Petrogenesis and Geological Significance of ca. 860 Ma Dikes in Southern Huangling Anticline, Yangtze Craton
-
摘要: 首次报道了扬子克拉通黄陵背斜南部由辉绿岩脉、花岗闪长岩脉和正长花岗岩脉组成的新元古代早期小型岩墙.辉绿岩脉和花岗闪长岩脉的锆石U-Pb定年结果分别为856±6.4 Ma和860±6.0 Ma.全岩主量和微量元素数据显示岩墙中辉绿岩具有高Pb含量,且Ba/Nb和La/Nb比值变化较大,而花岗闪长岩脉和正长花岗岩脉样品的Y和Nb含量较低,结合继承性锆石年龄分布特征,暗示岩墙形成过程中遭受了不同程度的年轻岛弧地壳物质混染.黄陵南部~860 Ma小型岩墙的发现,表明扬子克拉通在早于该时期已进入后碰撞的伸展构造环境.综合区域已有资料,认为扬子克拉通前寒武纪基底的裂解在时空上均表现出较大差异.Abstract: It reports the first occurrence of Early Neoproterozoic dike swarm located in the southern Huangling anticline, Yangtze craton, which is composed of diabase, granodiorite and syengranite. Zircon U-Pb dating of diabasic and granodioritic dikes yields weighted mean 206Pb/238U ages of 856±6.4 Ma and 860±6.0 Ma, respectively, which are interpreted as the formation ages of the dike swarm. Whole-rock geochemical results show that diabasic dikes show high contents of Pb, variable Ba/Nb and La/Nb ratios, however, the granodioritic and syengranitic dikes have relative low contents of Y and Nb. In combination with age spectrums of inherited zircons from analytical dikes, it is proposed that the dike swarm experienced a certain crustal contamination of juvenile island arc during formed process. Document of ca. 860 Ma dike swarm in the southern Huangling anticline indicates that the Yangtze craton entered into the post-collisional extensional environment before 860 Ma. Therefore, it is inferred that Precambrian basement breakup of the Yangtze craton shows difference in spatial-temporal distribution.
-
图 1 黄陵背斜区域地质图(修编自Wei et al., 2012)
Fig. 1. Geological map of the Huangling anticline, Yangtze craton (modified after Wei et al., 2012)
图 2 黄陵背斜南部地区简要地质图(修编自Peng et al., 2012b)
Fig. 2. Geological map of southern Huangling anticline (modified after Peng et al., 2012b)
图 5 黄陵背斜南部岩墙中岩脉硅碱图(据Le Maitre,1989)
Fig. 5. TAS diagram of the dikes in the southern Huangling anticline (after Le Maitre, 1989)
图 6 黄陵背斜南部岩墙中辉绿岩脉(a, b)、正长花岗岩脉以及花岗闪长岩脉(c, d)稀土配分图和微量元素蛛网图
球粒陨石标准化和原始地幔数据据Sun and McDonough(1989)
Fig. 6. Chondrite- and primitive mantle-normalized diagrams for the diabase (a, b), and granodiorite and syengranite (c, d) from the dike swarm in the southern Huangling anticline
图 8 辉绿岩脉不活动元素构造判别图解(据Agrawal et al., 2008)
Fig. 8. Log-transformed immobile trace element tectonic discrimination diagrams for the diabasic dikes in the southern Huangling anticline (after Agrawal et al., 2008)
表 1 黄陵背斜南部辉绿岩脉、正长花岗岩脉和花岗闪长岩脉主量(%)和微量(10-6)元素分析结果
Table 1. Major (%) and trace (10-6) element compositions of the dikes in the southern Huangling anticline
样品号 17MY-19 17MY-20 17MY-21 17MY-27 17MY-28 17MY-28* 13XX-11 17MY-23 17MY-18 17MY-24 17MY-26 13XX-03 17MY-17 17MY-22 辉绿岩脉 正长花岗岩脉 花岗闪长岩脉 SiO2 47.82 48.62 48.39 53.32 54.44 51.57 53.14 72.88 74.33 74.61 61.94 72.56 76.24 CaO 10.19 10.25 10.26 6.26 8.01 7.69 6.71 0.94 2.94 1.41 6.01 1.45 2.69 Fe2O3T 16.52 12.98 13.15 14.85 8.53 7.29 13.58 0.69 1.33 0.94 6.51 1.72 0.96 Al2O3 12.69 14.07 13.15 13.94 17.25 22.56 14.04 15.13 14.27 13.81 14.61 14.98 13.69 MgO 6.59 8.47 8.66 4.40 4.41 2.58 5.05 0.09 0.37 0.12 3.93 0.37 0.24 MnO 0.26 0.23 0.25 0.31 0.22 0.15 0.24 0.04 0.02 0.06 0.20 0.05 0.06 Na2O 1.79 1.95 2.16 4.09 3.80 4.95 3.51 3.70 4.76 3.67 5.13 3.90 3.92 K2O 1.02 0.59 0.92 0.28 0.47 0.67 0.66 5.95 0.89 4.10 0.33 3.90 1.06 P2O5 0.25 0.12 0.13 0.15 0.13 0.38 0.13 0.02 0.02 0.01 0.06 0.06 0.02 TiO2 1.67 0.99 1.10 1.56 1.02 1.06 1.35 0.03 0.12 0.03 0.43 0.17 0.04 LOI 0.72 0.91 1.16 0.40 0.77 0.89 0.83 0.27 0.57 1.25 0.73 0.58 0.63 Total 99.50 99.18 99.30 99.56 99.05 99.79 99.23 99.73 99.60 100.02 99.88 99.74 99.54 V 411.6 233.8 241.2 403.9 197.7 202.6 285.8 15.1 2.2 3.2 372.0 63.3 17.8 7.5 Cr 70.2 447.9 494.8 6.5 160.5 165.1 289.6 2.9 34.8 57.7 22.6 27.2 43.1 61.7 Ni 66.9 208.6 230.2 19.7 41.8 42.9 111.6 29.4 2.1 4.5 10.0 47.1 8.5 8.8 Ga 17.07 18.31 18.14 19.80 18.95 18.93 15.49 22.64 21.08 15.74 18.73 14.36 18.43 17.96 Rb 24.85 14.71 24.43 6.93 13.00 13.14 66.12 38.67 171.46 113.05 26.51 62.57 112.84 33.44 Sr 154.8 316.6 254.7 172.1 202.5 202.5 238.5 215.7 92.4 177.1 192.4 205.6 321.6 370.3 Y 34.58 21.40 26.09 39.58 45.64 45.74 12.30 45.72 28.81 7.08 40.57 23.55 6.47 12.71 Zr 62.3 92.0 76.4 102.5 336.6 362.7 20.9 124.5 22.6 30.8 96.8 35.6 142.4 101.6 Nb 13.85 3.97 5.11 2.59 8.48 8.65 2.57 39.52 12.71 8.54 2.94 7.16 8.37 3.41 Ba 162.4 288.0 378.0 91.4 98.9 100.2 508.4 148.8 223.2 763.4 122.3 335.7 1 009.0 469.8 La 12.78 14.58 16.78 5.99 12.93 13.27 4.61 18.64 17.24 5.65 6.51 22.78 22.96 17.67 Ce 28.64 32.93 37.62 15.30 29.93 30.33 10.60 40.49 33.02 10.57 14.96 52.90 44.48 38.23 Pr 4.10 4.43 5.26 2.54 3.51 3.55 1.68 4.43 4.29 1.33 2.50 6.06 4.31 4.10 Nd 18.01 19.01 22.33 13.00 15.65 15.62 8.10 16.34 17.19 5.14 12.32 25.16 14.46 14.46 Sm 4.63 4.32 5.12 4.07 4.52 4.54 2.59 4.74 5.00 1.45 4.00 5.60 2.19 3.46 Eu 1.51 1.42 1.78 1.47 1.41 1.46 0.97 0.60 0.50 0.55 1.34 1.24 0.78 0.62 Gd 5.24 4.07 5.01 5.30 5.60 5.88 3.21 5.26 5.15 1.18 5.29 5.62 1.51 2.97 Tb 0.90 0.66 0.80 1.01 1.07 1.10 0.56 1.20 0.82 0.20 0.99 0.91 0.22 0.50 Dy 5.97 4.01 4.77 6.53 6.95 7.09 3.50 7.42 4.71 1.09 6.32 5.64 1.15 2.49 Ho 1.25 0.78 0.97 1.40 1.57 1.60 0.77 1.57 0.89 0.22 1.39 1.15 0.20 0.46 Er 3.63 2.14 2.62 4.02 4.60 4.80 2.22 4.47 2.36 0.65 3.98 3.46 0.61 1.17 Tm 0.57 0.33 0.38 0.63 0.76 0.75 0.36 0.70 0.35 0.11 0.61 0.53 0.09 0.18 Yb 3.67 1.97 2.41 4.02 5.16 5.27 2.12 4.35 2.40 0.77 3.85 3.58 0.60 1.09 Lu 0.57 0.28 0.34 0.61 0.79 0.82 0.31 0.59 0.35 0.13 0.56 0.50 0.09 0.16 Hf 1.86 2.43 2.16 2.81 9.42 10.11 1.27 6.11 1.31 1.37 2.82 3.57 3.70 3.69 Ta 0.86 0.27 0.37 0.41 0.64 0.66 0.20 3.24 2.00 0.55 0.20 0.61 0.58 0.48 Th 1.63 0.97 1.33 0.89 7.36 10.11 0.27 13.29 17.98 5.56 0.79 4.91 7.50 10.74 U 0.66 0.21 0.41 0.28 0.93 1.09 0.09 5.65 2.77 1.42 0.36 1.20 0.88 2.13 Li 13.22 14.12 11.33 12.06 9.70 9.88 54.60 10.13 2.51 2.53 18.80 64.38 9.04 7.59 Be 1.43 0.47 0.64 0.70 0.81 0.80 43.89 2.45 2.91 1.61 0.68 125.25 2.15 2.91 Sc 48.09 26.90 28.13 40.37 29.47 29.82 44.09 5.94 2.33 1.28 43.95 13.44 3.15 1.52 Co 55.05 55.27 57.23 51.91 24.14 24.50 62.51 81.80 0.74 0.85 36.66 69.87 3.68 1.75 Cu 84.67 97.78 123.55 5.42 5.44 5.47 0.51 31.96 3.30 3.15 6.66 1.47 35.02 9.48 Zn 129.33 93.92 106.87 65.55 70.24 70.66 86.78 15.52 9.19 11.46 61.73 119.53 18.57 7.42 ∑REE 91.48 90.93 106.20 65.86 94.45 96.07 41.59 110.79 94.27 29.03 64.63 135.14 93.64 87.55 注:*.样品17MY-28*是17MY-28的重复样. 表 2 黄陵背斜南部辉绿岩脉和花岗闪长岩脉锆石U-Pb年代学数据
Table 2. Geochronological data of the diabasic and granodioritic dikes in the southern Huangling anticline
测点号 Pb(10-6) Th(10-6) U(10-6) Th/U 同位素比值 年龄(Ma) 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 13XX-03辉绿岩脉 01 53.4 64.1 104 0.62 1.459 1 0.049 5 0.142 9 0.001 9 1 048 62.8 914 20.4 861 10.5 02 193 231 206 1.12 1.840 1 0.047 5 0.143 1 0.001 7 1 483 46.6 1 060 17.0 862 9.6 03 25.0 21.2 101 0.21 1.403 2 0.053 3 0.142 5 0.001 9 969 71.8 890 22.5 859 10.8 04 38.6 38.5 97.0 0.40 1.313 8 0.046 1 0.143 3 0.001 5 809 67.6 852 20.2 863 8.5 05 131.1 129 415 0.31 1.391 6 0.036 0 0.141 6 0.001 5 950 50.0 885 15.3 853 8.6 06 234 313 218 1.44 1.591 0 0.046 3 0.155 2 0.001 6 1 039 61.1 967 18.2 930 8.9 07 66.3 75 97.1 0.77 1.582 5 0.055 0 0.156 7 0.002 2 1 028 71.5 963 21.7 938 12.4 08 5.05 3.72 28.9 0.13 1.488 7 0.121 1 0.142 1 0.003 2 1 109 159 926 49.4 856 18.2 09 137.1 48.1 218 0.22 5.250 9 0.096 7 0.331 5 0.003 1 1 858 37.5 1 861 15.8 1 845 14.9 10 181 176 317 0.56 1.775 2 0.040 0 0.166 4 0.001 7 1 109 45.5 1 036 14.6 992 9.4 11 100.3 105 126 0.83 1.647 4 0.050 2 0.150 5 0.001 8 1 161 59.0 989 19.3 904 10.4 12 134 172 333 0.52 1.383 6 0.053 3 0.142 6 0.002 8 902 63.0 882 22.7 859 15.5 13 11.61 0.48 100 0.00 1.218 1 0.049 3 0.141 2 0.001 8 733 83.3 809 22.6 851 10.4 14 96.6 120 122 0.98 1.446 1 0.041 1 0.151 5 0.001 8 892 59.3 908 17.1 909 10.2 15 257 291 691 0.42 1.273 9 0.032 8 0.140 6 0.001 7 776 52.9 834 14.6 848 9.6 16 82.5 97 107 0.90 1.595 0 0.052 8 0.152 1 0.002 1 1 083 64.8 968 20.7 913 11.7 18 28.01 2.63 228 0.01 1.334 0 0.046 0 0.141 3 0.001 6 857 69.3 861 20.0 852 9.0 19 362 551 315 1.75 1.420 7 0.034 2 0.143 5 0.001 9 961 44.4 898 14.4 864 10.6 20 32.5 33.0 67.4 0.49 1.702 7 0.075 1 0.167 6 0.002 7 1 039 82.3 1 010 28.2 999 15.0 17MY-21花岗闪长岩脉 01 35.8 202.4 197.8 0.41 2.549 2 0.049 4 0.208 5 0.003 4 1 396 23 1 286 14 1 221 18 02 152.6 559.4 895.3 1.02 1.355 7 0.017 6 0.142 2 0.001 0 902 28 870 8 857 6 03 23.7 107.9 140.8 0.62 1.571 8 0.028 7 0.158 1 0.002 5 989 19 959 11 946 14 04 23.9 103.9 146.4 0.77 1.373 8 0.021 7 0.142 8 0.001 5 926 36 878 9 860 9 05 17.8 75.2 103.0 0.71 1.333 3 0.021 7 0.139 0 0.000 9 909 33 860 9 839 5 06 27.0 148.6 153.0 0.73 1.462 2 0.028 9 0.143 2 0.001 2 1 051 44 915 12 863 7 07 20.5 102.5 114.3 0.97 1.303 5 0.018 5 0.141 6 0.001 0 826 30 847 8 854 6 08 14.1 69.2 84.0 0.30 14.993 6 0.194 7 0.519 9 0.005 1 2 890 15 2 815 12 2 699 22 09 12.4 59.7 75.5 0.90 1.580 7 0.033 5 0.146 2 0.001 5 1 167 41 963 13 880 8 10 69.7 190.5 400.3 0.82 1.420 5 0.026 8 0.143 7 0.001 2 983 40 898 11 866 7 11 89.7 183.7 498.2 0.79 1.389 8 0.031 6 0.144 3 0.001 8 922 40 885 13 869 10 12 53.1 268.5 306.3 0.48 1.593 0 0.018 5 0.161 3 0.001 2 972 21 967 7 964 7 13 14.9 75.8 84.1 0.37 1.692 4 0.018 6 0.170 1 0.001 3 989 20 1 006 7 1 013 7 14 58.8 129.7 342.0 0.88 1.393 9 0.015 9 0.141 9 0.001 0 970 28 886 7 855 6 15 37.7 124.2 215.4 0.90 1.428 9 0.028 1 0.144 4 0.001 4 989 38 901 12 869 8 16 20.2 105.0 118.8 0.38 1.684 4 0.022 8 0.159 4 0.001 1 1 109 25 1 003 9 954 6 17 21.3 90.0 127.9 0.58 1.563 7 0.022 9 0.159 1 0.001 4 961 6 956 9 952 8 18 49.5 233.5 290.3 0.88 1.397 9 0.022 1 0.141 5 0.001 4 983 33 888 9 853 8 19 31.4 156.9 177.3 0.70 1.414 8 0.023 4 0.143 6 0.001 2 974 35 895 10 865 7 20 35.8 202.4 197.8 0.80 1.354 4 0.016 4 0.145 0 0.001 1 857 21 869 7 873 6 21 152.6 559.4 895.3 0.88 1.435 9 0.020 6 0.143 1 0.001 1 1 011 29 904 9 862 6 -
[1] Agrawal, S., Guevara, M., Verma, S.P., 2008. Tectonic Discrimination of Basic and Ultrabasic Volcanic Rocks through Log-Transformed Ratios of Immobile Trace Elements. International Geology Review, 50(12): 1057-1079. https://doi.org/10.2747/0020-6814.50.12.1057 [2] Bonin, B., 2004. Do Coeval Mafic and Felsic Magmas in Post-Collisional to Within-Plate Regimes Necessarily Imply Two Contrasting, Mantle and Crustal, Sources? A Review. Lithos, 78(1-2): 1-24. https://doi.org/10.1016/j.lithos.2004.04.042 [3] Chen, K., Gao, S., Wu, Y.B., et al., 2013.2.6-2.7 Ga Crustal Growth in Yangtze Craton, South China. Precambrian Research, 224: 472-490. https://doi.org/10.1016/j.precamres.2012.10.017 [4] Deng, H., Peng, S.B., Polat, A., et al., 2017. Neoproterozoic IAT Intrusion into Mesoproterozoic MOR Miaowan Ophiolite, Yangtze Craton: Evidence for Evolving Tectonic Settings. Precambrian Research, 289: 75-94. https://doi.org/10.1016/j.precamres.2016.12.003 [5] Eklund, O., Konopelko, D., Rutanen, H., et al., 1998.1.8 Ga Svecofennian Post-Collisional Shoshonitic Magmatism in the Fennoscandian Shield. Lithos, 45(1-4): 87-108. https://doi.org/10.1016/s0024-4937(98)00027-9. doi: 10.1016/S0024-4937(98)00027-9 [6] Gao, S., Yang, J., Zhou, L., et al., 2011. Age and Growth of the Archean Kongling Terrain, South China, with Emphasis on 3.3 Ga Granitoid Gneisses. American Journal of Science, 311(2): 153-182. https://doi.org/10.2475/02.2011.03 [7] Gao, S., Zhang, B.R., 1990. The Discovery of Archean TTG Gneisses in the Northern Yangtze Platform and Their Implications. Earth Science, 15(6): 675-679 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX199006012.htm [8] Guo, J.L., Gao, S., Wu, Y.B., et al., 2014.3.45 Ga Granitic Gneisses from the Yangtze Craton, South China: Implications for Early Archean Crustal Growth. Precambrian Research, 242: 82-95. https://doi.org/10.1016/j.precamres.2013.12.018 [9] Guo, J.L., Wu, Y.B., Gao, S., et al., 2015. Episodic Paleoarchean-Paleoproterozoic (3.3-2.0 Ga) Granitoid Magmatism in Yangtze Craton, South China: Implications for Late Archean Tectonics. Precambrian Research, 270: 246-266. https://doi.org/10.1016/j.precamres.2015.09.007 [10] Han, B.F., 2007. Diverse Post-Collisional Granitoids and Their Tectonic Setting Discrimination. Earth Science Frontiers, 14(3): 64-72 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200703007.htm [11] Han, Q.S., Peng, S.B., 2020. Paleoproterozoic Subduction within the Yangtze Craton: Constraints from Nb-Enriched Mafic Dikes in the Kongling Complex. Precambrian Research, 340: 105634. https://doi.org/10.1016/j.precamres.2020.105634 [12] Han, Q.S., Peng, S.B., Kusky, T.M., et al., 2017. A Paleoproterozoic Ophiolitic Mélange, Yangtze Craton, South China: Evidence for Paleoproterozoic Suturing and Microcontinent Amalgamation. Precambrian Research, 293: 13-38. https://doi.org/10.1016/j.precamres.2017.03.004 [13] Han, Q.S., Peng, S.B., Polat, A., et al., 2018. A ca. 2.1 Ga Andean-Type Margin Built on Metasomatized Lithosphere in the Northern Yangtze Craton, China: Evidence from High-Mg Basalts and Andesites. Precambrian Research, 309: 309-324. https://doi.org/10.1016/j.precamres.2017.05.015 [14] Hu, S.H., Chen, A.F., Lin, S.L., et al., 2000. ICP-MS Analytical Research into 40 Trace and Ultra-Trace Elements in Geological Samples. Earth Science, 25(2): 186-190 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200002014.htm [15] Jiang, X.F., Peng, S.B., Kusky, T.M., et al., 2018. Petrogenesis and Geotectonic Significance of Early-Neoproterzoic Olivine-Gabbro within the Yangtze Craton: Constrains from the Mineral Composition, U-Pb Age and Hf Isotopes of Zircons. Journal of Earth Science, 29(1): 93-102. https://doi.org/10.1007/s12583-018-0821-5 [16] Jiang, X.F., Peng, S.B., Polat, A., et al., 2016. Geochemistry and Geochronology of Mylonitic Metasedimentary Rocks Associated with the Proterozoic Miaowan Ophiolite Complex, Yangtze Craton, China: Implications for Geodynamic Events. Precambrian Research, 279: 37-56. https://doi.org/10.1016/j.precamres.2016.04.004 [17] Le Maitre, R.W., 1989. A Classification of Igneous Rocks and Glossary of Terms. Blackwell Scientific Publications, Oxford. [18] Li, L.M., Lin, S.F., Davis, D.W., et al., 2014. Geochronology and Geochemistry of Igneous Rocks from the Kongling Terrane: Implications for Mesoarchean to Paleoproterozoic Crustal Evolution of the Yangtze Block. Precambrian Research, 255: 30-47. doi: 10.1016/j.precamres.2014.09.009 [19] Li, X.H., Li, Z.X., Ge, W.C., et al., 2003a. Neoproterozoic Granitoids in South China: Crustal Melting above a Mantle Plume at ca. 825 Ma? Precambrian Research, 122(1-4): 45-83. https://doi.org/10.1016/s0301-9268(02)00207-3. doi: 10.1016/S0301-9268(02)00207-3 [20] Li, X.Y., Guo, F., Wang, Y.J., 2002. Post-Orogenic Tectono-Magmatism and Its Implications for Evolution of Orogenic Belts. Geological Journal of China Universities, 8(1): 68-78 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200201007.htm [21] Li, Z.X., Li, X.H., Kinny, P.D., et al., 2003b. Geochronology of Neoproterozoic Syn-Rift Magmatism in the Yangtze Craton, South China and Correlations with other Continents: Evidence for a Mantle Superplume That Broke up Rodinia. Precambrian Research, 122(1-4): 85-109. https://doi.org/10.1016/s0301-9268(02)00208-5 doi: 10.1016/S0301-9268(02)00208-5 [22] Lin, G.C., Li, X.H., Li, W.X., 2006. SHRIMP U-Pb Zircon Age, Geochemistry and Nd-Hf Isotope of Neoproterozoic Mafic Dyke Swarms in Western Sichuan: Petrogenesis and Tectonic Significance. Science in China: Earth Sciences, 36(7): 630-645(in Chinese). [23] Ling, W.L., Gao, S., Cheng, J.P., et al., 2006. Neoproterozoic Magmatic Events within the Yangtze Continental Interior and along Its Northern Margin and Their Tectonic Implication: Constraint from the ELA-ICPMS U-Pb Geochronology of Zircons from the Huangling and Hannan Complexes. Acta Petrologica Sinica, 22(2): 387-396 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200602011.htm [24] Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082 [25] Ludwig, K.R., 2003. User's Manual for Isoplot/EX Version 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center. Berkeley Geochronological Center Special Publication, Berkeley. [26] Ma, D.Q., Du, S.H., Xiao, Z.F., 2002. The Origin of Huangling Granite Batholith. Acta Petrologica et Mineralogica, 21(2): 151-161 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200202008.htm [27] Ma, D.Q., Li, Z.C., Xiao, Z.F., 1997. A Study on the Boundary Age between Jurassic and Cretaceous. Acta Geoscientia Sinica, 18(3): 233-241 (in Chinese with English abstract). http://www.researchgate.net/publication/284611395_A_Study_on_the_Boundary_Age_between_the_Jurassic_and_the_Cretaceous [28] Peng, M., Wu, Y.B., Gao, S., et al., 2012a. Geochemistry, Zircon U-Pb Age and Hf Isotope Compositions of Paleoproterozoic Aluminous A-Type Granites from the Kongling Terrain, Yangtze Block: Constraints on Petrogenesis and Geologic Implications. Gondwana Research, 22(1): 140-151. https://doi.org/10.1016/j.gr.2011.08.012 [29] Peng, S.B., Kusky, T.M., Jiang, X.F., et al., 2012b. Geology, Geochemistry, and Geochronology of the Miaowan Ophiolite, Yangtze Craton: Implications for South China's Amalgamation History with the Rodinian Supercontinent. Gondwana Research, 21(2-3): 577-594. https://doi.org/10.1016/j.gr.2011.07.010 [30] Ren, G.M., Pang, W.H., Sun, Z.M., et al., 2013. Zircon U-Pb Geochronology and Geochemistry of Mafic Dyke Swarms in Dengxiangying Group on West Margin of Yangtze Block, China. Journal of Chengdu University of Technology (Science & Technology Edition), 40(1): 66-79 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CDLG201301011.htm [31] Speer, J.A., 1982. Zircon. In: Ribbe, P.H., ed., Reviews in Mineralogy. Mineral Society American, Washington, D.C., 67-112. [32] Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 doi: 10.1144/GSL.SP.1989.042.01.19 [33] Wang, X.L., Zhao, G.C., Zhou, J.C., et al., 2008a. Geochronology and Hf Isotopes of Zircon from Volcanic Rocks of the Shuangqiaoshan Group, South China: Implications for the Neoproterozoic Tectonic Evolution of the Eastern Jiangnan Orogen. Gondwana Research, 14(3): 355-367. https://doi.org/10.1016/j.gr.2008.03.001 [34] Wang, X.C., Li, X.H., Li, W.X., et al., 2008b. The Bikou Basalts in the Northwestern Yangtze Block, South China: Remnants of 820-810 Ma Continental Flood Basalts? Geological Society of America Bulletin, 120(11-12): 1478-1492. https://doi.org/10.1130/b26310.1 doi: 10.1130/B26310.1 [35] Wang, X.L., Zhou, J.C., Qiu, J.S., et al., 2006. Petrogenesis of the Neoproterozoic Strongly Peraluminons Granitoids from Northern Guangxi: Constraints from Zircon Geochronology and Hf Isotopes. Acta Petrologica Sinica, 22(2): 326-342 (in Chinese with English abstract). [36] Weaver, B.L., Wood, D.A., Tarney, J., et al., 1986. Role of Subducted Sediment in the Genesis of Ocean-Island Basalts: Geochemical Evidence from South Atlantic Ocean Islands. Geology, 14(4): 275-278. doi: 10.1130/0091-7613(1986)14<275:ROSSIT>2.0.CO;2 [37] Wei, Y.X., Peng, S.B., Jiang, X.F., et al., 2012. SHRIMP Zircon U-Pb Ages and Geochemical Characteristics of the Neoproterozoic Granitoids in the Huangling Anticline and Its Tectonic Setting. Journal of Earth Science, 23(5): 659-675. https://doi.org/10.1007/s12583-012-0284-z [38] Wu, H., 2017. Recognition of~865 Ma and~815 Ma Mantle Magmatism and Its Implication for the Neoproterozoic Tectonic Evolution of the South China Block (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). [39] Wu, H., Zhang, Y.H., Ling, W.L., et al., 2016. Recognition of Mantle Input and Its Tectonic Implication for the Nature of ~815 Ma Magmatism in the Yangtze Continental Interior, South China. Precambrian Research, 279: 17-36. https://doi.org/10.1016/j.precamres.2016.04.005 [40] Wu, P., Zhang, S.B., Zheng, Y.F., et al., 2019. Amalgamation of South China into Rodinia during the Grenvillian Accretionary Orogeny: Geochemical Evidence from Early Neoproterozoic Igneous Rocks in the Northern Margin of the South China Block. Precambrian Research, 321: 221-243. https://doi.org/10.1016/j.precamres.2018.12.015 [41] Wu, Y.B., Gao, S., Gong, H.J., et al., 2009. Zircon U-Pb Age, Trace Element and Hf Isotope Composition of Kongling Terrane in the Yangtze Craton: Refining the Timing of Palaeoproterozoic High-Grade Metamorphism. Journal of Metamorphic Geology, 27(6): 461-477. https://doi.org/10.1111/j.1525-1314.2009.00826.x [42] Wu, Y.B., Gao, S., Zhang, H.F., et al., 2012. Geochemistry and zircon U-Pb Geochronology of Paleoproterozoic Arc Related Granitoid in the Northwestern Yangtze Block and Its Geological Implications. Precambr. Res., 200-203: 26-37. doi: 10.1016/j.precamres.2011.12.015 [43] Wu, Y.B., Zheng, Y.F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(16): 1589-1604(in Chinese). doi: 10.1360/csb2004-49-16-1589 [44] Xiong, Q., Zheng, J.P., Yu, C.M., et al., 2008. Zircon U-Pb Age and Hf Isotope of Quanyishang A-Type Granite in Yichang: Signification for the Yangtze Continental Cratonization in Paleoproterozoic. Chinese Science Bulletin, 53(22): 2782-2792(in Chinese). doi: 10.1360/csb2008-53-22-2782 [45] Xu, Y., Yang, K.G., Polat, A., et al., 2016. The ~860 Ma Mafic Dikes and Granitoids from the Northern Margin of the Yangtze Block, China: A Record of Oceanic Subduction in the Early Neoproterozoic. Precambrian Research, 275: 310-331. https://doi.org/10.1016/j.precamres.2016.01.021 [46] Zhang, C.H., Fan, W.M., Wang, Y.J., et al., 2009. Geochronology and Geochemistry of the Neoproterozoic Mafic-Ultramafic Dykes in the Aikou Area, Western Hunan Province: Petrogenesis and Its Tectonic Implications. Geotectonica et Metallogenia, 33(2): 283-293 (in Chinese with English abstract). http://www.researchgate.net/publication/285031695_geochronology_and_geochemistry_of_the_neoproterozoic_mafic-ultramafic_dykes_in_the_aikou_area_western_hunan_province_petrogenesis_and_its_tectonic_implications [47] Zhang, S.B., Zheng, Y.F., Wu, Y.B., et al., 2006. Zircon U-Pb Age and Hf-O Isotope Evidence for Paleoproterozoic Metamorphic Event in South China. Precambrian Research, 151(3-4): 265-288. https://doi.org/10.1016/j.precamres.2006.08.009 [48] Zhang, S.B., Zheng, Y.F., Zhao, Z.F., et al., 2008. Neoproterozoic Anatexis of Archean Lithosphere: Geochemical Evidence from Felsic to Mafic Intrusions at Xiaofeng in the Yangtze Gorge, South China. Precambrian Research, 163(3-4): 210-238. https://doi.org/10.1016/j.precamres.2007.12.003 [49] Zhang, S.B., Zheng, Y.F., Zhao, Z.F., et al., 2009. Origin of TTG-Like Rocks from Anatexis of Ancient Lower Crust: Geochemical Evidence from Neoproterozoic Granitoids in South China. Lithos, 113(3-4): 347-368. https://doi.org/10.1016/j.lithos.2009.04.024 [50] Zhao, J.H., Zhou, M.F., 2007. Geochemistry of Neoproterozoic Mafic Intrusions in the Panzhihua District (Sichuan Province, SW China): Implications for Subduction-Related Metasomatism in the Upper Mantle. Precambrian Research, 152(1-2): 27-47. https://doi.org/10.1016/j.precamres.2006.09.002 [51] Zhao, J.H., Zhou, M.F., Yan, D.P., et al., 2011. Reappraisal of the Ages of Neoproterozoic Strata in South China: No Connection with the Grenvillian Orogeny. Geology, 39(4): 299-302. https://doi.org/10.1130/g31701.1 doi: 10.1130/G31701.1 [52] Zheng, Y.F., 2003. Neoproterozoic Magmatic Activity and Global Change. Chinese Science Bulletin, 48(16): 1639-1656. https://doi.org/10.1360/03wd0342 [53] 高山, 张本仁, 1990. 扬子地台北部太古宙TTG片麻岩的发现及其意义. 地球科学, 15(6): 675-679. doi: 10.1007/BF02919267 [54] 韩宝福, 2007. 后碰撞花岗岩类的多样性及其构造环境判别的复杂性. 地学前缘, 14(3): 64-72. doi: 10.3321/j.issn:1005-2321.2007.03.006 [55] 胡圣虹, 陈爱芳, 林守麟, 等, 2000. 地质样品中40个微量、痕量、超痕量元素的ICP-MS分析研究. 地球科学, 25(2): 186-190. doi: 10.3321/j.issn:1000-2383.2000.02.014 [56] 李晓勇, 郭锋, 王岳军, 2002. 造山后构造岩浆作用研究评述. 高校地质学报, 8(1): 68-78. doi: 10.3969/j.issn.1006-7493.2002.01.008 [57] 林广春, 李献华, 李武显, 2006. 川西新元古代基性岩墙群的SHRIMP锆石U-Pb年龄、元素和Nd-Hf同位素地球化学: 岩石成因与构造意义. 中国科学: 地球科学, 36(7): 630-645. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200607003.htm [58] 凌文黎, 高山, 程建萍, 等, 2006. 扬子陆核与陆缘新元古代岩浆事件对比及其构造意义——来自黄陵和汉南侵入杂岩ELA-ICPMS锆石U-Pb同位素年代学的约束. 岩石学报, 22(2): 387-396. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200602011.htm [59] 马大铨, 杜绍华, 肖志发, 2002. 黄陵花岗岩基的成因. 岩石矿物学杂志, 21(2): 151-161. doi: 10.3969/j.issn.1000-6524.2002.02.009 [60] 马大铨, 李志昌, 肖志发, 1997. 鄂西崆岭杂岩的组成、时代及地质演化. 地球学报, 18(3): 233-241. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB703.001.htm [61] 任光明, 庞维华, 孙志明, 等, 2013. 扬子西缘登相营群基性岩墙锆石U-Pb年代学及岩石地球化学特征. 成都理工大学学报(自然科学版), 40(1): 66-79. doi: 10.3969/j.issn.1671-9727.2013.01.010 [62] 王孝磊, 周金城, 邱检生, 等, 2006. 桂北新元古代强过铝花岗岩的成因: 锆石年代学和Hf同位素制约. 岩石学报, 22(2): 326-342. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200602007.htm [63] 吴慧, 2017. 扬子陆核区~865 Ma和~815 Ma幔源岩浆事件识别及其对华南陆块新元古代构造演化的指示(博士学位论文). 武汉: 中国地质大学 [64] 吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 [65] 熊庆, 郑建平, 余淳梅, 等, 2008. 宜昌圈椅埫A型花岗岩锆石U-Pb年龄和Hf同位素与扬子大陆古元古代克拉通化作用. 科学通报, 53(22): 2782-2792. doi: 10.3321/j.issn:0023-074X.2008.22.017 [66] 张春红, 范蔚茗, 王岳军, 等, 2009. 湘西隘口新元古代基性-超基性岩墙年代学和地球化学特征: 岩石成因及其构造意义. 大地构造与成矿学, 33(2): 283-293. doi: 10.3969/j.issn.1001-1552.2009.02.012