Multiple Tectonothermal Events Recorded in the Early Precambrian Cuoke Complex in the Southwestern Yangtze Block, South China
-
摘要: 撮科杂岩是最近在滇中地区发现的早前寒武纪基底杂岩,对深入探究扬子陆块早期演化具有重要意义.报道了4件代表性岩石样品的锆石U-Pb年代学和Hf同位素新数据.奥长花岗质片麻岩样品的结晶年龄为2 845±33 Ma,具有正的锆石εHf(t)值(1.7~4.6)和相对年轻的亏损地幔二阶段(TDM2)模式年龄(2.97~3.12 Ga),表明其形成于新生地壳的重熔.变二长花岗岩和片麻状花岗岩样品的结晶年龄分别为2 401±15 Ma和2 320±16 Ma,显示负的锆石εHf(t)值(-6.2~-0.8)和明显老的TDM2模式年龄(2.90~3.11 Ga),指示其来自古老地壳物质的重熔.斜长黑云碎粒岩的变质锆石的年龄为1 948±16 Ma,结合已有变质年龄揭示一期1.96~1.95 Ga区域变质作用.扬子陆块西南缘存在太古代结晶基底,并保留了与Nuna超大陆聚合有关的多期构造-岩浆事件的记录.Abstract: The Cuoke Complex, a newly identified Early Precambrian basement complex in central Yunnan, bears key information for the early evolution of the Yangtze Block. Here, we present zircon U-Pb geochronological and Hf isotopic data of four representative samples collected from this complex. Magmatic zircons of one trondjemitic gneiss sample yield a crystallization age of 2 845±33 Ma, with positive εHf(t) values of 1.7-4.6 and relatively young depleted mantle two stage (TDM2) model ages of 2.97-3.12 Ga, suggestive of the derivation from remelting of juvenile crust. Meta-monzogranite and gneissic granite yield ages of 2 401±15 Ma and 2 320±16 Ma respectively. They show negative zircon εHf(t) values of -6.2 to -0.8 and older TDM2 model ages of 2.90-3.11 Ga, indicating that they were formed by remelting of ancient crustal materials. Metamorphic-origin zircons of one plagioclase-biotite cataclasite sample give an age of 1 948±16 Ma. Together with available metamorphic age data, it is revealed that one episode of regional metamorphism occurred at 1.96-1.95 Ga. Our new dataset confirms the existence of Archean basement rocks in the Cuoke Complex. Moreover, multiple magmatic and metamorphic events related to the assembly of the Nuna supercontinent extensively took place in the southwestern Yangtze Block, South China.
-
Key words:
- Archean /
- Paleoproterozoic /
- tectonothermal event /
- Cuoke Complex /
- Yangtze Block /
- geochronology
-
图 1 滇中地区撮科杂岩地质图及采样位置
据Cui et al. (2019)修改;年龄数据引自Cui et al.(2019, 2020a, 2020b)和Liu et al.(2020). F1.青杨断裂;F2.河底河断裂;F3.双菁断裂
Fig. 1. Geological map of the Cuoke Complex in the central Yunnan Province, showing sampling location
图 7 撮科杂岩太古代-古元古代变花岗质岩的锆石Hf同位素组成
部分数据引自Cui et al.(2019, 2020a, 2020b)
Fig. 7. Zircon Hf isotope compositions of Archean-Paleoproterozoic meta-granitoids from the Cuoke Complex
图 8 撮科杂岩样品的锆石U-Pb年龄累计概率图
绿色和黄色方框分别代表结晶年龄和变质年龄, 年龄数据及来源见表 1
Fig. 8. Cumulative probability plot of zircon U-Pb ages of samples from the Cuoke Complex
表 1 扬子陆块西南缘早前寒武纪撮科杂岩的岩浆岩锆石U-Pb年龄
Table 1. Zircon U-Pb ages of magmatic rocks from Early Precambrian Cuoke Complex in the southwestern Yangtze Block
样品 岩性 结晶年龄(Ma) 变质年龄(Ma) U-Pb定年方法 数据来源 CK13-01 变二长花岗岩 2 359±16 LA-ICP-MS Cui et al., 2019 CK14-06 变二长花岗岩 2 363±16 LA-ICP-MS Cui et al., 2019 CK01-01 变二长花岗岩 2 218±9 SHRIMP Cui et al., 2020a CK02-07 变二长花岗岩 2 350±6 SHRIMP Cui et al., 2020a CK03-12 变花岗闪长岩 2 360±5 SHRIMP Cui et al., 2020a MJC03-16 片麻状花岗岩 2 336±12 SHRIMP Cui et al., 2020a MJC03-16 片麻状花岗岩 1 964±8 SHRIMP Cui et al., 2020a LH12 奥长花岗质片麻岩 3 061±23 LA-ICP-MS Cui et al., 2020b LH14 奥长花岗质片麻岩 3 073±23 LA-ICP-MS Cui et al., 2020b LH15 奥长花岗质片麻岩 3 104±11 SHRIMP Cui et al., 2020b LH18 片麻状二长花岗岩 2 855±16 LA-ICP-MS Cui et al., 2020b LH20 片麻状花岗闪长岩 2 853±14 LA-ICP-MS Cui et al., 2020b LH22 片麻状花岗闪长岩 2 859±11 SHRIMP Cui et al., 2020b CKN08 变二长花岗岩 1 935±19 LA-ICP-MS Cui et al., 2020b CKN09 变二长花岗岩 1 885±19 LA-ICP-MS Cui et al., 2020b Yjck-07 变基性岩 2 395±22 LA-ICP-MS Liu et al., 2020 Yjhlc-16 变基性岩 2 354±11 LA-ICP-MS Liu et al., 2020 Yjyw-33 变基性岩 2 316±8 LA-ICP-MS Liu et al., 2020 Yjyw-36 变基性岩 2 329±17 LA-ICP-MS Liu et al., 2020 DA842-TW1 奥长花岗质片麻岩 2 845±13 LA-ICP-MS 本文 17CK15-TW2 变二长花岗岩 2 401±15 LA-ICP-MS 本文 DA238-TW1 片麻状花岗岩 2 306±19 LA-ICP-MS 本文 DA238-TW1 片麻状花岗岩 1 955±53 LA-ICP-MS 本文 PMA04-TW4 斜长黑云碎粒岩 1 948±16 LA-ICP-MS 本文 -
[1] Bouvier, A., Vervoort, J. D., Patchett, P. J., 2008. The Lu-Hf and Sm-Nd Isotopic Composition of CHUR:Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets. Earth and Planetary Science Letters, 273(1-2):48-57. https://doi.org/10.1016/j.epsl.2008.06.010 [2] Cawood, P. A., Wang, Y.J., Xu, Y.J., et al., 2013. Locating South China in Rodinia and Gondwana:A Fragment of Greater India Lithosphere? Geology, 41(8):903-906. https://doi.org/10.1130/g34395.1 doi: 10.1130/G34395.1 [3] Cawood, P. A., Zhao, G. C., Yao, J. L., et al., 2018. Reconstructing South China in Phanerozoic and Precambrian Supercontinents. Earth-Science Reviews, 186:173-194. https://doi.org/10.1016/j.earscirev.2017.06.001 [4] Chen, K., Gao, S., Wu, Y. B., et al., 2013.2.6-2.7 Ga Crustal Growth in Yangtze Craton, South China. Precambrian Research, 224:472-490. https://doi.org/10.1016/j.precamres.2012.10.017 [5] Chen, Q., Sun, M., Zhao, G. C., et al., 2019. Episodic Crustal Growth and Reworking of the Yudongzi Terrane, South China:Constraints from the Archean TTGs and Potassic Granites and Paleoproterozoic Amphibolites. Lithos, 326-327:1-18. https://doi.org/10.1016/j.lithos.2018.12.005 [6] Chen, Z.L., Chen, S.Y., 1987. The Tectonic Evolution of the West Margin of the Yangtze Block. Chongqing Publishing House, Chongqing (in Chinese). [7] Cui, X. Z., Wang, J., Sun, Z. M., et al., 2019. Early Paleoproterozoic (ca. 2.36 Ga) Post-Collisional Granitoids in Yunnan, SW China:Implications for Linkage between Yangtze and Laurentia in the Columbia Supercontinent. Journal of Asian Earth Sciences, 169:308-322. https://doi.org/10.1016/j.jseaes.2018.10.026 [8] Cui, X. Z., Wang, J., Ren, G. M., et al., 2020a. Paleoproterozoic Tectonic Evolution of the Yangtze Block:New Evidence from ca. 2.36 to 2.22 Ga Magmatism and 1.96 Ga Metamorphism in the Cuoke Complex, SW China. Precambrian Research, 337:105525. https://doi.org/10.1016/j.precamres.2019.105525 [9] Cui, X.Z., Wang, J., Wang, X.C., et al., 2020b. Early Crustal Evolution of the Yangtze Block: Constraints from Zircon U-Pb-Hf Isotope Systematics of 3.1-1.9 Ga Granitoids in the Cuoke Complex, SW China. Precambrian Research, In Press. [10] Dong, S. W., Zhang, Y. Q., Gao, R., et al., 2015. A Possible Buried Paleoproterozoic Collisional Orogen beneath Central South China:Evidence from Seismic-Reflection Profiling. Precambrian Research, 264:1-10. https://doi.org/10.1016/j.precamres.2015.04.003 [11] Gao, S., Ling, W. L., Qiu, Y. M., et al., 1999. Contrasting Geochemical and Sm-Nd Isotopic Compositions of Archean Metasediments from the Kongling High-Grade Terrain of the Yangtze Craton:Evidence for Cratonic Evolution and Redistribution of REE during Crustal Anatexis. Geochimica et Cosmochimica Acta, 63(13-14):2071-2088. https://doi.org/10.1016/s0016-7037(99)00153-2 doi: 10.1016/S0016-7037(99)00153-2 [12] Gao, S., Yang, J., Zhou, L., et al., 2011. Age and Growth of the Archean Kongling Terrain, South China, with Emphasis on 3.3 Ga Granitoid Gneisses. American Journal of Science, 311(2):153-182. https://doi.org/10.2475/02.2011.03 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=324512196fea98c950ec2cc2b7c4f3ae [13] Geng, Y.S., Kuang, H.W., Liu, Y.Q., et al., 2017. Subdivision and Correlation of the Mesoproterozoic Stratigraphy in the Western and Northern Margins of Yangtze Block. Acta Geologica Sinica, 91(10):2151-2174 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201710001 [14] Geng, Y.S., Yang, C.H., Wang, X.S., et al., 2007. Age of Crystalline Basement in Western Margin of Yangtze Terrane. Geological Journal of China Universities, 13(3):429-441 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200703012 [15] Greentree, M. R., Li, Z. X., 2008. The Oldest Known Rocks in South-Western China:SHRIMP U-Pb Magmatic Crystallisation Age and Detrital Provenance Analysis of the Paleoproterozoic Dahongshan Group. Journal of Asian Earth Sciences, 33(5-6):289-302. https://doi.org/10.1016/j.jseaes.2008.01.001 [16] Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle:LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1):133-147. https://doi.org/10.1016/s0016-7037(99)00343-9 doi: 10.1016/S0016-7037(99)00343-9 [17] Griffin, W. L., Wang, X., Jackson, S. E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China:In-situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3-4):237-269. https://doi.org/10.1016/s0024-4937(02)00082-8 doi: 10.1016/S0024-4937(02)00082-8 [18] Guo, J. L., Gao, S., Wu, Y. B., et al., 2014.3.45 Ga Granitic Gneisses from the Yangtze Craton, South China:Implications for Early Archean Crustal Growth. Precambrian Research, 242:82-95. https://doi.org/10.1016/j.precamres.2013.12.018 [19] Guo, J. L., Wu, Y. B., Gao, S., et al., 2015. Episodic Paleoarchean-Paleoproterozoic (3.3-2.0 Ga) Granitoid Magmatism in Yangtze Craton, South China:Implications for Late Archean Tectonics. Precambrian Research, 270:246-266. https://doi.org/10.1016/j.precamres.2015.09.007 [20] Guo, J. W., Zheng, J. P., Ping, X. Q., et al., 2018. Paleoproterozoic Porphyries and Coarse-Grained Granites Manifesting a Vertical Hierarchical Structure of Archean Continental Crust beneath the Yangtze Craton. Precambrian Research, 314:288-305. https://doi.org/10.1016/j.precamres.2018.06.012 [21] Han, Q. S., Peng, S. B., Kusky, T., et al., 2017. A Paleoproterozoic Ophiolitic Mélange, Yangtze Craton, South China:Evidence for Paleoproterozoic Suturing and Microcontinent Amalgamation. Precambrian Research, 293:13-38. https://doi.org/10.1016/j.precamres.2017.03.004 [22] Hawkesworth, C. J., Dhuime, B., Pietranik, A.B., et al., 2010. The Generation and Evolution of the Continental Crust. Journal of the Geological Society, 167(2):229-248. https://doi.org/10.1144/0016-76492009-072 [23] Hoffman, P. F., 2014. The Origin of Laurentia:Rae Craton as the Backstop for Proto-Laurentian Amalgamation by Slab Suction. Geoscience Canada, 41(3):313-320. https://doi.org/10.12789/geocanj.2014.41.049 [24] Hu, J., Liu, X. C., Chen, L. Y., et al., 2013. A ~2.5 Ga Magmatic Event at the Northern Margin of the Yangtze Craton:Evidence from U-Pb Dating and Hf Isotope Analysis of Zircons from the Douling Complex in the South Qinling Orogen. Chinese Science Bulletin, 58(34):3579-3588 (in Chinese). doi: 10.1360/csb2013-58-34-3579 [25] Hui, B., Dong, Y. P., Cheng, C., et al., 2017. Zircon U-Pb Chronology, Hf Isotope Analysis and Whole-rock Geochemistry for the Neoarchean-Paleoproterozoic Yudongzi Complex, Northwestern Margin of the Yangtze Craton, China. Precambrian Research, 301:65-85. https://doi.org/10.1016/j.precamres.2017.09.003 [26] Li, F.H., Tan, J.M., Shen, Y.L., et al., 1988. The Presinian in the Kangdian Area. Chongqing Publishing House, Chongqing (in Chinese). [27] Li, H. K., Zhang, C. L., Yao, C. Y., et al., 2013. U-Pb Zircon Age and Hf Isotope Compositions of Mesoproterozoic Sedimentary Strata on the Western Margin of the Yangtze Massif. Science China Earth Sciences, 56(4):628-639. https://doi.org/10.1007/s11430-013-4590-9 [28] Li, L. M., Lin, S. F., Davis, D. W., et al., 2014. Geochronology and Geochemistry of Igneous Rocks from the Kongling Terrane:Implications for Mesoarchean to Paleoproterozoic Crustal Evolution of the Yangtze Block. Precambrian Research, 255:30-47. https://doi.org/10.1016/j.precamres.2014.09.009 [29] Li, Y. H., Zheng, J. P., Xiong, Q., et al., 2016. Petrogenesis and Tectonic Implications of Paleoproterozoic Metapelitic Rocks in the Archean Kongling Complex from the Northern Yangtze Craton, South China. Precambrian Research, 276:158-177. https://doi.org/10.1016/j.precamres.2016.01.028 [30] Li, Z. X., Bogdanova, S. V., Collins, A. S., et al., 2008. Assembly, Configuration, and Break-up History of Rodinia:A Synthesis. Precambrian Research, 160(1-2):179-210. https://doi.org/10.1016/j.precamres.2007.04.021 [31] Liu, B., Zhai, M. G., Zhao, L., et al., 2019. Zircon U-Pb-Hf Isotope Studies of the Early Precambrian Metasedimentary Rocks in the Kongling Terrane of the Yangtze Block, South China. Precambrian Research, 320:334-349. https://doi.org/10.1016/j.precamres.2018.08.017 [32] Liu, G. C., Qian, X., Li, J., et al., 2020. Geochronological and Geochemical Constraints on the Petrogenesis of Early Paleoproterozoic (2.40-2.32 Ga) Nb-Enriched Mafic Rocks in Southwestern Yangtze Block and Its Tectonic Implications. Journal of Earth Science, 31(1):35-52. https://doi.org/10.1007/s12583-020-1260-7 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx-e202001004 [33] Liu, H.Y., Xia, B., Zhang, Y.Q., 2004. Zircon SHRIMP Dating of Sodium Alkaline Rocks from Maomaogou Area of Huili County in Panxi, SW China and Its Geological Implications. Chinese Science Bulletin, 49(14):1431-1438 (in Chinese with English abstract). doi: 10.1360/04wb0039 [34] Liu, Y. S., Zong, K. Q., Kelemen, P. B., et al., 2008. Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole:Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates. Chemical Geology, 247(1-2):133-153. https://doi.org/10.1016/j.chemgeo.2007.10.016 [35] Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082 [36] Ludwig, K.R., 2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center Special Publication, Berkeley. [37] Lu, G.M., Wang, W., Ernst, R. E., et al., 2019. Petrogenesis of Paleo-Mesoproterozoic Mafic Rocks in the Southwestern Yangtze Block of South China:Implications for Tectonic Evolution and Paleogeographic Reconstruction. Precambrian Research, 322:66-84. https://doi.org/10.1016/j.precamres.2018.12.019 [38] Kinny, P. D., Maas, R., 2003. Lu-Hf and Sm-Nd Isotope Systems in Zircon. Reviews in Mineralogy & Geochemistry, 53(1):327-341. https://doi.org/10.2113/0530327 http://www.researchgate.net/publication/250129975_Lu-Hf_and_Sm-Nd_isotope_systems_in_zircon [39] Kou, C.H., Zhang, Z. C., Santosh, M., et al., 2017. Oldest Volcanic-Hosted Submarine Iron Ores in South China:Evidence from Zircon U-Pb Geochronology and Geochemistry of the Paleoproterozoic Dahongshan Iron Deposit. Gondwana Research, 49:182-204. https://doi.org/10.1016/j.gr.2017.05.016 [40] Nam, T. N., Toriumi, M., Sano, Y., et al., 2003.2.9, 2.36, and 1.96 Ga Zircons in Orthogneiss South of the Red River Shear Zone in Viet Nam:Evidence from SHRIMP U-Pb Dating and Tectonothermal Implications. Journal of Asian Earth Sciences, 21(7):743-753. https://doi.org/10.1016/s1367-9120(02)00089-5 doi: 10.1016/S1367-9120(02)00089-5 [41] Qiu, X.F., Yang, H.M., Zhao, X.M., et al., 2019. Neoarchean Granitic Gneisses in the Kongling Complex, Yangtze Craton:Petrogenesis and Tectonic Implications. Earth Science, 44(2):415-426 (in Chinese with English abstract). [42] Wang, K., Li, Z. X., Dong, S. W., et al., 2018a. Early Crustal Evolution of the Yangtze Craton, South China:New Constraints from Zircon U-Pb-Hf Isotopes and Geochemistry of ca. 2.9-2.6 Ga Granitic Rocks in the Zhongxiang Complex. Precambrian Research, 314:325-352. https://doi.org/10.1016/j.precamres.2018.05.016 [43] Wang, Z. J., Deng, Q., Duan, T. Z., et al., 2018b.2.85 Ga and 2.73 Ga A-Type Granites and 2.75 Ga Trondhjemite from the Zhongxiang Terrain:Implications for Early Crustal Evolution of the Yangtze Craton, South China. Gondwana Research, 61:1-19. https://doi.org/10.1016/j.gr.2018.05.004 [44] Wang, W., Cawood, P. A., Zhou, M. F., et al., 2016. Paleoproterozoic Magmatic and Metamorphic Events Link Yangtze to Northwest Laurentia in the Nuna Supercontinent. Earth and Planetary Science Letters, 433:269-279. https://doi.org/10.1016/j.epsl.2015.11.005 [45] Wang, W., Zhou, M. F, 2014. Provenance and Tectonic Setting of the Paleo- to Mesoproterozoic Dongchuan Group in the Southwestern Yangtze Block, South China:Implication for the Breakup of the Supercontinent Columbia. Tectonophysics, 610:110-127. https://doi.org/10.1016/j.tecto.2013.11.009 [46] Wang, Z. J., Wang, J., Deng, Q., et al., 2015. Paleoproterozoic I-Type Granites and Their Implications for the Yangtze Block Position in the Columbia Supercontinent:Evidence from the Lengshui Complex, South China. Precambrian Research, 263:157-173. https://doi.org/10.1016/j.precamres.2015.03.014 [47] Wu, Y. B., Gao, S., Zhang, H. F., et al., 2012. Geochemistry and Zircon U-Pb Geochronology of Paleoproterozoic Arc Related Granitoid in the Northwestern Yangtze Block and Its Geological Implications. Precambrian Research, 200-203:26-37. https://doi.org/10.1016/j.precamres.2011.12.015 [48] Wu, Y. B., Zheng, Y. F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(15):1554-1569. https://doi.org/10.1007/bf03184122 http://qikan.cqvip.com/Qikan/Article/Detail?id=10501971 [49] Wu, Y. B., Zheng, Y. F., Gao, S., et al., 2008. Zircon U-Pb Age and Trace Element Evidence for Paleoproterozoic Granulite-Facies Metamorphism and Archean Crustal Rocks in the Dabie Orogen. Lithos, 101(3-4):308-322. https://doi.org/10.1016/j.lithos.2007.07.008 [50] Wu, Y. B., Zhou, G. Y., Gao, S., et al., 2014. Petrogenesis of Neoarchean TTG Rocks in the Yangtze Craton and Its Implication for the Formation of Archean TTGs. Precambrian Research, 254:73-86. https://doi.org/10.1016/j.precamres.2014.08.004 [51] Yin, C. Q., Lin, S. F., Davis, D. W., et al., 2013.2.1-1.85 Ga Tectonic Events in the Yangtze Block, South China:Petrological and Geochronological Evidence from the Kongling Complex and Implications for the Reconstruction of Supercontinent Columbia. Lithos, 182-183:200-210. https://doi.org/10.1016/j.lithos.2013.10.012 [52] Zhang, K.X., Xu, Y.D., He, W.H., et al., 2018. Oceanic and Continental Blocks Distribution during Neoproterozoic Early Qingbaikouan Period (1 000-820 Ma) in China. Earth Science, 43(11):3837-3852 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201811004 [53] Zhang, S. B., Zheng, Y. F., Wu, Y. B., et al., 2006a. Zircon U-Pb Age and Hf Isotope Evidence for 3.8 Ga Crustal Remnant and Episodic Reworking of Archean Crust in South China. Earth and Planetary Science Letters, 252(1):56-71. https://doi.org/10.1016/j.epsl.2006.09.027 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=58bab4dc55aeebd236a454066a8c8f0e [54] Zhang, S. B., Zheng, Y. F., Wu, Y. B., et al., 2006b. Zircon U-Pb Age and Hf-O Isotope Evidence for Paleoproterozoic Metamorphic Event in South China. Precambrian Research, 151(3):265-288. https://doi.org/10.1016/j.precamres.2006.08.009 http://www.sciencedirect.com/science/article/pii/S0301926806002026 [55] Zhang, Z.Q., Zhang, G.W., Tang, S.H., et al., 2001. On the Age of Metamorphic Rocks of the Yudongzi Group and the Archean Crystalline Basement of the Qinling Orogen. Acta Geologica Sinica, 75(2):198-204 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200102008 [56] Zhao, G. C., Cawood, P. A., 2012. Precambrian Geology of China. Precambrian Research, 222-223:13-54. https://doi.org/10.1016/j.precamres.2012.09.017 [57] Zhao, T.Y., Cawood, P. A., Wang, K., et al., 2019a. Neoarchean and Paleoproterozoic K-Rich Granites in the Phan Si Pan Complex, North Vietnam:Constraints on the Early Crustal Evolution of the Yangtze Block. Precambrian Research, 332:105395. https://doi.org/10.1016/j.precamres.2019.105395 [58] Zhao, T.Y., Cawood, P. A., Zi, J. W., et al., 2019b. Early Paleoproterozoic Magmatism in the Yangtze Block:Evidence from Zircon U-Pb Ages, Sr-Nd-Hf Isotopes and Geochemistry of ca. 2.3 Ga and 2.1 Ga Granitic Rocks in the Phan Si Pan Complex, North Vietnam. Precambrian Research, 324:253-268. https://doi.org/10.1016/j.precamres.2019.01.012 [59] Zhao, X. F., Zhou, M. F., Li, J. W., et al., 2010. Late Paleoproterozoic to Early Mesoproterozoic Dongchuan Group in Yunnan, SW China:Implications for Tectonic Evolution of the Yangtze Block. Precambrian Research, 182(1-2):57-69. https://doi.org/10.1016/j.precamres.2010.06.021 [60] Zhou, G. Y., Wu, Y. B., Gao, S., et al., 2015. The 2.65 Ga A-Type Granite in the Northeastern Yangtze Craton:Petrogenesis and Geological Implications. Precambrian Research, 258:247-259. https://doi.org/10.1016/j.precamres.2015.01.003 [61] Zhou, G. Y., Wu, Y. B., Li, L., et al., 2018. Identification of ca. 2.65 Ga TTGs in the Yudongzi Complex and Its Implications for the Early Evolution of the Yangtze Block. Precambrian Research, 314:240-263. https://doi.org/10.1016/j.precamres.2018.06.011 [62] Zhou, M. F., Yan, D. P., Kennedy, A. K., et al., 2002. SHRIMP U-Pb Zircon Geochronological and Geochemical Evidence for Neoproterozoic Arc-Magmatism along the Western Margin of the Yangtze Block, South China. Earth and Planetary Science Letters, 196(1-2):51-67. https://doi.org/10.1016/s0012-821x(01)00595-7 doi: 10.1016/S0012-821X(01)00595-7 [63] 陈智梁, 陈世瑜, 1987.扬子地块西缘地质构造演化.重庆:重庆出版社. [64] 耿元生, 旷红伟, 柳永清, 等, 2017.扬子地块西、北缘中元古代地层的划分与对比.地质学报, 91(10):2151-2174. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201710001 [65] 耿元生, 杨崇辉, 王新社, 等, 2007.扬子地台西缘结晶基底的时代.高校地质学报, 13(3):429-441. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200703012 [66] 胡娟, 刘晓春, 陈龙耀, 等, 2013.扬子克拉通北缘约2.5 Ga岩浆事件:来自南秦岭陡岭杂岩锆石U-Pb年代学和Hf同位素证据.科学通报, 58(34):3579-3588. http://www.cnki.com.cn/Article/CJFDTotal-KXTB201334015.htm [67] 李复汉, 覃嘉铭, 申玉连, 等, 1988.康滇地区的前震旦系.重庆:重庆出版社. [68] 刘红英, 夏斌, 张玉泉, 2004.攀西会理毛毛沟钠质碱性岩锆石SHRIMP定年及其地质意义.科学通报, 49(14):1431-1438. http://d.wanfangdata.com.cn/Periodical/kxtb200414016 [69] 邱啸飞, 杨红梅, 赵小明, 等, 2019.扬子克拉通崆岭杂岩新太古代花岗片麻岩成因及其构造意义.地球科学, 44(2):415-426. doi: 10.3799/dqkx.2018.198 [70] 张克信, 徐亚东, 何卫红, 等, 2018.中国新元古代青白口纪早期(1 000~820 Ma)洋陆分布.地球科学, 43(11):3837-3852. doi: 10.3799/dqkx.2018.339 [71] 张宗清, 张国伟, 唐索寒, 等, 2001.鱼洞子群变质岩年龄及秦岭造山带太古宙基底.地质学报, 75(2):198-204. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200102008 -
dqkx-45-8-3054-Table1.doc