• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    东天山早中生代侵入体地球化学特征及其构造意义

    高志武 吕昶良 邓明国 管申进 杨富强

    高志武, 吕昶良, 邓明国, 管申进, 杨富强, 2021. 东天山早中生代侵入体地球化学特征及其构造意义. 地球科学, 46(7): 2287-2298. doi: 10.3799/dqkx.2020.212
    引用本文: 高志武, 吕昶良, 邓明国, 管申进, 杨富强, 2021. 东天山早中生代侵入体地球化学特征及其构造意义. 地球科学, 46(7): 2287-2298. doi: 10.3799/dqkx.2020.212
    Gao Zhiwu, Lü Changliang, Deng Mingguo, Guan Shenjin, Yang Fuqiang, 2021. Geochemical Features and Tectonic Setting of the Mesozoic Intrusions in Eastern Tianshan. Earth Science, 46(7): 2287-2298. doi: 10.3799/dqkx.2020.212
    Citation: Gao Zhiwu, Lü Changliang, Deng Mingguo, Guan Shenjin, Yang Fuqiang, 2021. Geochemical Features and Tectonic Setting of the Mesozoic Intrusions in Eastern Tianshan. Earth Science, 46(7): 2287-2298. doi: 10.3799/dqkx.2020.212

    东天山早中生代侵入体地球化学特征及其构造意义

    doi: 10.3799/dqkx.2020.212
    基金项目: 

    国家自然科学基金项目 41363001

    国家自然科学基金项目 41762009

    遵义师范学院博士基金项目 遵师BS[2019]44号

    详细信息
      作者简介:

      高志武(1972-), 男, 博士, 主要从事矿床勘查、矿山数字化等方面研究.ORCID: 0000-0002-4884-7273.E-mail: zhiiwugao@163.com

      通讯作者:

      管申进, ORCID: 0000-0001-5522-9919.E-mail: guanssj@163.com

    • 中图分类号: P581

    Geochemical Features and Tectonic Setting of the Mesozoic Intrusions in Eastern Tianshan

    • 摘要: 东天山百灵山西辉长岩、似斑状花岗岩近年来才被发现,为了解其成因及相关大地构造背景,对其进行地质学、地球化学、锆石U-Pb定年及Sr-Nd同位素分析.LA-ICP-MS锆石U-Pb测年结果显示,百灵山西辉长岩、似斑状花岗岩分别形成于236 Ma和228 Ma.辉长岩具有较低的SiO2(43.50%~46.03%)含量,较高的CaO(11.40%~13.24%)、Fe2O3T(9.62%~11.84%)和MgO(6.02%~10.58%;Mg#=53~69)含量以及Ce/Pb、Ti/Zr、Ti/Y及Ba/Th比值,且富集LREE、LILE,表明其形成于受板片脱水流体交代地幔楔的部分熔融.似斑状花岗岩表现出I型花岗岩的特征,且具有较高的SiO2(71.14%~72.71%),强富集LREE[(La/Yb)N=12.61~28.45]和LILE(例如Rb,K和Pb),表明其形成于下地壳的部分熔融.而较高的Mg#(39~41)值、Ti/Y(154.40~306.18)比值,显示其源区有地幔物质的加入.结合前人研究成果,可知东天山地区在240 Ma以后已经进入陆内演化阶段,百灵山西辉长岩及似斑状花岗岩均形成于陆内环境.

       

    • 图  1  (a)东天山地质特征及重要矿床分布;(b)百灵山西地区地质简图

      a. 据王京彬等(2006)Deng et al.(2017)修改;b. 据新疆地质调查院1:5万地质图

      Fig.  1.  (a) Simplified tectonic map of the eastern Tianshan belt; (b) geologic map of the Bailingshanxi area

      图  2  (a)百灵山西辉长岩手标本及(b)镜下照片; (c)百灵山西似斑状花岗岩手标本及(d)镜下照片

      Ol. 橄榄石;Pl. 斜长石;Px. 辉石;Qtz. 石英;Kfs. 钾长石;Bt. 黑云母

      Fig.  2.  Photographs (a, c) and photomicrographs (b, d) of the Bailingshanxi gabbro (a, b) and porphyritic granite (c, d)

      图  3  (a)百灵山西辉长岩锆石CL图像;(b)百灵山西似斑状花岗岩锆石CL图像;(c,d)百灵山西辉长岩及(e,f)似斑状花岗岩U-Pb年龄谐和图及加权平均年龄

      Fig.  3.  The CL images of zircon grains from the Bailingshanxi gabbro (a) and porphyritic granite (b); U-Pb concordia and weighted average diagrams of the zircons from (c, d) Bailingshanxi gabbro and (e, f) porphyritic granite

      图  4  (N2O+K2O)-SiO2图解

      Fig.  4.  (N2O+K2O) vs. SiO2 diagram

      图  5  (a)K2O vs. SiO2图解;(b)A/NK vs. A/CNK图解

      Fig.  5.  (a) K2O vs. SiO2 diagram and (b) A/NK vs. A/CNK diagram for the Bailingshanxi intrusions

      图  6  百灵山西辉长岩、似斑状花岗岩球粒陨石标准化REE模式图和原始地幔标准化微量元素蛛网图

      Fig.  6.  Chondrite-normalized REE and primitive-mantle-normalized trace element diagrams for the Bailingshanxi gabbro and porphyritic granite

      图  7  百灵山西辉长岩、似斑状花岗岩ISr-εNd(t)图解

      DM. 亏损地幔;MORB. 洋中脊玄武岩;OIB. 大洋岛弧玄武岩;UC. 上地壳;OIB、MORB区域来自于Wang et al., (2018a)

      Fig.  7.  ISr-εNd(t) diagrams for the Bailingshanxi

      图  8  (a)百灵山西辉长岩及似斑状花岗岩的Zr/Nb-Zr及(b)百灵山西辉长岩的Hf-3×Ta-Rb/30图解

      IAB. 岛弧玄武岩;WPA. 板内拉斑玄武岩;WPT. 碱性板内玄武岩;N-MORB. 正常型洋中脊玄武岩;E-MORB. 富集型洋中脊玄武岩;OIB. 大洋岛弧玄武岩

      Fig.  8.  (a) Zr/Nb vs. Zr diagram for Bailingshanxi gabbro and porphyritic granite and (b) Hf-3×Ta-Rb/30 diagram for Bailingshanxi gabbro

      图  9  白山似斑状花岗岩Zr-10 000×Ga/Al及10 000×Ga/Al-(Zr+Nb+Ce+Y)相关图解

      FG. 分异的I、S型花岗岩;OGT. 未分异I、S型花岗岩;Zr与Zr+Nb+Ce+Y数量级为10-6

      Fig.  9.  Zr vs. 10 000×Ga/Al and 10 000×Ga/(Al-Zr+Nb+Ce+Y) diagrams for Baishan porphyritic granite

      图  10  百灵山西辉长岩Ba-Nb/Y相关图解

      Fig.  10.  Ba vs. Nb/Y diagram for Bailingshanxi gabbro

    • [1] Allen, M. B., Windley, B. F., Zhang, C., 1993. Palaeozoic Collisional Tectonics and Magmatism of the Chinese Tien Shan, Central Asia. Tectonophysics, 220(1/2/3/4): 89-115. https://doi.org/10.1016/0040-1951(93)90225-9
      [2] Atherton, M. P., Petford, N., 1993. Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust. Nature, 362(6416): 144-146. https://doi.org/10.1038/362144a0
      [3] Belousova, E., Griffin, W., O'Reilly, S. Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602-622. https://doi.org/10.1007/s00410-002-0364-7
      [4] Chen, S.B., Huang, B.Q., Li, C., et al., 2018. Alteration and Mineralization Ages of the Yuhai Cu Deposit in Eastern Tianshan, Xinjiang and the Application of Short Wavelength Infra-Red (SWIR) in Exploration. Earth Science, 43(9): 2911-2928 (in Chinese with English abstract). http://www.researchgate.net/publication/329031144_Alteration_and_Mineralization_of_the_Yuhai_Cu_Deposit_in_Eastern_Tianshan_Xinjiang_and_Applications_of_Short_Wavelength_Infra-Red_SWIR_in_Exploration
      [5] Chen, X.J., Shu, L.S., 2010. Features of the Post-Collisional Tectono-Magmatism and Geochronological Evidence in the Karlik Mt., Xinjiang. Acta Petrologica Sinica, 26 (10): 3057-3064 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201010017.htm
      [6] Chen, Y. J., Pirajno, F., Wu, G., et al., 2012. Epithermal Deposits in North Xinjiang, NW China. International Journal of Earth Sciences, 101(4): 889-917. https://doi.org/10.1007/s00531-011-0689-4
      [7] Deng, X. H., Chen, Y. J., Santosh, M., et al., 2017. U-Pb Zircon, Re-Os Molybdenite Geochronology and Rb-Sr Geochemistry from the Xiaobaishitou W (-Mo) Deposit: Implications for Triassic Tectonic Setting in Eastern Tianshan, NW China. Ore Geology Reviews, 80(3): 332-351. https://doi.org/10.1016/j.oregeorev.2016.05.013
      [8] Guo, K.Y., Zhang, C.L., Zhao, Y., et al., 2003. Ar-Ar Dating of Lamproite along South Margin of the Tarim Platform and Its Geologic Significance. Chinese Journal of Geology, 38(4): 532-534 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX200304013.htm
      [9] Gao, X., Li, J.C., Yuan, G.L., et al., 2019. Middle-Late Triassic Magmatic Records for the Accretionary Processes of South Qiangtang Acretionary Terrane: The Mafic Dykes in Mayigangri-Jiaomuri Area, North Tibet. Acta Petrologica Sinica, 35(3): 760-774 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.03.09
      [10] Han, C. M., Xiao, W. J., Zhao, G. C., et al., 2010. In-Situ U-Pb, Hf and Re-Os Isotopic Analyses of the Xiangshan Ni-Cu-Co Deposit in Eastern Tianshan (Xinjiang), Central Asia Orogenic Belt: Constraints on the Timing and Genesis of the Mineralization. Lithos, 120(3/4): 547-562. https://doi.org/10.1016/j.lithos.2010.09.019
      [11] Hofmann, A. W., 1997. Mantle Geochemistry: The Message from Oceanic Volcanism. Nature, 385(6613): 219-229. https://doi.org/10.1038/385219a0
      [12] Huang, B.Q., Chen, S.B., Li, C., et al., 2018. Geochemical Features and Geological Significance of Yuhaixi Plutons in Eastern Tianshan, Xinjiang. Earth Science, 43(9): 37-59 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201809003.htm
      [13] Huang, X. W., Qi, L., Gao, J. F., et al., 2013. First Reliable Re-Os Ages of Pyrite and Stable Isotope Compositions of Fe(-Cu) Deposits in the Hami Region, Eastern Tianshan Orogenic Belt, NW China. Resource Geology, 63(2): 166-187. https://doi.org/10.1111/rge.12003
      [14] Lassiter, J.C., DePaolo, D.J., 1997. Plumes/Lithosphere Interaction in the Generation of Continental and Oceanic Flood Basalts: Chemical and Isotope Constraints. American Geophysical Union, 100: 335-355. https://doi.org/10.1029/GM100p0335.
      [15] Li, S., Wang, T., Wilde, S. A., et al., 2012. Geochronology, Petrogenesis and Tectonic Implications of Triassic Granitoids from Beishan, NW China. Lithos, 134-135: 123-145. https://doi.org/10.1016/j.lithos.2011.12.005
      [16] Li, S., Wilde, S. A., Wang, T., 2018. Early Permian Post-Collisional High-K Granitoids from Liuyuan Area in Southern Beishan Orogen, NW China: Petrogenesis and Tectonic Implications. Lithos, 179(Parts 1-2): 99-119. https://doi.org/10.1016/j.lithos.2013.08.002
      [17] Liu, B., Wang, X.Q., 2016. SIMS U-Pb Dating and Hf Isotope of Zircons from the Deep Granite Porphyry in Baishan Mo Deposit, Eastern Tianshan, Northwest China, and Their Geological Significance. Earth Science Frontiers, 23: 291-300 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201605034.htm
      [18] McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3/4): 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
      [19] Plank, T., Langmuir, C. H., 1998. The Chemical Composition of Subducting Sediment and Its Consequences for the Crust and Mantle. Chemical Geology, 145(3/4): 325-394. https://doi.org/10.1016/s0009-2541(97)00150-2
      [20] Qin, K. Z., Su, B. X., Sakyi, P. A., et al., 2011. SIMS Zircon U-Pb Geochronology and Sr-Nd Isotopes of Ni-Cu-Bearing Mafic-Ultramafic Intrusions in Eastern Tianshan and Beishan in Correlation with Flood Basalts in Tarim Basin (NW China): Constraints on a Ca. 280 Ma Mantle Plume. American Journal of Science, 311(3): 237-260. https://doi.org/10.2475/03.2011.03
      [21] Qiao, G.B., Zhang, H.D., Wu, Y.Z., et al., 2015. Petrogenesis of the Dahongliutan Monzogranite in Western Kunlun: Constraints from SHRIMP zircon U-Pb Geochronology and Geochemical Characteristics. Acta Geologica Sinica, 89(7): 1180-1194 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZXE201507003.htm
      [22] Richards, J. P., Kerrich, R., 2007. Special Paper: Adakite-Like Rocks: Their Diverse Origins and Questionable Role in Metallogenesis. Economic Geology, 102(4): 537-576. https://doi.org/10.2113/gsecongeo.102.4.537
      [23] Tu, Q.J., Wang, Y.S., Dong, L.H., 2014. Re-Os Dating of Molybdenite from the Baishan Molybdenum Deposit in the Eastern Tianshan Area of Xinjiang and Its Geological Significance. Xinjiang Geology, 32: 322-327 (in Chinese with English abstract).
      [24] Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, United States, 1-328.
      [25] Wang, J.B., Wang, Y.W., He, Z.J., 2006. Ore Deposits as a Guide to the Tectonic Evolution in the East Tianshan Mountains, NW China. Chinese Geology, 33: 461-469 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200603002
      [26] Wang, Y. F., Chen, H. Y., Han, J. S., et al., 2018a. Paleozoic Tectonic Evolution of the Dananhu-Tousuquan Island Arc Belt, Eastern Tianshan: Constraints from the Magmatism of the Yuhai Porphyry Cu Deposit, Xinjiang, NW China. Journal of Asian Earth Sciences, 153(1): 282-306. https://doi.org/10.1016/j.jseaes.2017.05.022
      [27] Wang, Y. F., Chen, H. Y., Xiao, B., et al., 2018b. Overprinting Mineralization in the Paleozoic Yandong Porphyry Copper Deposit, Eastern Tianshan, NW China: Evidence from Geology, Fluid Inclusions and Geochronology. Ore Geology Reviews, 100(5): 148-167. https://doi.org/10.1016/j.oregeorev.2017.04.013
      [28] Wang, Y. F., Chen, H. Y., Baker, M. J., et al., 2019. Multiple Mineralization Events of the Paleozoic Tuwu Porphyry Copper Deposit, Eastern Tianshan: Evidence from Geology, Fluid Inclusions, Sulfur Isotopes, and Geochronology. Mineralium Deposita, 54(7): 1053-1076. https://doi.org/10.1007/s00126-018-0859-4
      [29] Wang, Y. H., Xue, C. J., Liu, J. J., et al., 2016. Geological, Geochronological, Geochemical, and Sr-Nd-O-Hf Isotopic Constraints on Origins of Intrusions Associated with the Baishan Porphyry Mo Deposit in Eastern Tianshan, NW China. Mineralium Deposita, 51(7): 953-969. https://doi.org/10.1007/s00126-016-0646-z
      [30] Wedepohl, K.H., 1995. The Composition of the Continental Crust. Geochimica et Cosmochimica Acta, 59: 1217-1232. https://doi.org/10.1016/0016-7037(95)00038-2
      [31] Wu, Y. S., Zhou, K. F., Li, N., et al., 2017. Zircon U-Pb Dating and Sr-Nd-Pb-Hf Isotopes of the Ore-Associated Porphyry at the Giant Donggebi Mo Deposit, Eastern Tianshan, NW China. Ore Geology Reviews, 81(3): 794-807. https://doi.org/10.1016/j.oregeorev.2016.02.007
      [32] Xiao, W. J., Zhang, L.C., Qin, K.Z., et al., 2004. Paleozoic Accretionary and Collisional Tectonics of the Eastern Tianshan (China): Implications for the Continental Growth of Central Asia. American Journal of Science, 304(4): 370-395. https://doi.org/10.2475/ajs.304.4.370
      [33] Zhang, L. C., Qin, K. Z., Xiao, W. J., 2008. Multiple Mineralization Events in the Eastern Tianshan District, NW China: Isotopic Geochronology and Geological Significance. Journal of Asian Earth Sciences, 32(2/3/4): 236-246. https://doi.org/10.1016/j.jseaes.2007.10.011
      [34] Zhang, W. F., Chen, H. Y., Han, J. S., et al., 2015. Geochronology and Geochemistry of Igneous Rocks in the Bailingshan Area: Implications for the Tectonic Setting of Late Paleozoic Magmatism and Iron Skarn Mineralization in the Eastern Tianshan, NW China. Gondwana Research, 38: 40-59. https://doi.org/10.1016/j.gr.2015.10.011
      [35] Zhang, Z. Z., Gu, L. X., Wu, C. Z., et al., 2005. Zircon SHRIMP Dating for the Weiya Pluton, Eastern Tianshan: Its Geological Implications. Acta Geologica Sinica: English Edition, 79(4): 481-490. https://doi.org/10.1111/j.1755-6724.2005.tb00914.x
      [36] Zhao, L. D., Chen, H. Y., Hollings, P., et al., 2019. Late Paleozoic Magmatism and Metallogenesis in the Aqishan-Yamansu Belt, Eastern Tianshan: Constraints from the Bailingshan Intrusive Complex. Gondwana Research, 65: 68-85. https://doi.org/10.1016/j.gr.2018.08.004
      [37] Zhou, L. G., Xia, Q. X., Zheng, Y. F., et al., 2014. Polyphase Growth of Garnet in Eclogite from the Hong'an Orogen: Constraints from Garnet Zoning and Phase Equilibrium. Lithos, 206-207: 79-99. https://doi.org/10.1016/j.lithos.2014.06.020
      [38] Zhou, T.F., Yuan, F., Zhang, D.Y., et al., 2010. Geochronology, Tectonic Setting and Mineralization of Granitoids in Jueluotage Area, Eastern Tianshan, Xinjiang. Acta Petrologica Sinica, 26(2): 478-502 (in Chinese with English abstract). http://www.researchgate.net/publication/279707421_Geochronology_tectonic_setting_and_mineralization_of_granitoids_in_Jueluotage_area_eastern_Tianshan_Xinjiang
      [39] Zong, K. Q., Liu, Y. S., Gao, C. G., et al., 2010. In Situ U-Pb Dating and Trace Element Analysis of Zircons in Thin Sections of Eclogite: Refining Constraints on the Ultra High-Pressure Metamorphism of the Sulu Terrane, China. Chemical Geology, 269(3/4): 237-251. https://doi.org/10.1016/j.chemgeo.2009.09.021
      [40] 陈寿波, 黄宝强, 李琛, 等, 2018. 新疆东天山玉海铜矿蚀变、矿化年龄的厘定及SWIR勘查应用研究. 地球科学, 43(9): 2911-2928. doi: 10.3799/dqkx.2018.156
      [41] 陈希杰, 舒良树, 2010. 新疆哈尔里克山后碰撞期构造岩浆活动特征及年代学证据. 岩石学报, 26(10): 3057-3064. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201010017.htm
      [42] 郭坤一, 张传林, 赵宇, 等, 2003. 塔里木南缘煌斑岩的时代及其地质意义. 地质科学, 38(4): 532-534. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200304013.htm
      [43] 高曦, 李静超, 袁国礼, 等, 2019. 南羌塘增生过程中的中-晚三叠世岩浆记录: 藏北玛依岗日-角木日地区基性岩墙. 岩石学报, 35(3): 760-774. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201903009.htm
      [44] 黄宝强, 陈寿波, 李琛, 等, 2018. 新疆东天山玉海西岩体地球化学特征及其地质意义. 地球科学, 43(9): 37-59. doi: 10.3799/dqkx.2018.148
      [45] 乔耿彪, 张汉德, 伍跃中, 等, 2015. 西昆仑大红柳滩岩体地质和地球化学特征及对岩石成因的制约. 地质学报, 89(7): 1180-1194. doi: 10.3969/j.issn.0001-5717.2015.07.003
      [46] 涂其军, 王杨双, 董连慧, 2014. 新疆东天山白山钼矿辉钼矿Re-Os测年及地质意义. 新疆地质, 32: 322-327. doi: 10.3969/j.issn.1000-8845.2014.03.007
      [47] 王京彬, 王玉往, 何志军, 2006. 东天山大地构造演化的成矿示踪. 中国地质, 33: 461-469. doi: 10.3969/j.issn.1000-3657.2006.03.002
      [48] 周涛发, 袁峰, 张达玉, 等, 2010. 新疆东天山觉罗塔格地区花岗岩类年代学、构造背景及其成矿作用研究. 岩石学报, 26(2): 478-502. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201002014.htm
    • 加载中
    图(10)
    计量
    • 文章访问数:  930
    • HTML全文浏览量:  319
    • PDF下载量:  149
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-07-19
    • 刊出日期:  2021-07-15

    目录

      /

      返回文章
      返回