×(eλt-1)]-1}. tDM=1/λ×ln{1+[(176Hf/177Hf)S-(176Hf/177Hf)DM]/[(176Lu/177Hf)S-(176Lu/177Hf)DM]}.tDMC=tDM-(tDM-t)×[(fcc-fLu/Hf)/(fcc-fDM)].fLu/Hf(176Lu/177Hf)S/(176Lu/177Hf)CHUR-1.其中,λ=1.867×10-11 a-1(söderlund et al., 2004); (176Lu/177Hf)S和(176Hf/177Hf)S为样品测定值; (176Lu/177Hf)CHUR=0.033 2,(176Hf/177Hf)CHUR, 0=0.282 772 (Blichert-Toft and Albarède,1997); (176Lu/177Hf)DM=0.038 4,(176Hf/177Hf)DM=0.283 25(Griffin et al., 2000); (176Lu/177Hf)mean crust=0.015;fcc=[(176Lu/177Hf)mean crust/(176Lu/177Hf)CHUR]-1;fDM=[(176Lu/177Hf)DM/(176Lu/177Hf)CHUR]-1;t为锆石结晶时间.
      下载: 导出CSV

      表  4  隆格尔矿床金云母40Ar/39Ar分析结果

      Table  4.   40Ar/39Ar dating analytical results of the phlogopite from Lunggar deposit

      加热 36Ar(air) 37Ar(Ca) 38Ar(Cl) 39Ar(k) 40Ar(r) 年龄(Ma) ±2σ
      (Ma)
      40Ar(r)
      (%)
      39Ar(k)
      (%)
      K/Ca ±2σ
      激光分级加热J = 0.014 653 52 ± 0.000 073 27
      3.5% 16.936 52 109.564 85 1.192 501 8 11 431.797 3 357.802 7.77 ± 0.19 39.78 26.46 40.4 ± 0.8
      4.0% 11.763 75 78.111 40 0.698 180 2 8 699.483 11 584.580 34.95 ± 0.22 76.63 20.13 43.1 ± 1.1
      4.6% 11.749 74 57.765 79 0.575 945 4 6 825.008 12 868.444 49.28 ± 0.29 78.50 15.80 45.7 ± 1.4
      5.2% 9.725 54 35.163 14 0.327 648 4 4 095.457 8 487.223 54.10 ± 0.38 74.45 9.48 45.1 ± 2.1
      5.8% 9.195 56 25.156 04 0.250 340 1 3 384.985 9 425.300 72.32 ± 0.45 77.39 7.83 52.1 ± 2.4
      6.3% 6.630 20 15.657 42 0.172 732 5 2 330.636 6 613.159 73.67 ± 0.47 76.91 5.39 57.6 ± 3.5
      7.0% 8.943 81 12.847 56 0.142 083 5 2 048.308 6 818.304 86.12 ± 0.65 71.82 4.74 61.7 ± 3.9
      8.0% 11.627 56 8.618 53 0.113 799 5 1 718.415 6 286.448 94.43 ± 0.93 64.40 3.98 77.2 ± 9.4
      9.0% 8.486 03 5.962 75 0.085 071 3 1 040.074 3 813.411 94.64 ± 1.13 60.06 2.41 67.5 ± 14.4
      10.0% 5.036 62 4.705 48 0.073 941 6 517.877 1 897.500 94.57 ± 1.38 55.77 1.20 42.6 ± 8.2
      12.0% 3.391 94 3.223 56 0.064 627 2 341.200 1 251.758 94.69 ± 1.36 55.26 0.79 41.0 ± 15.1
      14.0% 2.472 48 2.608 48 0.077 035 9 222.441 819.414 95.07 ± 1.68 52.59 0.51 33.0 ± 12.4
      17.0% 1.635 20 5.141 59 0.018 629 1 157.901 581.147 94.99 ± 1.96 54.33 0.37 11.9 ± 3.6
      20.0% 1.450 74 2.014 61 0.000 000 0 128.310 474.092 95.35 ± 3.28 52.24 0.30 24.6 ± 15.5
      25.0% 1.618 99 1.662 25 0.049 537 8 151.819 560.841 95.33 ± 2.12 53.69 0.35 35.3 ± 22.1
      30.0% 1.121 08 0.701 43 0.019 130 6 112.679 407.913 93.47 ± 1.64 54.91 0.26 62.2 ± 147.2
      注:εHf(t)=10 000×{[(176Hf/177Hf)S-(176Lu/177Hf)S×(eλt-1)]/[(176Hf/177Hf)CHUR, 0-(176Lu/177Hf)CHUR×(eλt-1)]-1}. tDM=1/λ×ln{1+[(176Hf/177Hf)S-(176Hf/177Hf)DM]/[(176Lu/177Hf)S-(176Lu/177Hf)DM]}.tDMC=tDM-(tDM-t)×[(fcc-fLu/Hf)/(fcc-fDM)].fLu/Hf(176Lu/177Hf)S/(176Lu/177Hf)CHUR-1.其中,λ=1.867×10-11 a-1(Söderlund et al., 2004); (176Lu/177Hf)S和(176Hf/177Hf)S为样品测定值; (176Lu/177Hf)CHUR=0.033 2,(176Hf/177Hf)CHUR, 0=0.282 772 (Blichert-Toft and Albarède,1997); (176Lu/177Hf)DM=0.038 4,(176Hf/177Hf)DM=0.283 25(Griffin et al., 2000); (176Lu/177Hf)mean crust=0.015;fcc=[(176Lu/177Hf)mean crust/(176Lu/177Hf)CHUR]-1;fDM=[(176Lu/177Hf)DM/(176Lu/177Hf)CHUR]-1;t为锆石结晶时间.
      下载: 导出CSV

      表  5  冈底斯带主要铁床成岩成矿时代

      Table  5.   Geochronology of magmatic intrusions and mineralization from major Fe deposits in Gangdese belt

      矿床 矿床类型 测试对象 测试方法 年龄值(Ma) 资料来源
      哥布弄巴 矽卡岩型铁多金属矿 中细粒二长花岗岩 锆石La-ICP-MS 加权平均59.72±0.55 Gao et al., 2019
      含铁矿石的矽卡岩 白云母Ar-Ar 坪年龄59.22±0.61 Gao et al., 2019
      恰功 矽卡岩型铁多金属矿 石英斑岩 锆石La-ICP-MS 加权平均66.83±0.72 李应栩, 2011
      二长花岗斑岩 锆石La-ICP-MS 加权平均67.42±0.80 李应栩, 2011
      加多捕勒 矽卡岩型铁多金属矿 中粗粒花岗岩 锆石La-ICP-MS 加权平均50.9±1.8 于玉帅, 2011a
      加拉普 矽卡岩型铁多金属矿 花岗闪长岩 锆石La-ICP-MS 加权平均63.4±0.5 付强等,2013
      列廷冈 矽卡岩型铁多金属矿 花岗斑岩 锆石La-ICP-MS 加权平均60.69±0.98 杨毅等,2015
      花岗闪长岩 锆石La-ICP-MS 加权平均58.69±0.68 杨毅等,2015
      矿石 辉钼矿Re-Os 等时线年龄62.28±0.66 杨毅等,2014
      隆格尔 矽卡岩型铁矿 黑云母二长花岗岩 锆石La-ICP-MS 加权平均116.3±0.8 本文
      花岗闪长岩 锆石La-ICP-MS 加权平均94.4±0.9 本文
      闪长岩 锆石La-ICP-MS 加权平均93.8±0.6 本文
      含铁矿石的矽卡岩 金云母Ar-Ar 坪年龄94.59±1.04 本文
      尼雄 矽卡岩型铁矿 黑云母二长花岗岩 锆石La-ICP-MS 加权平均115.8±1.8 高顺宝,2015
      锆石La-ICP-MS 加权平均112.6±1.6 于玉帅, 2011a
      花岗闪长岩 锆石La-ICP-MS 加权平均113.6±1.2 于玉帅, 2011b
      洛布勒 矽卡岩型铁矿 花岗闪长岩 锆石La-ICP-MS 加权平均111.3±1.6 于玉帅等,2019
      下载: 导出CSV
    • [1] Amelin, Y., Lee, D.C., Halliday, A.N., et al., 1999. Nature of the Earth's Earliest Crust from Hafnium Isotopes in Single Detrital Zircons. Nature, 399: 252-255. https://doi.org/10.1038/20426
      [2] Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses That do not Report 204Pb. Chemical Geology, 192(1-2): 59-79. https://doi.org/10.1016/s0009-2541(02)00195-x doi: 10.1016/S0009-2541(02)00195-X
      [3] Blichert-Toft, J., Albarède, F., 1997. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth and Planetary Science Letters, 148(1-2): 243-258. https://doi.org/10.1016/S0012-821x(97)00040-x doi: 10.1016/S0012-821X(97)00040-X
      [4] Chu, N.C., Taylor, R.N., Chavagnac, V., et al., 2002. Hf Isotope Ratio Analysis Using Multi-Collector Inductively Coupled Plasma Mass Spectrometry: An Evaluation of Isobaric Interference Corrections. Journal of Analytical Atomic Spectrometry, 17(12): 1567-1574. https://doi.org/10.1039/b206707b
      [5] Crofu, F., Hanchar, J.M., Hoskin, P.W.O., et al., 2003. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 53(1): 469-500. https://doi.org/10.2113/0530469
      [6] Fei, F., Yang, Z.S., Liu, Y.C., et al., 2015. Petrogenetic Epoch of the Rock Mass in the Lunggar Iron Deposit of Coqen County, Tibet. Acta Petrologica et Mineralogica, 34(4): 568-580(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201504010.htm
      [7] Fu, Q., Yang, Z.S., Zheng, Y.C., et al., 2013. Zircon U-Pb Ages, Hf Isotope and Geochemistry of Granodiorite in Jialapu Fe Deposit, Tibet. Mineral Deposits, 32(3): 564-578(in Chinese with English abstract). http://www.researchgate.net/publication/288011690_Zircon_U-Pb_ages_Hf_isotope_and_geochemistry_of_granodiorite_in_Jialapu_Fe_deposit_Tibet
      [8] Gao, S.B., 2015. Copper-Iron Polymetal Metallogenic Regularity and Election of Target Areas in the Western of Gangdise Metallogenic Belt, Tibet (Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract).
      [9] Gao, S.B., Zheng, Y.Y., Jiang, J.S., et al., 2019. Geochemistry and Geochronology of the Gebunongba Iron Polymetallic Deposit in the Gangdese Belt, Tibet. Journal of Earth Science, 30(2): 296-308. https://doi.org/10.1007/s12583-018-0984-0
      [10] Griffin, W.L., Pearson, N.J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147. https://doi.org/10.1016/s0016-7037(99)00343-9 doi: 10.1016/S0016-7037(99)00343-9
      [11] Hou, Z.Q., Duan, L.F., Lu, Y.J., et al., 2015. Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6): 1541-1575. https://doi.org/10.2113/econgeo.110.6.1541
      [12] Koppers, A.A.P., 2002. Ar-Ar CALC-Software for 40Ar/39Ar Age Calculations. Computers & Geosciences, 28(5): 605-619. https://doi.org/10.1016/s0098-3004(01)00095-4 http://www.sciencedirect.com/science/article/pii/s0098300401000954
      [13] Li, Y.X., Xie, Y.L., Chen, W., et al., 2011. U-Pb Age and Geochemical Characteristics of Zircon in Monzogranite Porphyry from Qiagong Deposit, Tibet, and Geological Implication. Acta Petrologica Sinica, 27(7): 2023-2033(in Chinese with English abstract). http://www.oalib.com/paper/1476881
      [14] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      [15] Liu, Y.S., Hu, Z.C., Zong, K.Q., et al., 2010. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546. https://doi.org/10.1007/s11434-010-3052-4
      [16] Ma, W., Liu, Y.C., Yang, Z.S., et al., 2019. Characteristics of Ore-Forming Fluids of Lietinggang-Leqingla Pb-Zn-Fe-Cu-Mo Polymetallic Deposit in Tibetan: Evidence from Fluid Inclusions and Stable Isotope Compositions. Earth Science, 44(6): 1957-1973(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201906015.htm
      [17] Maniar, P.D., Piccoli, P.M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
      [18] Middlemost, E.A.K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      [19] Mišković, A., Schaltegger, U., 2009. Crustal Growth along a Non-Collisional Cratonic Margin: A Lu-Hf Isotopic Survey of the Eastern Cordilleran Granitoids of Peru. Earth and Planetary Science Letters, 279(3-4): 303-315. https://doi.org/10.1016/j.epsl.2009.01.002
      [20] Qiu, H.N., 2006. Construction and Development of New Ar-Ar Laboratories in China: Insight from GV-5400 Ar-Ar Laboratory in Guangzhou Insitute of Geochemistry, Chinese Academy of Sciences. Geochimica, 35(2): 133-140(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200602003.htm
      [21] Rapp, R.P., 1997. Heterogneous Source Regions for Archean Granitoids. In: de Wit, M.J., Ashwal, L.D., eds., Greenstone Belts. Oxford University Press, Oxford.
      [22] Roberts, M.P., Clemens, J.D., 1993. Origin of High-Potassium, Calc-Alkaline, I-Type Granitoids. Geology, 21(9): 825-828. doi: 10.1130/0091-7613(1993)021<0825:OOHPTA>2.3.CO;2
      [23] Rudnick, R.L., Gao, S., 2003. Composition of the Continental Crust. In: Rudnick, R.L., ed., The Crust Treaties on Geochemistry. Elsevier Pergamon, Oxford, 3: l-64. https: //doi.org/10.1016/s0074-6142(09)60137-6
      [24] Söderlund, U., Patchett, P.J., Vervoort, J.D., et al., 2004. The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions. Earth and Planetary Science Letters, 219(3-4): 311-324. https://doi.org/10.1016/s0012-821x(04)00012-3 doi: 10.1016/S0012-821X(04)00012-3
      [25] Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 doi: 10.1144/GSL.SP.1989.042.01.19
      [26] Vervoort, J.D., Blichert-Toft, J., 1999. Evolution of the Depleted Mantle: Hf Isotope Evidence from Juvenile Rocks through Time. Geochimica et Cosmochimica Acta, 63(3-4): 533-556. https://doi.org/10.1016/s0016-7037(98)00274-9 doi: 10.1016/S0016-7037(98)00274-9
      [27] Wu, F.Y., Ge, W.C., Sun, D.Y., 2002. The Idea, Identified Signs and Geological Significance of Adakite. In: Xiao, Q.H., Deng, J.F., Ma, D.Q., et al., eds., The Ways of Investigation on Granitoids. Geological Publishing House, Beijing, 178-180(in Chinese).
      [28] Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220(in Chinese with English abstract). http://www.oalib.com/paper/1492671
      [29] Wu, Y.B., Zheng, Y.F., 2004. Genetic Mineralogy of Zircon and Its Constrains on the Interpretation of U-Pb Ages. Science Bulletin, 49(16): 1589-1604(in Chinese). doi: 10.1007/BF03184122
      [30] Yang, Y., Duo, J., De, X., et al., 2015. Zircon U-Pb Dating and Hf Isotopic Composition of Intrusions in the Lietinggang Iron Polymetallic Deposit in Tibet and Their Geological Significance. Acta Petrologica et Mineralogica, 34(3): 281-294(in Chinese with English abstract).
      [31] Yang, Y., Duo, J., Liu, H.F., et al., 2014. Re-Os Dating of Molybdenite in Lietinggang Iron Polymetallic Deposit and Its Geological Significance. Geology in China, 41 (5): 1554-1564(in Chinese with English abstract). http://www.researchgate.net/publication/286345512_Re-Os_dating_of_molybdenite_from_the_Lietinggang_iron_polymetallic_deposit_of_Tibet_and_its_geological_significance
      [32] Yu, Y.S., Gao, Y., Yang, Z.S., et al., 2011a. LA-ICP-MS U-Pb Age and Geochemical Characteristics of Zircon in the Intrusive Rocks of Gunjiu Iron Ore in Cuoqinnixiong Deposit, Tibet. Acta Petrologica Sinica, 27(7): 1949-1960(in Chinese with English abstract).
      [33] Yu, Y.S., Yang, Z.S., Duo, J., et al., 2011b. Age and Genesis of Jiaduobule Iron-Copper Metallogenic Rock Mass in Tibet: Evidence of Zircon U-Pb Age, Hf Isotope and REE. Mineral Deposits, 30(3): 420-434(in Chinese with English abstract).
      [34] Yu, Y.S., Zhou, Y., Bao, B., et al., 2019. Geochronolgy Petrogenesis and Its Tectonic Setting Significance of Intrusive Rocks from Coqen to Lunggar Iron Deposit, Lhasa Subterrane, Tibet, China. Earth Science, 44(6): 1888-1904(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201906011.htm
      [35] Zhang, X.Q., Zhu, D.C., Zhao, Z.D., et al., 2011. Petrogenesis of the Nixiong Pluton in Coqen, Tibet and Its Potential Significance for the Nixiong Fe-Rich Mineralization. Acta Petrologica Sinica, 26(6): 1793-1804(in Chinese with English abstract).
      [36] Zhang, Y.H., Wang, Y.S., Wang, W.S., et al., 2019. Zircon U-Pb-Hf Isotopes and Mineral Chemistry of Early Cretaceous Granodiorite in the Lunggar Iron Deposit in Central Lhasa, Tibet China. Journal of Central South University, 26(12): 3457-3469. https://doi.org/10.1007/s11771-019-4266-5
      [37] Zhao, Y.M., 2013. Main Genetic Types and Geological Characteristics of Iron-Rich Ore Deposits in China. Mineral Deposits, 32(4): 686-705(in Chinese with English abstract). http://www.researchgate.net/publication/284603272_Main_genetic_types_and_geological_characteristics_of_ironrich_ore_deposits_in_China
      [38] Zheng, Y.Y., Sun, X., Gao, S.B., et al., 2014. Multiple Mineralization Events at the Jiru Porphyry Copper Deposit, Southern Tibet: Implications for Eocene and Miocene Magma Sources and Resource Potential. Journal of Asian Earth Sciences, 79: 842-857. https://doi.org/10.1016/j.jseaes.2013.03.029
      [39] Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2011. The Lhasa Terrane: Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1-2): 241-255. https://doi.org/10.1016/j.epsl.2010.11.005
      [40] Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2012. Origin and Paleozoic Tectonic Evolution of the Lhasa Terrane. Geological Journal of China Universities, 18(1): 1-15(in Chinese with English abstract). http://www.researchgate.net/publication/260835521_Origin_and_Paleozoic_Tectonic_Evolution_of_the_Lhasa_Terrane
      [41] 费凡, 杨竹森, 刘英超, 等, 2015. 西藏措勤隆格尔铁矿岩体成岩时代及其地质意义. 岩石矿物学杂志, 34(4): 568-580. doi: 10.3969/j.issn.1000-6524.2015.04.010
      [42] 付强, 杨竹森, 郑远川, 等, 2013. 加拉普铁矿区花岗闪长岩锆石U-Pb年龄、Hf同位素及地球化学研究. 矿床地质, 32(3): 564-578. doi: 10.3969/j.issn.0258-7106.2013.03.008
      [43] 高顺宝, 2015. 西藏冈底斯西段铜铁多金属成矿作用与找矿方向(博士学位论文). 武汉: 中国地质大学.
      [44] 李应栩, 谢玉玲, 陈伟, 等, 2011. 西藏恰功铁矿二长花岗斑岩锆石的U-Pb年代学与地球化学特征及意义. 岩石学报, 27(7): 2023-2033. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201107012.htm
      [45] 马旺, 刘英超, 杨竹森, 等, 2019. 西藏列廷冈-勒青拉铅锌铁铜钼矿床成矿流体特征: 来自流体包裹体及碳氢氧同位素的证据. 地球科学, 4(6): 1957-1973. doi: 10.3799/dqkx.2019.041
      [46] 邱华宁, 2006. 新一代Ar-Ar实验室建设与发展趋势: 以中国科学院广州地球化学研究所Ar-Ar实验室为例. 地球化学, 35(2): 133-140. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200602003.htm
      [47] 吴福元, 葛文春, 孙德有, 2002. 埃达克岩的概念、识别标志及其地质意义, 见: 肖庆辉, 邓晋福, 马大铨, 等编, 花岗岩的研究思维与方法. 北京: 地质出版社, 178-180.
      [48] 吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm
      [49] 吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
      [50] 于玉帅, 高原, 杨竹森, 等, 2011a. 西藏措勤尼雄矿田滚纠铁矿侵入岩LA-ICP-MS锆石U-Pb年龄与地球化学特征. 岩石学报, 27(7): 1949-1960. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201107005.htm
      [51] 于玉帅, 杨竹森, 多吉, 等, 2011b. 西藏加多捕勒铁铜矿成矿岩体时代与成因: 锆石U-Pb年龄、Hf同位素与稀土元素证据. 矿床地质, 30(3): 420-434. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201103005.htm
      [52] 于玉帅, 周云, 鲍波, 等, 2019. 拉萨地块措勤-隆格尔地区铁矿床成岩时代、岩石成因及构造环境指示. 地球科学, 44(6): 1888-1904. doi: 10.3799/dqkx.2019.037
      [53] 杨毅, 多吉, 德西央宗, 等, 2015. 西藏列廷冈铁多金属矿侵入岩锆石U-Pb定年、Hf同位素组成及其地质意义. 岩石矿物学杂志, 34(3): 281-294. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201503002.htm
      [54] 杨毅, 多吉, 刘鸿飞, 等. 2014. 西藏列廷冈铁多金属矿床辉钼矿Re-Os定年及其地质意义. 中国地质, 41(5): 1554-1564. doi: 10.3969/j.issn.1000-3657.2014.05.012
      [55] 张晓倩, 朱弟成, 赵志丹, 等, 2010. 西藏措勤尼雄岩体的岩石成因及其对富Fe成矿作用的潜在意义. 岩石学报, 26(6): 1793-1804. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201006014.htm
      [56] 赵一鸣, 2013. 中国主要富铁矿床类型及地质特征. 矿床地质, 32(4): 686-705. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201304006.htm
      [57] 朱弟成, 赵志丹, 牛耀龄, 等, 2012. 拉萨地体的起源和古生代构造演化. 高校地质学报, 18(1): 1-15. doi: 10.3969/j.issn.1006-7493.2012.01.001
    • 加载中
    图(10) / 表(5)
    计量
    • 文章访问数:  830
    • HTML全文浏览量:  254
    • PDF下载量:  66
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-06-10
    • 刊出日期:  2021-06-15

    目录

      /

      返回文章
      返回