Early Paleoproterozoic Tectonic Evolution of Central Jiao-Liao-Ji Belt: Evidence from Muniuhe and Dafangshen Plutons
-
摘要: 辽吉花岗岩是胶-辽-吉活动带的重要组成部分,它们是限定胶-辽-吉活动带早期构造属性的重要依据.由于辽吉花岗岩的属性一直存在争议,所以胶-辽-吉带的早期构造环境也一直没有定论.通过对牧牛河-大房身地区的辽吉花岗岩(牧牛河岩体和大房身岩体)进行年代学和地球化学分析,以探讨该地区辽吉花岗岩成因和地质意义.锆石U-Pb定年结果表明,牧牛河岩体和大房身岩体分别形成于2 176±4 Ma和2 179±4 Ma.牧牛河花岗岩和大房身花岗岩具有相似的岩石地球化学特征,它们都富SiO2(72.85%~77.67%),富碱(K2O+Na2O=7.65%~8.86%),贫Ca、Mg、Al(CaO=0.10%~0.92%,MgO=0.03%~0.09%,Al2O3=11.49%~12.67%),且K2O/Na2O值较高(0.99~1.83).牧牛河花岗岩和大房身花岗岩的稀土配分模式曲线都为右倾型,有较强的负Eu异常(Eu/Eu*=0.08~0.56)和较高的Ga/Al比值,而且岩体富集Zr、U、Y等高场强元素以及Rb、K等大离子亲石元素,贫Ba、Sr等元素.锆石饱和温度计算表明牧牛河花岗岩(855~871 ℃)和大房身花岗岩(850~886 ℃)都属于高温花岗岩.较低的Nb/Y比值和较高的岩浆温度暗示牧牛河花岗岩和大房身花岗岩为A2型花岗岩,主要来源于减薄的下地壳岩石的部分熔融.大量A2型辽吉花岗岩的出现,再结合活动带内最近发现的钠质辽吉花岗岩和钙碱性中基性岩,表明胶-辽-吉活动带早期的构造环境为弧后盆地.Abstract: Liaoji granitoids are important constituents of the Jiao-Liao-Ji belt (JLJB), and they provide important constraints on tectonic setting of the JLJB. The tectonic setting of the JLJB is still controversial due to the debate on nature of the Liaoji granitoids. It conducted zircon U-Pb geochronological and geochemical analyses of Liaoji granitoids (Muniuhe and Dafangshen plutons) in the Muniuhe-Dafangshen area, and then discuss the petrogenesis and geological significance of these granitoids. LA-ICP-MS U-Pb zircon dating gives the emplacement age of 2 176±4 Ma and 2 179±4 Ma for Muniuhe and Dafangshen plutons, respectively. Muniuhe and Dafangshen granitoids display similar geochemical characteristics. They have high SiO2 (72.85%-77.67%), alkalis (K2O+Na2O=7.65%-8.86%) and K2O/Na2O ratios (0.99-1.83), and low CaO (0.10%-0.92%), MgO (0.03%-0.09%) and Al2O3 (11.49%-12.67%) contents. The chondrite-normalized REE patterns of Muniuhe and Dafangshen granitoids show right-dipping linear trends with slightly negative Eu anomalies (Eu/Eu*=0.08-0.56) and high Ga/Al ratios. They are enriched in high field strength elements (HFSEs; e.g., Zr, U and Y) and large-ion lithophile elements (LILEs; e.g., Rb and K), and depleted in Nb, P, Ti and Sr. In addition, they display high Zr saturation temperatures (855-871 ℃ and 850-886 ℃, repectively). Low Nb/Y ratios and high Zr saturation temperatures indicate that the Muniuhe and Dafangshen granitoids have affinities with A2-subtype granitoids, and they were derived from thinned lower crust. The occurrence of voluminous A2-subtype granitoids, combined with the newly discovered Na-rich granitoids and calc-alkaline mafic rocks, suggests that the tectonic setting of the JLJB is back-arc basin.
-
Key words:
- Jiao-Liao-Ji belt /
- Liaoji granitoids /
- A2-subtype granitoid /
- back-arc basin /
- tectonics
-
图 1 胶‒辽‒吉活动带中古元古花岗岩分布图
Fig. 1. Schematic map of Jiao-Liao-Ji belt showing the distribution of the Paleoproterozoic granitoids
图 2 牧牛河‒大房身地区地质简图
前人数据主要王鹏森等(2017)和Liu et al.(2018)
Fig. 2. Geological sketch map of the Muniuhe-Dafangshen area
图 7 牧牛河花岗岩和大房身花岗岩稀土元素球粒陨石标准化配分图(a)与微量元素原始地幔标准化蛛网图(b)
a.标准化数值据Boynton(1984);b.标准化数值据Sun and McDonough(1989)
Fig. 7. Chondrite-normalized REE distribution patterns (a) and primitive mantle-normalized trace element spider diagram (b) of the Muniuhe and Dafangshen granitoids
图 8 牧牛河花岗岩和大房身花岗岩的成因类型判别
Fig. 8. Genetic type discrimination for the Muniuhe and Dafangshen granitoids
图 9 判别A1、A2型花岗岩的三角图解
底图据Eby(1992)
Fig. 9. Triangular plots for distinguishing between A1 and A2 granitoids
表 1 牧牛河花岗岩LA⁃ICP⁃MS锆石U⁃Pb定年数据
Table 1. LA-ICP-MS U-Pb zircon age data for the Muniuhe granitoids
NMN-5 Th/U 同位素比值 年龄(Ma) 测点号 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 1 0.55 0.137 0 0.000 9 7.493 6 0.066 8 0.397 4 0.002 9 2 190 12 2 172 8 2 157 13 2 0.40 0.135 9 0.001 0 7.631 7 0.083 1 0.407 6 0.003 8 2 176 13 2 189 10 2 204 18 3 0.57 0.134 6 0.000 8 7.326 2 0.053 8 0.395 1 0.002 0 2 159 10 2 152 7 2 147 9 4 0.42 0.130 0 0.000 9 6.831 6 0.068 2 0.381 7 0.003 3 2 098 13 2 090 9 2 084 15 5 0.51 0.136 0 0.000 8 7.562 2 0.071 7 0.402 8 0.003 0 2 177 11 2 180 9 2 182 14 6 0.55 0.136 0 0.000 9 7.609 4 0.067 7 0.406 5 0.003 1 2 177 12 2 186 8 2 199 14 7 0.46 0.136 0 0.000 9 7.218 1 0.068 3 0.384 7 0.002 9 2 177 12 2 139 8 2 098 14 8 0.60 0.131 9 0.000 6 7.104 1 0.049 9 0.391 6 0.002 2 2 123 8 2 125 6 2 130 10 9 0.56 0.136 5 0.000 7 7.441 8 0.059 7 0.395 5 0.002 5 2 183 10 2 166 7 2 148 11 10 0.41 0.134 2 0.000 9 7.507 9 0.072 9 0.405 9 0.003 5 2 154 12 2 174 9 2 196 16 11 0.41 0.136 9 0.000 7 7.586 7 0.059 5 0.402 8 0.002 3 2 188 9 2 183 7 2 182 10 12 0.47 0.136 3 0.000 7 7.322 0 0.054 8 0.390 0 0.002 2 2 180 9 2 151 7 2 123 10 13 0.26 0.128 7 0.000 6 6.814 2 0.040 3 0.385 1 0.001 8 2 080 8 2 088 5 2 100 8 14 0.57 0.135 9 0.001 0 7.779 2 0.082 7 0.415 4 0.003 5 2 176 13 2 206 10 2 239 16 15 0.58 0.136 0 0.000 8 7.394 1 0.061 7 0.395 0 0.002 6 2 176 10 2 160 7 2 146 12 16 0.59 0.137 3 0.000 9 7.631 5 0.078 3 0.404 0 0.003 4 2 193 11 2 189 9 2 187 16 17 0.32 0.131 0 0.000 8 6.884 6 0.053 8 0.382 1 0.002 3 2 112 10 2 097 7 2 086 11 18 0.54 0.136 0 0.000 7 7.503 3 0.060 9 0.400 6 0.002 6 2 177 9 2 173 7 2 172 12 19 0.43 0.136 0 0.000 8 7.452 1 0.062 6 0.397 7 0.002 4 2 177 10 2 167 8 2 158 11 20 0.55 0.135 4 0.000 9 7.566 8 0.049 5 0.404 8 0.001 9 2 169 11 2 181 6 2 191 9 21 0.63 0.136 0 0.000 7 7.768 6 0.060 9 0.414 8 0.002 8 2 177 9 2 205 7 2 237 13 22 0.29 0.127 0 0.000 7 6.383 1 0.040 0 0.365 2 0.001 7 2 057 9 2 030 6 2 007 8 23 0.55 0.136 1 0.000 8 7.584 1 0.055 4 0.404 8 0.002 4 2 178 10 2 183 7 2 191 11 24 0.51 0.135 2 0.001 2 7.492 5 0.070 0 0.402 4 0.002 2 2 167 16 2 172 8 2 180 10 25 0.59 0.136 2 0.000 9 7.356 7 0.057 5 0.392 2 0.002 3 2 179 11 2 156 7 2 133 11 26 0.21 0.136 5 0.000 7 7.538 9 0.046 7 0.400 9 0.002 1 2 183 9 2 178 6 2 173 10 27 0.42 0.135 7 0.000 9 7.560 6 0.062 8 0.403 9 0.002 4 2 173 12 2 180 7 2 187 11 28 0.46 0.133 8 0.001 0 7.400 3 0.063 1 0.401 0 0.002 3 2 149 13 2 161 8 2 173 11 29 0.34 0.132 9 0.000 6 7.203 7 0.044 8 0.393 2 0.002 1 2 136 8 2 137 6 2 138 10 30 0.44 0.135 0 0.000 8 7.534 0 0.061 8 0.404 9 0.002 8 2 164 10 2 177 7 2 192 13 表 2 大房身花岗岩LA⁃ICP⁃MS锆石U⁃Pb定年数据
Table 2. LA-ICP-MS U-Pb zircon age data for the Dafangshen granitoids
NXK-1 Th/U 同位素比值 年龄(Ma) 测点号 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 1 0.43 0.136 314 0.000 748 7.536 491 0.063 028 0.400 693 0.002 840 2 181 10 2 177 7 2 172 13 2 0.48 0.136 195 0.001 109 7.414 060 0.061 794 0.395 431 0.002 314 2 179 14 2 163 7 2 148 11 3 0.40 0.136 084 0.000 761 7.502 452 0.045 360 0.400 392 0.001 841 2 178 10 2 173 5 2 171 8 4 0.42 0.135 563 0.000 863 7.549 759 0.051 956 0.404 146 0.001 929 2 171 11 2 179 6 2 188 9 5 0.42 0.136 118 0.000 736 7.598 436 0.058 637 0.405 277 0.002 761 2 178 9 2 185 7 2 193 13 6 0.57 0.135 597 0.000 839 7.493 373 0.055 329 0.400 786 0.002 492 2 172 11 2 172 7 2 173 11 7 0.31 0.136 135 0.000 555 7.468 271 0.035 619 0.398 329 0.001 862 2 179 7 2 169 4 2 161 9 8 0.46 0.136 296 0.000 669 7.609 584 0.054 945 0.405 000 0.002 385 2 181 9 2 186 6 2 192 11 9 0.34 0.136 385 0.001 003 7.631 934 0.061 287 0.406 366 0.002 168 2 182 13 2 189 7 2 198 10 10 0.27 0.136 132 0.000 554 7.440 805 0.040 869 0.396 575 0.001 935 2 179 7 2 166 5 2 153 9 11 0.34 0.135 887 0.000 911 7.489 084 0.060 179 0.399 824 0.002 246 2 175 12 2 172 7 2 168 10 12 0.59 0.136 183 0.000 717 7.528 036 0.053 979 0.400 953 0.002 511 2 179 9 2 176 6 2 173 12 13 0.41 0.135 585 0.000 994 7.447 815 0.064 456 0.396 828 0.002 389 2 172 13 2 167 8 2 154 11 14 0.39 0.137 054 0.001 369 7.504 258 0.072 209 0.397 119 0.002 858 2 190 17 2 173 9 2 156 13 15 0.49 0.136 234 0.000 932 7.683 927 0.064 948 0.409 327 0.003 034 2 180 12 2 195 8 2 212 14 16 0.29 0.135 879 0.000 998 7.548 572 0.064 418 0.402 580 0.002 332 2 175 13 2 179 8 2 181 11 17 0.40 0.135 831 0.000 851 7.637 195 0.057 774 0.407 058 0.002 266 2 175 11 2 189 7 2 201 10 18 0.55 0.136 561 0.000 740 7.664 151 0.056 715 0.407 061 0.002 833 2 184 9 2 192 7 2 201 13 19 0.19 0.132 630 0.001 016 7.141 640 0.050 726 0.391 205 0.002 665 2 133 13 2 129 6 2 128 12 20 0.42 0.136 564 0.000 731 7.590 441 0.048 024 0.403 219 0.002 260 2 184 9 2 184 6 2 184 10 21 0.41 0.136 656 0.001 193 7.460 758 0.065 135 0.396 802 0.003 363 2 185 15 2 168 8 2 154 16 22 0.43 0.136 876 0.001 053 7.648 459 0.064 587 0.406 065 0.003 524 2 188 13 2 191 8 2 197 16 23 0.45 0.136 042 0.000 893 7.475 255 0.059 599 0.397 729 0.002 444 2 177 11 2 170 7 2 159 11 24 0.47 0.136 509 0.001 383 7.671 900 0.083 920 0.408 126 0.003 533 2 183 18 2 193 10 2 206 16 25 0.41 0.136 284 0.000 897 7.565 909 0.066 414 0.402 455 0.002 915 2 181 11 2 181 8 2 180 13 26 0.57 0.136 462 0.000 717 7.587 457 0.053 048 0.402 970 0.002 602 2 183 9 2 183 6 2 183 12 27 0.49 0.136 514 0.000 860 7.626 749 0.065 378 0.404 571 0.002 753 2 183 11 2 188 8 2 190 13 28 0.38 0.135 006 0.000 904 8.266 063 0.090 619 0.443 968 0.004 150 2 164 12 2 261 10 2 368 19 29 0.47 0.136 054 0.001 351 7.697 129 0.093 859 0.409 641 0.003 554 2 178 17 2 196 11 2 213 16 30 0.34 0.135 936 0.000 623 7.635 324 0.060 588 0.406 732 0.002 566 2 176 8 2 189 7 2 200 12 表 3 牧牛河花岗岩和大房身花岗岩的主量元素(%)和痕量元素(10-6)组成
Table 3. Major (%) and trace (10-6) element compositions for the Muniuhe and Dafangshen granitoids
岩性 牧牛河花岗岩 大房身花岗岩 样品号 MN-1 MN-4 MNN-5 MN-7 MN-8 NXK-1 XK-2 XK-3 XK-4 SiO2 74.37 73.29 73.77 72.85 73.23 73.00 74.37 76.62 77.67 TiO2 0.20 0.27 0.27 0.26 0.27 0.26 0.23 0.09 0.10 Al2O3 11.98 12.28 12.40 12.36 12.67 12.57 12.16 11.78 11.49 Fe2O3T 3.69 4.66 3.50 4.63 4.24 4.15 4.04 2.16 2.16 MnO 0.01 0.02 0.03 0.01 0.01 0.06 0.02 0.01 0.02 MgO 0.07 0.09 0.09 0.08 0.03 0.08 0.07 0.03 0.06 CaO 0.14 0.39 0.92 0.15 0.28 0.90 0.32 0.35 0.10 Na2O 3.04 3.30 3.80 4.35 3.71 3.29 2.97 3.25 2.83 K2O 4.86 4.91 4.42 4.29 5.15 5.02 4.68 5.19 5.18 P2O5 0.01 0.02 0.02 0.03 0.03 0.02 0.01 < 0.01 < 0.01 LOI 1.12 0.61 0.30 0.14 0.10 0.46 0.60 0.34 0.33 Total 99.42 99.69 99.41 98.98 99.60 99.62 99.31 99.73 99.80 K2O/Na2O 1.60 1.49 1.16 0.99 1.39 1.53 1.58 1.60 1.83 A/CNK 1.14 1.07 0.97 1.02 1.04 1.01 1.15 1.01 1.10 Mg# 3.66 3.72 4.89 3.34 1.40 3.71 3.35 2.70 5.26 Ba 1 010 1 070 1 185 471 685 986 717 133.0 128.5 Rb 112.0 142.0 107.5 93.7 157.5 147.0 163.0 198.5 183.0 Sr 62.4 79.8 103.0 34.3 49.5 77.2 44.4 18.1 14.7 Zr 339 337 355 371 355 372 390 307 308 Nb 20.5 18.7 19.3 19.5 20.3 18.3 28.0 28.3 17.8 Cr 20 20 20 20 20 20 20 30 20 Y 44.2 24.3 45.5 38.7 28.5 43.7 69.4 102.5 39.0 Cs 0.58 1.14 0.52 0.48 1.23 2.05 0.66 0.76 0.53 Ta 1.6 1.1 1.3 1.3 1.5 1.2 1.4 0.7 0.5 Hf 9.3 8.8 9.0 9.3 9.5 9.2 10.2 11.6 11.4 Th 24.9 22.3 14.6 13.6 35.9 20.1 36.3 43.1 36.2 U 1.82 2.85 3.06 1.73 3.02 1.61 4.65 5.08 2.28 Ga 17.2 19.3 16.7 21.1 20.8 19.7 19.6 21.4 19.8 La 21.9 68.5 21.9 63.0 48.5 46.2 41.1 110.5 38.6 Ce 47.5 165.0 46.7 170.5 161.5 131.5 162.0 197.0 143.0 Pr 5.56 13.00 6.30 12.25 8.93 10.05 12.00 24.6 9.11 Nd 21.5 44.3 27.1 41.6 29.7 38.1 44.6 90.9 32.2 Sm 4.99 6.77 6.62 7.11 4.66 8.12 8.62 19.10 6.44 Eu 0.60 1.03 1.00 0.73 0.67 1.22 0.88 0.45 0.15 Gd 5.44 4.62 6.49 5.55 3.25 7.45 7.79 17.00 4.72 Tb 1.08 0.73 1.13 1.03 0.64 1.23 1.55 2.83 0.95 Dy 7.68 4.70 7.59 6.93 4.68 7.86 11.35 18.05 6.75 Ho 1.73 1.01 1.65 1.56 1.21 1.64 2.75 3.69 1.56 Er 4.87 3.22 5.04 4.89 4.46 4.99 8.49 10.65 5.16 Tm 0.71 0.50 0.72 0.77 0.86 0.77 1.29 1.47 0.75 Yb 4.27 3.63 4.71 5.01 6.53 4.63 8.27 8.75 4.48 Lu 0.62 0.56 0.73 0.73 1.09 0.75 1.17 1.20 0.65 ΣREE 128.45 317.57 137.68 321.66 276.68 264.51 311.86 506.19 254.52 (La/Yb)N 3.46 12.72 3.13 8.48 5.01 6.73 3.35 8.51 5.81 (La/Sm)N 2.76 2.76 2.76 2.76 2.76 2.76 2.76 2.76 2.76 δEu 0.35 0.56 0.47 0.36 0.53 0.48 0.33 0.08 0.08 δCe 1.01 1.25 0.95 1.39 1.74 1.41 1.74 0.87 1.78 -
[1] Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses That do not Report 204Pb. Chemical Geology, 192: 59-79. doi: 10.1016/S0009-2541(02)00195-X [2] Bai, J., 1993. The Precambrian Geology and Pb-Zn Mineralization in the Northern Margin of North China Platform. Geological Publishing House, Beijing, 1-89 (in Chinese). [3] Boynton, W.V., 1984. Geochemistry of the Rare Earth Elements: Meterorite Studies. In: Henderson, P., ed., Rare Earth Elements Geochemistry. Elsevier, Amsterdam, 63-114. https://doi.org/10.1016/B978-0-444-42148-7.50008-3. [4] Chen, B., Li, Z., Wang, J.L., et al., 2016. Liaodong Peninsula ~2.2 Ga Magmatic Event and Its Geological Significance. Journal of Jilin University (Earth Science Edition), 46(2): 303-320 (in Chinese with English abstract). [5] Creaser, R.A., Price, R.C., Wormald, R.J., 1991. A-Type Granites Revisited: Assessment of a Residual-Source Model. Geology, 19: 163-166. https://doi.org/10.1130/0091-7613(1991)019<0163:ATGRAO>2.3.CO;2 doi: 10.1130/0091-7613(1991)019<0163:ATGRAO>2.3.CO;2 [6] Collins, W. J., Beams, S. D., White, A. J. R., et al., 1982. Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189-200. https://doi.org/10.1007/BF00374895 [7] Eby, G. N., 1990. The A-Type Granitoids: A Review of Their Occurrence and Chemical Characteristics and Speculations on Their Petrogenesis. Lithos, 26(1): 115-134. https://doi.org/10.1016/0024-4937(90)90043-Z [8] Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20: 641-644. https://doi.org/10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2 doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2 [9] Jia, X.H., Wang, Q., Tang, G.J., et al., 2009. A-Type Granites: Research Progress and Implications. Geotectonica et Metallogenia, 33(3): 465-480 (in Chinese with English abstract). http://www.sciencemeta.com/index.php/ddgzyckx/user/setLocale/en_US?source=/index.php/ddgzyckx/article/view/172009 [10] King, P. L., White, A. J. R., Chappell, B. W., et al., 1997. Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3): 371-391. https://doi.org/10.1093/petroj/38.3.371 [11] Li, S.Z., Guo, L.L., Dai, L.M., et al., 2015. Precambrian Geodynamics (Ⅴ): Origin of Plate Tectonics. Earth Science Frontiers, 22(6): 65-76 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201506007.htm [12] Li, S.Z., Zhao, G.C., 2007. SHRIMP U-Pb Zircon Geochronology of the Liaoji Granitoids: Constraints on the Evolution of the Paleoproterozoic Jiao-Liao-Ji Belt in the Eastern Block of the North China Craton. Precambrian Research, 158(1-2): 1-16. https://doi.org/10.1016/j.precamres.2007.04.001 [13] Liu, F.L., Liu, P.H., Wang, F., et al., 2015. Progresses and Overviews of Voluminous Meta-Sedimentary Series within the Paleoproterozoic Jiao-Liao-Ji Orogenic/Mobile Belt, North China Craton. Acta Petrologica Sinica, 31 (10): 2816-2846 (in Chinese with English abstract). http://www.cqvip.com/QK/94579X/201510/666487302.html [14] Liu, J., Zhang, J., Liu, Z. H., et al., 2018. Geochemical and Geochronological Study on the Paleoproterozoic Rock Assemblage of the Xiuyan Region: New Constraints on an Integrated Rift-and-Collision Tectonic Process Involving the Evolution of the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research, 310: 179-197. doi: 10.1016/j.precamres.2018.03.005 [15] Liu, J., Zhang, J., Yin, C.Q., et al., 2020. Synchronous A-Type and Adakitic Granitic Magmatism at ca. 2.2 Ga in the Jiao-Liao-Ji Belt, North China Craton: Implications for Rifting Triggered by Lithospheric Delamination. Precambrian Research, 342: 105629. doi: 10.1016/j.precamres.2020.105629 [16] Loiselle, M.C., Wones, D.R., 1979. Characteristic and Origin of An orogenic Granites. Geological Society of America Abstract with Programs, 11: 468. [17] Ludwing, K.R., 2001. Squid 1.02: User's Manual for Isoplot/EX(Rev. 2.49). Berkely Geochronology Center Special Publication, Berkely, 1-55. [18] Luo, Y., Sun, M., Zhao, G.C., et al., 2008. A Comparison of U-Pb and Hf Isotopic Compositions of Detrital Zircons from the North and South Liaohe Groups: Constraints on the Evolution of the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research, 163: 279-306. doi: 10.1016/j.precamres.2008.01.002 [19] Sun, J.F., Yang, J.H., 2009. Early Cretaceous A-Type Granites in the Eastern North China Block with Relation to Destruction of the Craton. Earth Science, 34(1): 137-147 (in Chinese with English abstract). [20] Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19. [21] Wang, H. C., Ren, Y. W., Lu, S. N., et al., 2015. Stratigraphic Units and Tectonic Setting of the Paleoproterozoic Liao-Ji Orogen. Acta Geoscientica Sinica, 36(5): 583-598 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-geoscientica-sinica_thesis/0201253092178.html [22] Wang, P.S., Dong, Y.S., Li, F. Q., et al., 2017. Paleoproterozoic Granitic Magmatism and Geological Significance in Huanghuadian Area, Eastern Liaoning Province. Acta Petrologica Sinica, 33(9): 2708-2724 (in Chinese with English abstract). [23] Watson, E. B., Harrison, T.M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64: 295-304. https://doi.org/10.1016/0012-821X(83)90211-X [24] Weng, W.F., Zhi, L.G., Cai, L.Y., et al., 2011. Petrogenesis and Geochemical Comparison of Two Types of Yanshanian Granite in South Anhui and Its Surrounding Area. Bulletin of Mineralogy, Petrology and Geochemistry, 30(4): 433-448 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT201106005.htm [25] Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202 [26] Wu, F. Y., Li, X.H., Yang, J.H., et al., 2007. Discussion on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6): 1217-1238 (in Chinese with English abstract). [27] Xie, L., 2007. Contributions to Mineralogy and Petrogenetic Implications of Peralkaline and Aluminous A-Type Granites in the Coast Area of Eastern China (Dissertation). Nanjing University, Nanjing, 1-120 (in Chinese with English abstract). [28] Xu, W., Liu, F.L., 2019. Geochronological and Geochemical Insights into the Tectonic Evolution of the Paleoproterozoic Jiao-Liao-Ji Belt, Sino-Korean Craton. Earth- Science Reviews, 193: 162-198. https://doi.org/10.1016/j.earscirev.2019.04.019 [29] Xue, H.M., Wang, Y.G., Ma, F., et al., 2009. The Huangshan A-Type Granites with Tetrad REE: Constraints on Mesozoic Lithospheric Thinning of the Southeastern Yangtze Craton?. Acta Geologica Sinica, 83(2): 247-259 (in Chinese with English abstract). [30] Yang, D.B., Xu, W.L., Pei, F.P., et al., 2009. Petrogenesis of the Paleoproterozoic K-Feldspar Granites in Bengbu Uplift: Constraints from Petro-Geochemistry, Zircon U-Pb Dating and Hf Isotope. Earth Science, 34(1): 148-164 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200901016.htm [31] Yang, J. H., Wu, F. Y., Wilde, S. A., et al., 2007. Tracing Magma Mixing in Granite Genesis: In Situ U-Pb Dating and Hf-Isotope Analysis of Zircons. Contributions to Mineralogy and Petrology, 153(2): 177-190. https://doi.org/10.1007/s00410-006-0139-7 [32] Yang, M.C., Chen, B., Yan, C., 2015. Petrogenesis of Paleoproterozoic Gneissic Granites from Jiao-Liao-Ji Belt of North China Craton and Their Tectonic Implications. Journal of Earch Sciences and Environment, 37(5): 31-51 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XAGX201505004.htm [33] Zhang, Q., Ran, H., Li, C.D., 2012. A-Type Granite: What is the Essence?. Acta Petrologica et Mineralogica, 31(4): 621-626 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201204015.htm [34] Zhang, Q., Wang, Y., Li, C.D., et al., 2006. Granite Classification on the Basis of Sr and Yb Contents and Its Implications. Acta Petrologica Sinica, 22(9): 2249-2269 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200609000.htm [35] Zhang, Q., Wang, Y., Liu, H.T., et al., 2003. On the Space-time Distribution and Geodynamic Environments of Adakites in China Annex: Controversies over Differing Opinions for Adakites in China. Earth Science Frontiers, 10(4): 385-400 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200304010.htm [36] Zhang, Q.S., Yang, Z.S., 1988. Early Crust and Mineral Deposits of Liaodong Peninsula. Geological Publishing House, Beijing, 1-574 (in Chinese). [37] Zhao, G.C., Peter, A.C., Li, S.Z., et al., 2012. Amalgamation of the North China Craton: Key Issues and Discussion. Precambrian Research, 222-223: 55-76. https://doi.org/10.1016/j.precamres.2012.09.016 [38] Zhao, Y., Kou, L. L., Zhang, P., et al., 2019. Characteristics of Geochemistry and Hf Isotope from Meta-Gabbro in Longchang Area, Liaodong Peninsula: Implications on Evolution of the Jiao-Liao-Ji Paleoproterozoic Orogenic Belt. Earth Science, 44(10): 3333-3345 (in Chinese with English abstract). [39] Zhu, K., Liu, Z.H., Xu, Z.Y., et al., 2019a. Paleoproterozoic Granitoids on Liaodong Peninsula, North China Craton. Acta Geologica Sinica, 93(5): 1377-1396. https://doi.org/10.1111/1755-6724.14387 [40] Zhu, K., Liu, Z.H., Xu, Z.Y., et al., 2019b. Petrogenesis and Tectonic Implications of Two Types of Liaoji Granitoid in the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research, 331: 105369. https://doi.org/10.1016/j.precamres.2019.105369 [41] 白瑾, 1993. 华北陆台北缘前寒武纪地质与铅锌成矿作用. 北京: 地质出版社, 1-89. [42] 陈斌, 李壮, 王家林, 等, 2016. 辽东半岛~2.2 Ga岩浆事件及其地质意义. 吉林大学学报(地球科学版), 46(2): 303-320. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201602001.htm [43] 贾小辉, 王强, 唐功建, 2009. A型花岗岩的研究进展及意义. 大地构造与成矿学, 33(3): 465-480. doi: 10.3969/j.issn.1001-1552.2009.03.017 [44] 李三忠, 郭玲莉, 戴黎明, 等, 2015. 前寒武纪地球动力学(Ⅴ): 板块构造起源. 地学前缘, 22(6): 65-76. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201506007.htm [45] 刘福来, 刘平华, 王舫, 等, 2015. 胶-辽-吉古元古代造山/活动带巨量变沉积岩系的研究进展. 岩石学报, 31(10): 2816-2846. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201510002.htm [46] 孙金凤, 杨进辉, 2009. 华北东部早白垩世A型花岗岩与克拉通破坏. 地球科学, 34(1): 137-147. doi: 10.3321/j.issn:1000-2383.2009.01.013 [47] 王惠初, 任云伟, 陆松年, 等, 2015. 辽吉古元古代造山带的地层单元划分与构造属性. 地球学报, 36(5): 583-598. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201505010.htm [48] 王鹏森, 董永胜, 李富强, 等, 2017. 辽东黄花甸地区古元古代花岗质岩浆作用及其地质意义. 岩石学报, 33(9): 2708-2724. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201709004.htm [49] 翁望飞, 支利庚, 蔡连友, 等, 2011. 皖南及邻区燕山期两个类型花岗岩地球化学对比与岩石成因. 矿物岩石地球化学通报, 30(4): 433-448. doi: 10.3969/j.issn.1007-2802.2011.04.012 [50] 吴福元, 李献华, 杨进辉, 等, 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001 [51] 谢磊, 2007. 中国东部沿海碱性和铝质A型花岗岩的矿物学研究和成岩意义(博士学位论文). 南京: 南京大学, 1-120. [52] 薛怀民, 汪应庚, 马芳, 等, 2009. 高度演化的黄山A型花岗岩: 对扬子克拉通东南部中生代岩石圈减薄的约束?. 地质学报, 83(2): 247-259. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200902011.htm [53] 杨德彬, 许文良, 裴福萍, 等, 2009. 蚌埠隆起区古元古代钾长花岗岩的成因: 岩石地球化学、锆石U-Pb年代学与Hf同位素的制约. 地球科学, 34(1): 148-164. doi: 10.3321/j.issn:1000-2383.2009.01.014 [54] 杨明春, 陈斌, 闫聪, 2015. 华北克拉通胶-辽-吉带古元古代条痕状花岗岩成因及其构造意义. 地球科学与环境学报, 37(5): 31-51. doi: 10.3969/j.issn.1672-6561.2015.05.003 [55] 张旗, 冉皞, 李承东, 2012. A型花岗岩的实质是什么?. 岩石矿物学杂质, 31(4): 621-626. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201302014.htm [56] 张旗, 王焰, 李承东, 等, 2006. 花岗岩的Sr-Yb分类及其地质意义. 岩石学报, 22(9): 2249-2269. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200609000.htm [57] 张旗, 王焰, 刘红涛, 等, 2003. 中国埃达克岩的时空分布及其形成背景. 附: 《国内关于埃达克岩的争论》. 地学前缘, 10(4): 385-400. doi: 10.3321/j.issn:1005-2321.2003.04.007 [58] 张秋生, 杨振升, 1988. 辽东半岛早期地壳与矿床. 北京: 地质出版社, 1-574. [59] 赵岩, 寇林林, 张朋, 等, 2019. 辽东半岛隆昌地区~2 113 Ma变辉长岩地球化学与Hf同位素研究: 对胶辽吉造山带构造演化的制约. 地球科学, 44(10): 3333-3345. doi: 10.3799/dqkx.2019.185