Study on Sedimentary Tectonic Pattern of Wufeng Formation and Longmaxi Formation in the Northern Margin of Sichuan Basin, South China
-
摘要: 为了重建四川盆地北缘五峰组和龙马溪组沉积构造格局,以四川盆地北缘米仓山-大巴山地区五峰组和龙马溪组为研究对象,进行地层格架对比和沉积相分析,并使用Mo/TOC和Al-Co[EF]×Mn[EF]地球化学指标对沉积时期水体滞留程度进行判识.发现靠近隆起区,受物源供给及沉积空间控制,地层厚度差异较大,黑色页岩厚度整体较小.而远离隆起区,受大陆边缘上升洋流和陆内凹陷控制,黑色页岩自西向东逐渐加厚,TOC含量增高.研究表明:(1)米仓山地区五峰组沉积时期南郑福成和南江桥亭位于两种上升洋流交汇区域,长期受上升洋流影响;龙马溪组沉积时期主要受西乡上升影响,导致旺苍和南江地区隆升成岛,MS1井沉积最厚.(2)大巴山前缘及鄂西-渝东地区五峰组整体呈现出隆-凹相间的格局;受到来自华夏地块自南东至北西的持续挤压,龙马溪组沉积时期石柱-巫溪一线持续沉降,地层沉积较厚.Abstract: In order to reconstruct the sedimentary tectonic pattern of Wufeng Formation and Longmaxi Formation in the northern margin of Sichuan Basin, the Wufeng Formation and Longmaxi Formation in the Micangshan-Dabashan area of the northern margin of Sichuan Basin were taken as the research objects. The stratigraphic framework correlation and sedimentary facies analysis were carried out, and Mo/TOC and Al-Co[EF]×Mn[EF] geochemical indicators were used to determine the degree of water mass restricted in the sedimentary period. It is found that near the uplift area, controlled by the material supply and sedimentary space, the thickness of strata varies greatly, and the thickness of black shale is smaller as a whole. However, far away from the uplift area, the black shale gradually thickens from west to east and the TOC content increases under the control of the upwelling at the continental margin and intracontinental depression.Research shows that: (1) The Wufeng Formation in Micangshan area was deposited in Fucheng of Nanzheng County, and Qiaoting of Nanjiang County, in the intersection area of two kinds of upwelling currents, which were influenced by the upwelling currents for a long time. The sedimentary period of Longmaxi Formation was mainly influenced by the Xixiang Rise, which resulted in the uplift of Wangcang and Nanjiang areas into islands, with the thickest deposition in Well Mashen 1. (2) Generally, the Wufeng Formation in the Dabashan front and the western Hubei-eastern Chongqing area presents a pattern of uplift-depression alternation. Due to the continuous compression of the Cathaysian block from SE to NW, the Shizhu-Wuxi line subsided continuously during the sedimentary period of the Longmaxi Formation, resulting in a relatively thick stratigraphic deposition.
-
Key words:
- Wufeng Formation /
- Longmaxi Formation /
- upwelling currents /
- sedimentary tectonic pattern /
- Sichuan Basin /
- tectonics
-
表 1 主、微量元素地球化学测试样品个数及引用数据来源
Table 1. Number of geochemical test samples of major and trace elements and sources of cited data
剖面 层位 Al(%) Mn(%) Co(10-6) Mo(10-6) TOC(%) 城口月亮坪a 五峰组+龙马溪组 10+15 10+15 10+15 - 12+15 MS1井a 五峰组+龙马溪组 - - - 6+28 6+28 南江桥亭a 五峰组+龙马溪组 3+5 3+5 3+5 - 3+5 旺苍双汇b 五峰组 6 6 6 - - 旺苍大两会b 五峰组 4 4 4 - - 南郑福成b 五峰组 9 9 9 - - 镇巴梁白公路b 五峰组 4 4 4 - - 石柱漆辽c 五峰组+龙马溪组 7+31 7+31 7+31 - 7+31 注:a. 本文实测数据;b. 据孙小勇等(2016);c. 据 Li et al.(2017) . -
[1] Algeo, T. J., Lyons, T. W., 2006. Mo-Total Organic Carbon Covariation in Modern Anoxic Marine Environments: Implications for Analysis of Paleoredox and Paleohydrographic Conditions. Paleoceanography, 21(1): 279-298. https://doi.org/10.1029/2004pa001112 [2] Algeo, T. J., Tribovillard, N., 2009. Environmental Analysis of Paleoceanographic Systems Based on Molybdenum-Uranium Covariation. Chemical Geology, 268(3/4): 211-225. https://doi.org/10.1016/j.chemgeo.2009.09.001 [3] Chen, X., Fan, J.X., Zhang, Y. D., et al., 2015. Subdivision and Delineation of the Wufeng and Lungmachi Black Shales in the Subsurface Areas of the Yangtze Platform. Journal of Stratigraphy, 39(4): 351-358(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DCXZ201504001.htm [4] Chen, X., Xu, J.T., Cheng, H.J., et al., 1990. On the Hannan Old Land and the Dabashan Uplift. Journal of Stratigraphy. 14(2): 81-116(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DCXZ199002000.htm [5] Deng, X., Yang, K. G., Liu, Y. L., et al., 2010. Characteristics and Tectonic Evolution of Qianzhong Uplift. Earth Science Frontiers, 17(3): 79-89(in Chinese with English abstract). [6] Dong, D.Z., Shi, Z. S, Guan, Q. Z., et al., 2018. Progress, Challenges and Prospects of Shale Gas Exploration in the Wufeng-Longmaxi Reservoirs in the Sichuan Basin. Natural Gas Industry, 38(4): 67-76 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_natural-gas-industry_thesis/0201218476547.html [7] Erickson, B. E., Helz, G. R., 2000. Molybdenum(Ⅵ) Speciation in Sulfidic Waters. Geochimica et Cosmochimica Acta, 64(7): 1149-1158. https://doi.org/10.1016/s0016-7037(99)00423-8 [8] Fu, X. D., Qin, J. Z., Teng, G. E., et al., 2013. Study on Hydrocarbon Source in Marine Sequences in Shizhu Synclinorium, Western Hubei-Eastern Chongqing Area. Natural Gas Geoscience. 24(2): 372-381 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TDKX201302024.htm [9] Guo, X. M., 2015. Accumulation Conditions and Favorable Exploration Zones of Shale Gas in Wufeng-Longmaxi Formation, Northeast of Chongqing(Dissertation). Chengdu University of Technology, Chengdu, 1-67 (in Chinese with English abstract). [10] Guo, X. S., 2017. Sequence Stratigraphy and Evolution Model of the Wufeng-Longmaxi Shale in the Upper Yangtze Area. Earth Science, 42(7): 1069-1082 (in Chinese with English abstract). [11] Helz, G. R., Miller, C. V., Charnock, J. M., et al., 1996. Mechanism of Molybdenum Removal from the Sea and its Concentration in Black Shales: EXAFS Evidence. Geochimica et Cosmochimica Acta, 60(19): 3631-3642. https://doi.org/10.1016/0016-7037(96)00195-0 [12] Landing, W. M., Bruland, K. W., 1980. Manganese in the North Pacific. Earth and Planetary Science Letters, 49(1): 45-56. https://doi.org/10.1016/0012-821x(80)90149-1 [13] Li, S. J., Xiao, K. H., Wo, Y. J., et al., 2008. Developmental Controlling Factors of Upper Ordovician-Lower Silurian High Quality Source Rocks in Marine Sequence, South China. Acta Sedimentologica Sinica, 26(5): 872-880(in Chinese with English abstract). http://www.cqvip.com/Main/Detail.aspx?id=28481728 [14] Li, W.H., 1997. Sedimentary Characteristics and Environments of the Strata near the Ordovician-Silurian Boundary in Liangshan, Nanzheng. Journal of Stratigraphy, 21(2): 68-72(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DCXZ702.008.htm [15] Li, Y. F., Zhang, T. W., Ellis, G. S., et al., 2017. Depositional Environment and Organic Matter Accumulation of Upper Ordovician-Lower Silurian Marine Shale in the Upper Yangtze Platform, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 466(3): 252-264. https://doi.org/10.1016/j.palaeo.2016.11.037 [16] Li, Z., Jiang, Z. X., Tang, X. L., et al., 2017. Lithofacies Characteristics and Its Effect on Pore Structure of the Marine Shale in the Low Silurian Longmaxi Formation, Southeastern Chongqing. Earth Science, 42(7): 1116-1123 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201707007.htm [17] Liang, F., Bai, W. H., Zou, C. N., et al., 2016. Shale Gas Enrichment Pattern and Exploration Significance of Well WuXi-2 in Northeast Chongqing, NE Sichuan Basin. Petroleum Exploration and Development, 43(3): 386-394(in Chinese with English abstract). doi: 10.1016/S1876-3804(16)30045-3 [18] Little, S. H., Vance, D., Lyons, T. W., et al., 2015. Controls on Trace Metal Authigenic Enrichment in Reducing Sediments: Insights from Modern Oxygen-Deficient Settings. American Journal of Science, 315(2): 77-119. https://doi.org/10.2475/02.2015.01 [19] Liu, S. G., Deng, B., Sun, W., et al., 2018. Sichuan Basin: A Superimposed Sedimentary Basin Mainly Controlled by Its Peripheric Tectonics. Chinese Journal of Geology, 53(1): 308-326(in Chinese with English abstract). http://www.researchgate.net/publication/322615210_Sichuan_Basin_A_superimposed_sedimentary_basin_mainly_controlled_by_its_peripheric_tectonics [20] Lu, Y. B., Ma, Y. Q., Wang, Y. X., et al., 2017. The Sedimentary Response to the Major Geological Events and Lithofacies Characteristics of Wufeng Formation-Longmaxi Formation in the Upper Yangtze Area. Earth Science, 42(7): 1169-1184 (in Chinese with English abstract). [21] Ma, Y. Q., Fan, M. J., Lu, Y. C., et al., 2016. Geochemistry and Sedimentology of the Lower Silurian Longmaxi Mudstone in Southwestern China: Implications for Depositional Controls on Organic Matter Accumulation. Marine and Petroleum Geology, 75: 291-309. https://doi.org/10.1016/j.marpetgeo.2016.04.024 [22] Nie, H. K., Jin, Z. J., Ma, X., et al., 2017. Graptolites Zone and Sedimentary Characteristics of Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation in Sichuan Basin and Its Adjacent Areas. Acta Petrolei Sinica, 38(2): 160-174 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYXB201702004.htm [23] Parrish, J. T., Gautier, D. L., 1993. Sharon Springs Member of Pierre Shale: Upwelling in the Western Interior Seaway? In: Caldwell, W. G. E., Kauffman, E. G., eds. Evolution of the Western Interior Basin. Geological Association of Canada Special Paper, Canada, 39: 319-332. [24] Qiu, J.W., 2015. Shale Lithofacies Characteristics Study of Wufeng-Longmaxi Formation in Eastern Maginal Part of Sichuan Basin (Dissertation). Chengdu University of Technology, Chengdu, 1-85(in Chinese with English abstract). [25] Rong, J. Y., Zhan, R. B., Xu, H. G., et al., 2010. Expansion of the Cathaysian Oldland through the Ordovician-Silurian Transition: Emerging Evidence and Possible Dynamics. Science in China (Series D: Earth Sciences), 53(1): 1-17. https://doi.org/10.1007/s11430-010-0005-3 [26] Statham, P. J., Burton, J. D., 1986. Dissolved Manganese in the North Atlantic Ocean, 0-35°N. Earth and Planetary Science Letters, 79(1/2): 55-65. https://doi.org/10.1016/0012-821x(86)90040-3 [27] Sun, X. Y., Mu, C. L., Ge, X. Y., et al., 2016. Geochemistry and Sedimentary Environments of the Upper Ordovician Wufeng Formation in Guangyuan, Northern Sichuan and Zhenba, Southern Shaanxi. Sedimentary Geology and Tethyan Geology, 36(1): 46-54(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_sedimentary-geology-tethyan_thesis/0201252082742.html [28] Sweere, T., van den Boorn, S., Dickson, A. J., et al., 2016. Definition of New Trace-Metal Proxies for the Controls on Organic Matter Enrichment in Marine Sediments Based on Mn, Co, Mo and Cd Concentrations. Chemical Geology, 441(12): 235-245. https://doi.org/10.1016/j.chemgeo.2016.08.028 [29] Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232(1/2): 12-32. https://doi.org/10.1016/j.chemgeo.2006.02.012 [30] Wang, C., Zhang, B. Q., Shu, Z. G., et al., 2019. Shale Lamination and Its Influence on Shale Reservoir Quality of Wufeng Formation-Longmaxi Formation in Jiaoshiba Area. Earth Science, 44(3): 972-982 (in Chinese with English abstract). [31] Wang, J., Bao, H. Y., Lu, Y. Q., et al., 2019. Quantitative Characterization and Main Controlling Factors of Shale Gas Occurrence in Jiaoshiba Area, Fuling. Earth Science, 44(3): 1001-1011 (in Chinese with English abstract). http://www.researchgate.net/publication/333043098_Quantitative_Characterization_and_Main_Controlling_Factors_of_Shale_Gas_Occurrence_in_Jiaoshiba_Area_Fuling [32] Wang, X.F., 2016. Ordovician Tectonic-Paleogeography in South China and Chrono- and Bio-Stratigraphic Division and Correlation. Earth Science Frontiers, 23(6): 253-267(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201606026.htm [33] Wang, Y.M., Li, X.J., Dong, D.Z., et al., 2017. Main Factors Controlling the Sedimentation of High-Quality Shale in Wufeng-Longmaxi Fm, Upper Yangtze Region. Natural Gas Industry. 37(4): 9-20(in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S2352854017301250 [34] Wang, Y.M., Chen, B., Li, X. J., et al., 2018. Sedimentary Characteristics of Upwelling Facies Shale in Lower Silurian Longmaxi Formation, Northeast Sichuan Area. Acta Petrolei Sinica, 39(10): 1092-1102(in Chinese with English abstract). http://www.researchgate.net/publication/330344163_Sedimentary_characteristics_of_upwelling_facies_shale_in_Lower_Silurian_Longmaxi_Formation_northeast_Sichuan_area [35] Wu, J., Liang, F., Lin, W., et al., 2017. Reservoirs Characteristics and Gas-Bearing Capacity of Wufeng-Longmaxi Formation Shale in Well WX-2, Northeast Chongqing Area. Acta Petrolei Sinica, 38(5): 32-44 (in Chinese with English abstract). http://www.researchgate.net/publication/321722120_Reservoirs_characteristics_and_gas-bearing_capacity_of_Wufeng-Longmaxi_Formation_shale_in_Well_WX-2_northeast_Chongqing_area [36] Xiong, G. Q., Wang, J., Li, Y. Y., et al., 2017. Zircon U-Pb Dating and Geological Significance of the Bentonites from the Upper Ordovician Wufeng Formation and Lower Silurian Longmaxi Formation in Western Daba Mountains. Sedimentary Geology and Tethyan Geology, 37(2): 46-58(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TTSD201702006.htm [37] Ye, Y. H., Liu, S. G., Ran, B., et al., 2017. Characteristics of Black Shale in the Upper Ordovician Wufeng and Lower Silurian Longmaxi Formations in the Sichuan Basin and its Periphery, China. Australian Journal of Earth Sciences, 64(5): 667-687. https://doi.org/10.1080/08120099.2017.1321581 [38] Zheng, Y., Anderson, R. F., van Geen, A., et al., 2000. Authigenic Molybdenum Formation in Marine Sediments: A Link to Pore Water Sulfide in the Santa Barbara Basin. Geochimica et Cosmochimica Acta, 64(24): 4165-4178. https://doi.org/10.1016/s0016-7037(0)00495-6 [39] Zhou, Y.X., 2014. Study on the Sedimentary Facies and the Geochemical Character of the Hydrocarbon of Wufeng-Longmaxi Formation, Northeast of Chongqing (Dissertation). Chengdu University of Technology, Chengdu, 1-74 (in Chinese with English abstract). [40] Zhou, Y. X., Ding, J., Yu, Q., et al., 2017. Sedimentary and Organic Carbon Isotopic Characteristics of the Kuanyinchiao Member in Northeastern Chongqing and Its Regional Correlation. Acta Geological Sinica. 91(5): 1097-1107 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DZXE201705010&dbcode=CJFD&year=2017&dflag=pdfdown [41] 陈旭, 樊隽轩, 张元动, 等, 2015. 五峰组及龙马溪组黑色页岩在扬子覆盖区内的划分与圈定. 地层学杂志, 39(4): 351-358. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201504001.htm [42] 陈旭, 徐均涛, 成汉钧, 等, 1990. 论汉南古陆及大巴山隆起. 地层学杂志, 14(2): 81-116. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ199002000.htm [43] 邓新, 杨坤光, 刘彦良, 等, 2010. 黔中隆起性质及其构造演化. 地学前缘, 17(3): 79-89. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201003009.htm [44] 董大忠, 施振生, 管全中, 等, 2018. 四川盆地五峰组-龙马溪组页岩气勘探进展、挑战与前景. 天然气工业, 38(4): 67-76. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201804013.htm [45] 付小东, 秦建中, 滕格尔, 等, 2013. 鄂西渝东地区石柱复向斜海相层系烃源研究. 天然气地球科学, 24(2): 372-381. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201302024.htm [46] 郭秀梅, 2015. 渝东北地区五峰组-龙马溪组页岩气成藏条件及有利区预测(硕士学位论文). 成都: 成都理工大学, 1-67. [47] 郭旭升, 2017. 上扬子地区五峰组-龙马溪组页岩层序地层及演化模式. 地球科学, 42(7): 1069-1082. doi: 10.3799/dqkx.2017.086 [48] 李双建, 肖开华, 沃玉进, 等, 2008. 南方海相上奥陶统-下志留统优质烃源岩发育的控制因素. 沉积学报, 26(5): 872-880. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200805024.htm [49] 李文厚, 1997. 南郑梁山奥陶系与志留系界线附近的沉积特征及沉积环境. 地层学杂志, 21(2): 68-72. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ702.009.htm [50] 李卓, 姜振学, 唐相路, 等, 2017. 渝东南下志留统龙马溪组页岩岩相特征及其对孔隙结构的控制. 地球科学, 42(7): 1116-1123. doi: 10.3799/dqkx.2017.090 [51] 梁峰, 拜文华, 邹才能, 等, 2016. 渝东北地区巫溪2井页岩气富集模式及勘探意义. 石油勘探与开发, 43(3): 350-358. doi: 10.11698/PED.2016.03.04 [52] 刘树根, 邓宾, 孙玮, 等, 2018. 四川盆地: 周缘活动主控下形成的叠合盆地. 地质科学, 53(1): 308-326. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201101021.htm [53] 陆扬博, 马义权, 王雨轩, 等, 2017. 上扬子地区五峰组-龙马溪组主要地质事件及岩相沉积响应. 地球科学, 42(7): 1169-1184. doi: 10.3799/dqkx.2017.095 [54] 聂海宽, 金之钧, 马鑫, 等, 2017. 四川盆地及邻区上奥陶统五峰组-下志留统龙马溪组底部笔石带及沉积特征. 石油学报, 38(2): 160-174. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201702004.htm [55] 邱嘉文, 2015. 四川盆地东缘五峰-龙马溪组页岩岩相特征研究(硕士学位论文). 成都: 成都理工大学, 1-85. [56] 孙小勇, 牟传龙, 葛祥英, 等, 2016. 四川广元-陕西镇巴地区上奥陶统五峰组地球化学特征及沉积环境意义. 沉积与特提斯地质, 36(1): 46-54. doi: 10.3969/j.issn.1009-3850.2016.01.006 [57] 王超, 张柏桥, 舒志国, 等, 2019. 焦石坝地区五峰组-龙马溪组页岩纹层发育特征及其储集意义. 地球科学, 44(3): 972-982. doi: 10.3799/dqkx.2019.018 [58] 王进, 包汉勇, 陆亚秋, 等, 2019. 涪陵焦石坝地区页岩气赋存特征定量表征及其主控因素. 地球科学, 44(3): 1001-1011. doi: 10.3799/dqkx.2018.388 [59] 汪啸风, 2016. 中国南方奥陶纪构造古地理及年代与生物地层的划分与对比. 地学前缘, 23(6): 253-267. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201606026.htm [60] 王玉满, 李新景, 董大忠, 等, 2017. 上扬子地区五峰组-龙马溪组优质页岩沉积主控因素. 天然气工业, 37(4): 9-20. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201704004.htm [61] 王玉满, 陈波, 李新景, 等, 2018. 川东北地区下志留统龙马溪组上升洋流相页岩沉积特征. 石油学报, 39(10): 1092-1102. doi: 10.7623/syxb201810002 [62] 武瑾, 梁峰, 吝文, 等, 2017. 渝东北地区巫溪2井五峰组-龙马溪组页岩气储层及含气性特征. 石油学报, 38(5): 32-44. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201705004.htm [63] 熊国庆, 王剑, 李园园, 等, 2017. 大巴山西段上奥陶统-下志留统五峰组-龙马溪组斑脱岩锆石U-Pb年龄及其地质意义. 沉积与特提斯地质, 37(2): 46-58. doi: 10.3969/j.issn.1009-3850.2017.02.006 [64] 周业鑫, 2014. 渝东北地区五峰-龙马溪组页岩沉积相及其油气地球化学特征(硕士学位论文). 成都: 成都理工大学, 1-74. [65] 周业鑫, 丁俊, 余谦, 等, 2017. 渝东北地区观音桥段沉积与有机碳同位素特征及其区域对比. 地质学报, 91(5): 1097-1107. doi: 10.3969/j.issn.0001-5717.2017.05.010