Petrogenesis of A-Type Granite and Geological Significance of Bure Area, Western Ethiopia
-
摘要: 为进一步约束埃塞俄比亚西部地区区域地质构造演化,选取埃塞俄比亚西部布雷地区岩浆岩开展岩石地球化学、年代学等分析.结果显示:布雷岩体具有相对较高的SiO2(66.4%~68.5%)、K2O(4.56%~4.87%)及铁值[TFeO/(TFeO+MgO]为0.75~0.79,相对较低的MgO(0.80%~1.3%)、CaO(2.01%~2.36%)和A/CNK(0.89~0.96),富集Zr、Hf、Y、Ga等元素,亏损Sr、P、Ti和Eu元素,显示了A型花岗岩的特征.锆石LA-ICP-MS U-Pb加权平均年龄为631±4 Ma,代表了东非造山运动后伸展阶段.锆石εHf(t)值为3.2~9.1,具有一定的不均一特征.布雷A型花岗岩形成于碰撞造山的后伸展环境.岩石地球化学及Hf同位素特征表明布雷岩体主体可能来源于减薄的岩石圈地幔玄武质岩浆,其后经历了广泛的结晶分异作用而形成.
-
关键词:
- 锆石U-Pb年代学 /
- 地球化学 /
- A型花岗岩 /
- 埃塞俄比亚西部布雷地区
Abstract: In order to furtherly constrain the evolution of regional geological structure in the western Ethiopia, we selected the magmatic rocks from the Bure area of western Ethiopia for petrogeochemical and chronologic analysis.The Burequartz monzonite in western Ethiopia has relatively high SiO2(66.4% to 68.5%), K2O (4.56% to 4.87%), and iron value (TFeO/(TFeO+MgO) is 0.75 to 0.79), and relatively low MgO (0.8% to 1.3%), CaO (2.01% to 2.36%), and A/CNK (0.89~0.96), withthe characteristic that areemriched in elements such as Zr, Hf, Y, and Ga, and depleted Sr, P, Ti, and Eu elements, which reveal the feature of A-type granite. The zircon LA-ICP-MS U-Pb age of the rock is 631±4 Ma (MSWD=2.9), representing the extension stage of the East African orogenic movement. The εHf(t) values of Bure A-type granite range from 3.2 to 9.1 (average=7.3), showing a relatively inhomegeneous feature. The Bure A-type granite formed in the post-stretching environment of the East African orogenic movement. Thewhole rock geochemistryand Hf isotopic characteristicssuggest that the Bure A-type granite may originated from basaltic magma in the thinned lithospheric mantle, and then formed through extensive crystallization differentiation.-
Key words:
- zircon U-Pb geochronology /
- geochemistry /
- A-type granite /
- Bure area, western Ethiopia
-
图 1 阿拉伯-努比亚地盾地质简图(据Johnson et al., 2011修改)
Fig. 1. Geological map of Arabian⁃Nubian Shield (after Johnson et al., 2011)
图 2 西埃塞俄比亚地体区域地质简图(据Allen and Tadesse, 2003修改)
Fig. 2. Sketch of regional geology of western Ethiopian terrain (after Allen and Tadesse, 2003)
图 5 石英二长岩TAS图解(a);SiO2-K2O图解(b);Na2O-K2O图解(c);A/NK-A/CNK图解(d)
a. 据Middlemos(1985);d. 据Maniar and Piccoli(1989);蓝色数据来自本文研究样品;紫色数据来自Kebede and Koeberl(2003)
Fig. 5. TAS diagram (a), SiO2-K2O diagram (b), Na2O-K2O diagram (c), and A/NK-A/CNK diagram(d)
图 6 埃塞俄比亚西部布雷地区石英二长岩微量元素原始地幔标准化蛛网图(a)和稀土元素球粒陨石标准化分布图(b)
b. 据Sun and McDonough(1989);蓝色数据来自本文研究样品;红色数据来自Kebede and Koeberl(2003)
Fig. 6. Primitive mantle normalized trace element spider diagram (a) and chondirite normalized REE distribution diagram (b)
图 8 A型花岗岩判别图
a. TFeO/MgO-Zr+Nb+Ce+Y图解(Whalen et al., 1987);b. K2O+Na2O/CaO-Zr+Nb+Ce+Y图解(Whalen et al., 1987);c. TFeO/(TFeO+MgO)-SiO2图解(Frost et al., 2001;Frost and Frost, 2011);d. K2O+Na2O-CaO-SiO2图解(Frost et al., 2001;Frost and Frost, 2011);蓝色数据来自本文研究样品;紫色数据来自Kebede and Koeberl(2003)
Fig. 8. Discriminant diagrams of A-type granites
图 9 (a) La/Sm-Sm/Yb图解(Kay and Mpodozis, 2001);(b) La/Sm-La图解(Allegre and Minster, 1978);(c) Rb/Sr-Sr图解(Rollinson, 1993);(d) (La/Yb)N-La图解(Rollinson, 1993)
Fig. 9. (a) La/Sm vs. Sm/Yb diagram; (b) La/Sm vs. La diagram(Allegre and Minster, 1978); (c) Rb/Sr vs. Sr diagram (Rollinson, 1993); (d) (La/Yb)N vs. La diagram (Rollinson, 1993)
图 10 构造判别图
a. Rb-Y+Nb图解(Pearce et al., 1984);b. Y-Nb-3Ga (Eby,1992)
Fig. 10. Tectonic discriminant diagrams
-
[1] Allegre, C. J., Minster, J. F., 1978. Quantitative Models of Trace Element Behavior in Magmatic Processes. Earth and Planetary Science Letters, 38(1): 1-25. https://doi.org/10.1016/0012⁃821x(78)90123⁃1 [2] Allen, A., Tadesse, G., 2003. Geological Setting and Tectonic Subdivision of the Neoproterozoic Orogenic Belt of Tuludimtu, Western Ethiopia. Journal of African Earth Sciences, 36: 329-343. https://doi.org/10.1016/S0899⁃5362(03)00045⁃9 [3] Bonin, B., 2007. A⁃Type Granites and Related Rocks: Evolution of a Concept, Problems and Prospects. Lithos, 97(1/2): 1-29. https://doi.org/10.1016/j.lithos.2006.12.007 [4] Creaser, R. A., Price, R. C., Wormald, R. J., 1991. A⁃Type Granites Revisited: Assessment of a Residual⁃Source Model. Geology, 19(2): 163. https://doi.org/10.1130/0091⁃7613(1991)019<0163:atgrao>2.3.co;2 doi: 10.1130/0091⁃7613(1991)019<0163:atgrao>2.3.co;2 [5] Dall'Agnol, R., Oliveira, D. C., 2007. Oxidized, Magnetite⁃Series, Rapakivi⁃Type Granites of Carajás, Brazil: Implications for Classification and Petrogenesis of A⁃Type Granites. Lithos, 93(3/4): 215-233. https://doi.org/10.1016/j.lithos.2006.03.065 [6] Eby, G.N., 1992. Chemical Subdivision of the A⁃Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641-644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2 [7] Frost, B.R., Barnes, C.G., Collins, W.J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033-2048. https://doi.org/10.1093/petrology/42.11.2033 [8] Frost, C.D., Frost, B.R., 2011. On Ferroan (A⁃Type) Granitoids: Their Compositional Variability and Modes of Rrigin. Journal of Petrology, 52(1): 39-53. https://doi.org/10.1093/petrology/egq070 [9] Gao, S., Rudnick, R. L., Yuan, H. L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432(7019): 892-897. https://doi.org/10.1038/nature03162 [10] Green, T. H., 1995. Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust⁃Mantle System. Chemical Geology, 120(3/4): 347-359. https://doi.org/10.1016/0009⁃2541(94)00145⁃x [11] Grenne, T., Pedersen, R. B., Bjerkgård, T., et al., 2003. Neoproterozoic Evolution of Western Ethiopia: Igneous Geochemistry, Isotope Systematics and U⁃Pb Ages. Geological Magazine, 140(4): 373-395. https://doi.org/10.1017/s001675680300801x [12] Hoskin, P. W. O., 2005. Trace⁃Element Composition of Hydrothermal Zircon and the Alteration of Hadean Zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta, 69(3): 637-648. https://doi.org/10.1016/j.gca.2004.07.006 [13] Johnson, P. R., Andresen, A., Collins, A. S., et al., 2011. Late Cryogenian⁃Ediacaran History of the Arabian⁃Nubian Shield: A Review of Depositional, Plutonic, Structural, and Tectonic Events in the Closing Stages of the Northern East African Orogen. Journal of African Earth Sciences, 61(3): 167-232. https://doi.org/10.1016/j.jafrearsci.2011.07.003 [14] Kebede, T., Kloetzli, U.S., Koeberl, C., et al., 2000. Single⁃Grain Zircon 207Pb/206Pb Ages and Evolution of Granitoid Magmatism in Western Ethiopia. Abstracts: 18th Colloquium of African Geology, Graz. Journal of African Earth Science, 30: 45. http://www.researchgate.net/publication/290793621_Single-grain_zircon_207Pb206Pb_ages_and_evolution_of_granitoid_magmatism_in_western_Ethiopia_Abstracts_18th_Colloquium_of_African_Geology_Graz_Austria [15] Kay, S. M., Mpodozis, C., 2001. Central Andean Ore Deposits Linked to Evolving Shallow Subduction Systems and Thickening Crust. GSA Today, 11(3): 4. https://doi.org/10.1130/1052⁃5173(2001)011<0004:caodlt>2.0.co;2 doi: 10.1130/1052⁃5173(2001)011<0004:caodlt>2.0.co;2 [16] Kebede, T., Koeberl, C., 2003. Petrogenesis of A⁃Type Granitoids from the Wallagga Area, Western Ethiopia: Constraints from Mineralogy, Bulk⁃Rock Chemistry, Nd and Sr Isotopic Compositions. Precambrian Research, 121(1/2): 1-24. https://doi.org/10.1016/s0301⁃9268(02)00198⁃5 [17] King, P. L., White, A. J. R., Chappell, B. W., et al., 1997. Characterization and Origin of Aluminous A⁃Type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3): 371-391. https://doi.org/10.1093/petroj/38.3.371 [18] Li, J.F., Fu, J.M., Ma, C.Q., et al., 2020. Petrogenesis and Tectonic Setting of the Shaziling Pluton in Jiuyishan Area, Nanling: Evidence from Zircon U⁃Pb Geochronology, Petrogeochemistry, and Sr⁃Nd⁃Hf Isotopes. Earth Science, 45(2): 374-388. https://doi.org/10.3799/dqkx.2019.013 [19] Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010. Continental and Oceanic Crust Recycling⁃Induced Melt⁃Peridotite Interactions in the Trans⁃North China Orogen: U⁃Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537-571. https://doi.org/10.1093/petrology/egp082 [20] Loiselle, M.C., Wones, D.R., 1979. Characteristics of Anorogenic Granites. Geological Society of America Abstracts with Programs, 11(7): 468. http://ci.nii.ac.jp/naid/10019593683 [21] Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016⁃7606(1989)101<0635:tdog>2.3.co;2 doi: 10.1130/0016⁃7606(1989)101<0635:tdog>2.3.co;2 [22] Middlemost, E.A.K., 1985. Magmas and Magmatic Rocks: An Introduction to Igneous Petrology. London, New York: Longman, 1-266. [23] Pearce, J. A., Harris, N. B. W., Tindle, A. G., et al., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956 [24] Rollinson, H.R., 1993. Using Geochemical Data: Evaluation, Presentation, and Interpretation. Longman Scientific and Technical, Singapore, 352. [25] Stern, R. J., 2002. Crustal Evolution in the East African Orogen: A Neodymium Isotopic Perspective. Journal of African Earth Sciences, 34(3/4): 109-117. https://doi.org/10.1016/s0899⁃5362(02)00012⁃x [26] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [27] Wang, Y., 2013. What is the Essence of A⁃Type Granite? Geological Journal of China Universities, (19): 157-158. [28] Whalen, J. B., Currie, K. L., Chappell, B. W., et al., 1987. A⁃Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/bf00402202 [29] Woldemichael, B. W., Kimura, J. I., Dunkley, D. J., et al., 2010. SHRIMP U⁃Pb Zircon Geochronology and Sr⁃Nd Isotopic Systematic of the Neoproterozoic Ghimbi⁃Nedjo Mafic to Intermediate Intrusions of Western Ethiopia: A Record of Passive Margin Magmatism at 855 Ma?. International Journal of Earth Sciences, 99(8): 1773-1790. https://doi.org/10.1007/s00531⁃009⁃0481⁃x [30] Xie, J.C., Chen, S., Rong, W., et al., 2012. Geochronology, Geochemistry and Tectonic Significance of Guniujiang A⁃Type Granite in Anhui Province. Acta Petrologica Sinica, 28 (12): 4007- 4020 (in Chinese with English abstract). [31] Yuan, Z.X., 2001. A Discussion on the Naming of A⁃Type Granite. Acta Ptrologica et Mineralogica, 20 (3): 293-296 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200103010.htm [32] Zhang, Q., Ran, B.G., Li, C.D., 2012. What is the Essence of A⁃Type Granite? Acta Petrologica et Mineralogica, 31(4): 621-626 (in Chinese with English abstract). [33] Zhao, K., Yao, H.Z., Wang, J.X., et al., 2020. Zircon U⁃Pb Geochronology and Geochemistry of Koka Granite and Its Geological Significance, Eritrea. Earth Science, 45(1): 156-167 (in Chinese with English abstract). [34] 李剑锋, 付建明, 马昌前, 等, 2020. 南岭九嶷山地区砂子岭岩体成因与构造属性: 来自锆石U⁃Pb年代学、岩石地球化学及Sr、Nd、Hf同位素证据. 地球科学, 45(2): 374-388. doi: 10.3799/dqkx.2019.013 [35] 汪洋, 2013. A型花岗岩的实质是什么? 高校地质学报, (19): 174-175. [36] 谢建成, 陈思, 荣伟, 等, 2012. 安徽牯牛降A型花岗岩的年代学、地球化学和构造意义. 岩石学报, 28(12): 4007-4020. [37] 袁忠信, 2001. 关于A型花岗岩命名问题的讨论. 岩石矿物学杂志, 20 (3): 293-296. [38] 张旗, 冉白皋, 李承东, 2012. A型花岗岩的实质是什么? 岩石矿物学杂志, 31(4): 621-626. doi: 10.3969/j.issn.1000-6524.2012.04.014 [39] 赵凯, 姚华舟, 王建雄, 等, 2020. 厄立特里亚Koka花岗岩锆石U⁃Pb年代学、地球化学特征及其地质意义. 地球科学, 45(1): 156-167. doi: 10.3799/dqkx.2018.237