Neoarchean Mafic Magmatism in Qixingtai Area, West Shandong: Formation Ages and Compositions of Meta-Gabbros
-
摘要: 通过研究鲁西七星台地区新太古代变质辉长岩及相关岩石的锆石SHRIMP U-Pb年龄和地球化学组成.它们侵入新太古代表壳岩和TTG岩体.根据12个样品SHRIMP U-Pb锆石定年,可把形成时代划分为3期:2 662~>2 711 Ma、2 608~2 618 Ma和2 508~2 526 Ma.其他样品(进行地球化学分析)的形成时代是根据岩石空间分布、野外特征及与定年样品所代表岩石的关系来确定的.>2.65 Ga变质辉长岩既有来自于富集地幔源区也有来自亏损地幔源区.~2.6 Ga变质辉长岩具平坦型稀土模式,大离子亲石元素富集,Nb、Ta、P亏损,来自亏损地幔源区,可能遭受陆壳物质影响,~2.6 Ga变质辉石岩显示中稀土富集,与单斜辉石堆晶作用有关.~2.5 Ga变质辉长岩存在平坦型-轻微亏损轻稀土和轻稀土富集型两种类型稀土模式.与~2.5 Ga变质辉长岩相比,~2.5 Ga变质辉长闪长岩稀土含量更高,轻重稀土分异程度更高,大离子亲石元素更为富集,Nb、Ta亏损更为明显,是~2.5 Ga辉长质岩浆进一步结晶分异产物.结合前人研究,可得出如下结论.(1)七星台地区存在>2.65 Ga、~2.6 Ga和~2.5 Ga 3期变质辉长岩,其中~2.6 Ga变质辉长岩规模最大;(2)不同时代变质辉长岩地球化学组成特征不同,反映了源区组成和形成过程的复杂性;(3)鲁西地区在新太古代早期(>2.7~2.6 Ga)存在长期连续的基性岩浆作用,可能与地幔岩浆板底垫托有关;(4)在七星台地区首次发现~2.5 Ga辉长岩-辉长闪长岩,为鲁西地区A带广泛存在的~2.5 Ga深熔作用提供了热源来自地幔的直接证据.
-
关键词:
- 变质辉长岩 /
- SHRIMP U-Pb锆石定年 /
- 地球化学 /
- 鲁西 /
- 新太古代
Abstract: This study reports SHRIMP U-Pb zircon ages and element compositions of meta-gabbros and related rocks from the Qixingtai area, western Shandong. They intrude the Neoarchean supracrustal and TTG rocks. The formation ages can be divided into three groups based on SHRIMP U-Pb dating on 12 samples:2 662- > 2 711 Ma, 2 608-2 618 Ma and 2 508-2 526 Ma. The formation ages of other rock samples for element analyses are determined in terms of their spatial distribution, field features and the relationships with the samples dated. > 2.65 Ga gabbros are derived from enriched and depleted mantles, respectively.~2.6 Ga gabbro has no enrichment of the LREE relative to the HREE, but shows LILE enrichment and weakly negative Nb, Ta and P anomalies. It is considered that the gabbro is derived from depleted mantle source, probably with continental contamination.~2.6 Ga meta-pyroxenite shows enrichment of middle REE, as a result of crystallization and accumulation of clinopyroxene.~2.5 Ga meta-gabbros are variations in REE composition from slight deplation of LREE to HREE, and flat REE pattern to enrichment of of LREE to HREE.~2.5 Ga meta-gabbroic diorite has higher REE contents and is more strongly enriched in LREE and LILE and depleted in Nb and Ta compared with~2.5 Ga meta-gabbro. Combined with early study, the conclusions can be drawn as follows:(1) In the Qixingtai area, meta-gabbros and related rocks of three periods have been identified, with the~2.6 Ga rocks being the largest in distribution scale; (2) the rocks of different ages are different in geochemical composition, showing complexities of source regions and formation processes; (3) In western Shandong, continuous mafic magmatism occurred in early Neoarchean from > 2.7 Ga to 2.6 Ga, being probably related to mantle underplating; (4)~2.5 Ga mafic meta-gabbro-diorite rocks are discovered for the first time in the Qixintai area, providing a direct evidence that the heat source is from mantle for the widespread anatexis of~2.5 Ga in Belt A.-
Key words:
- meta-gabbro /
- SHRIMP U-Pb zircon dating /
- geochemistry /
- west Shandong /
- Neoarchean
-
图 2 鲁西七星台地区新太古代变质辉长岩及相关岩石的野外照片
a.变质二长闪长岩(16L4D2-2),被包裹在~2.6 Ga片麻状奥长花岗岩中,官营西南;b.变质二长闪长岩(16L4D2-2)与~2.6 Ga片麻状奥长花岗岩的接触界线,位置同图a;c, d.变质辉长岩(17L14D1-1),位于新太古代早期柳杭岩组和新太古代晚期山草峪岩组界线附近,官营西北;e, f.变质辉长岩(16L2D7-14),粒度较细,侵入柳杭组绿泥钠长片岩,官营西;g.变质辉长岩-辉石岩侵入新太古代早期柳杭岩组斜长角闪岩,界线附近,又有伟晶岩脉侵入,官营东500 m;h.变质辉长岩(16L9D3-2),与变质辉石岩空间上共生,位置同图g;i.变质辉长岩(17P1-37-1),侵入新太古代早期柳杭岩组斜长角闪岩,遭受强烈变形,西麦腰东北;j.变质辉长岩(17L4D13-2),位于片麻状奥长花岗岩和新太古代早期柳杭岩组斜长角闪岩之间,富家庄东南;k.新太古代早期柳杭岩组斜长角闪岩呈包体存在于变质辉长岩中,一起被片麻状奥长花岗岩包裹切割,上港西北4 km(出图幅);l.变质辉长岩(16L10D6-1),被新太古代早期片麻状英云闪长岩包裹和切割,位置同图k;m.变质辉石岩(16L7D3-1),与变质二长闪长岩之间存在相互包裹切割关系,上港西南3 km(出图幅);n, o.变质辉长岩与变质辉石岩空间上共生,相互穿插包裹,位置同图m;p.变质二长闪长岩(16L7D3-2),位置同图m;q.变质辉长岩和变质辉石岩空间上共生,为同时代产物,变质辉长闪长岩(17L11D2-2)取自该露头附近,东野坡南;r.变质辉长闪长岩侵入新太古代晚期山草峪岩组黑云变粒岩,大射垛西;s.变质辉长闪长岩(17L20D1-1)取样处,位置同图r;t.变质辉长闪长岩(17L9D3-1A),侵入新太古代晚期条带状英云闪长岩,变质辉长闪长岩中存在浅色长英质条带,并被后期长英质岩脉切割,官营北
Fig. 2. Field photographs of Neoarchean meta-gabbros and related rocks in the Qixingtai area, west Shandong
图 3 鲁西七星台地区新太古代变质辉长岩及相关岩石的薄片照片
a.二长闪长岩(16L4D2-2),官营西南;b.变质辉长岩(17L14D1-1),官营西北;c.变质辉长岩(16L2D7-14),官营西;d.变质辉长岩(16L9D3-2),官营东500 m;e.变质辉长岩(17P1-37-1),西麦腰东北;f.变质辉长岩(17L4D13-2),富家庄东南;g.变质辉长岩(16L10D6-1),上港西北4 km(出图幅);h.变质辉石岩(16L7D3-1),上港西南3 km(出图幅);i.变质二长闪长岩(16L7D3-2),位置同图h;j.变质辉长闪长岩(17L11D2-2),东野坡南;k.变质辉长闪长岩(17L20D1-1),大射垛西;l.变质辉长闪长岩(17L9D3-1A),官营北; Hb.角闪石; Pl.斜长石; altered-Pl.蚀变斜长石; Chl.绿泥石; Ep.绿帘石; Bi.黑云母; Q.石英; (+)和(-)分别代表正交偏光和单偏光
Fig. 3. Photomicrographs of Neoarchean meta-gabbros and related rocks in the Qixingtai area, west Shandong
图 4 鲁西七星台地区新太古代变质辉长岩及相关岩石的锆石阴极发光照片
a.变质二长闪长岩(16L4D2-2),官营西南;b.变质辉长岩(17L14D1-1),官营西北;c.变质辉长岩(16L2D7-14),官营西;d.变质辉长岩(16L9D3-2),官营东500 m;e.变质辉长岩(17P1-37-1),西麦腰东北;f.变质辉长岩(17L4D13-2),富家庄东南;g.变质辉长岩(16L10D6-1),上港西北4 km(出图幅);(h)变质辉石岩(16L7D3-1),上港西南3 km(出图幅);i.变质二长闪长岩(16L7D3-2),位置同图h;j.变质辉长闪长岩(17L11D2-2),东野坡南;k.变质辉长闪长岩(17L20D1-1),大射垛西;l.变质辉长闪长岩(17L9D3-1A),官营北
Fig. 4. Cathodoluminescence (CL) images of zircons from Neoarchean meta-gabbros and related rocks in the Qixingtai area, west Shandong
图 5 鲁西七星台地区新太古代变质辉长岩及相关岩石的锆石U-Pb谐和图
a.变质二长闪长岩(16L4D2-2),官营西南;b.变质辉长岩(17L14D1-1),官营西北;c.变质辉长岩(16L2D7-14),官营西;d.变质辉长岩(16L9D3-2),官营东500 m;e.变质辉长岩(17P1-37-1),西麦腰东北;f.变质辉长岩(17L4D13-2),富家庄东南;g.变质辉长岩(16L10D6-1),上港西北4 km(出图幅);h.变质辉石岩(16L7D3-1),上港西南3 km(出图幅);i.变质二长闪长岩(16L7D3-2),位置同图h;j.变质辉长闪长岩(17L11D2-2),东野坡南;k.变质辉长闪长岩(17L20D1-1),大射垛西;l.变质辉长闪长岩(17L9D3-1A),官营北
Fig. 5. Concordia diagrams showing SHRIMP U-Pb zircon data of Neoarchean meta-gabbros and related rocks in the Qixingtai area, west Shandong
图 7 鲁西七星台地区新太古代变质辉长岩及相关岩石的稀土模式和微量元素图解
a, b. > 2.65 Ga变质辉长岩及相关岩石. 18L2D7-1为变质辉长闪长岩,16L4D2-2为变质二长闪长岩;c, d. ~2.60 Ga变质辉长岩及相关岩石;S1144、16L7D3-1、16L12D10-1、17L10D3-1为变质辉石岩,16L7D3-2为变质二长闪长岩,17L11D2-1为变质辉石岩(粗粒),17L11D2-2为变质辉长闪长岩;e, f. ~2.50 Ga变质辉长岩及相关岩石;17L20D1-1、17L9D3-1A、17L9D3-1B和17L21D8-3为变质辉长闪长岩;未说明的均为变质辉长岩;稀土模式和微量元素图解的标准化值分别来自Sun and McDonough(1989)和Pearce(1983)
Fig. 7. REE patterns and MORB-normalized trace element diagrams of Neoarchean meta-gabbros and related rocks in the Qixingtai area western Shandong
图 9 鲁西七星台地区新太古代变质辉长岩及相关岩石的Zr-Y图解
矿物结晶矢量图根据元素在矿物和熔体之间的分配系数确定,Zr:0.01 (Ol), 0.001 3 (Opx), 0.08 (Cpx), 0.8 (Hb), 0.009 4 (Pl); Y: 0.009 (Ol), 0.095 (Opx), 0.9 (Cpx), 1.47 (Hb), 0.008 (Pl);Green et al.(1989, 2000); McKenzie and O'nions(1991); Nikogosian and Sobolev(1997); Aigner-Torres et al.(2007);Ol.橄榄石;Opx.斜方辉石;Cpx.单斜辉石;Hb.角闪石; Pl.斜长石
Fig. 9. Y vs. Zr diagram of Neoarchean meta-gabbros and related rocks in the Qixingtai area, west Shandong
图 10 鲁西地区新太古代早期侵入岩的锆石年龄变化
黑线和红色虚线分别代表岩浆年龄和变质年龄;数据来源:杜利林等(2003);陆松年等(2008);Jiang et al. (2010);Wan et al.(2011, 2014);任鹏等(2015);Ren et al. (2016);万渝生等(2018)及本文
Fig. 10. Zircon age variation for early Neoarchean magmatic rocks in west Shandong
-
[1] Aigner-Torres, M., Blundy, J., Ulmer, P., et al., 2007. Laser Ablation ICPMS Study of Trace Element Partitioning between Plagioclase and Basaltic Melts:An Experimental Approach. Contributions to Mineralogy and Petrology, 153(6):647-667. https://doi.org/10.1007/s00410-006-0168-2 [2] Bai, W., Dong, C., Nutman, A. P., et al., 2019. Timing of Late Neoarchean to Late Paleoproterozoic Events in the North China Craton:SHRIMP U-Pb Dating and LA-ICP-MS Hf Isotope Analysis of Zircons from Magmatic and Metamorphic Rocks in the Santunying Area, Eastern Hebei. Gondwana Research, 76:348-372. https://doi.org/10.1016/j.gr.2019.06.005 [3] Bai, W. Q., Dong, C. Y., Song, Z. Y., et al., 2020. Late Neoarchean Granites in the Qixingtai Region, Western Shandong:Further Evidence for the Recycling of Early Neoarchean Juvenile Crust in the North China Craton. Geological Journal, Online. https://doi.org/10.1002/gj.3824 [4] Black, L. P., Kamo, S. L., Allen, C. M., et al., 2004. Improved 206Pb/238U Microprobe Geochronology by the Monitoring of a Trace Element-Related Matrix Effect; SHRIMP, ID-TIMS, ELA-ICP-MS and Oxygen Isotope Documentation for a Series of Zircon Standards. Chemical Geology, 205(1):115-140. https://doi.org/10.1016/j.chemgeo.2004.01.003 [5] Condie, K.C., Kröner, A., 2013. The Building Blocks of Continental Crust:Evidence for a Major Change in the Tectonic Setting of Continental Growth at the End of the Archean. Gondwana Research, 23(2):394-402. https://doi.org/10.1016/j.gr.2011.09.011 [6] Cumming, G. L., Richards, J. R., 1975. Ore Lead Isotope Ratios in a Continuously Changing Earth. Earth and Planetary Science Letters, 28(2):155-171. https://doi.org/10.1016/0012-821x(75)90223-x [7] Deng, H., Kusky, T. M., Polat, A., et al., 2019. Magmatic Record of Neoarchean Arc-Polarity Reversal from the Dengfeng Segment of the Central Orogenic Belt, North China Craton. Precambrian Research, 326:105-123. https://doi.org/10.1016/j.precamres.2018.01.020 [8] Dong, C.Y., Wang, C., Xie, H.Q., et al., 2018. Late Neoarchean Jielingkou Diorite in Eastern Hebei, North China Craton:Origin from U-Pb-Nd-Hf-O Isotopic Studies. Acta Petrologica Sinica, 34(9):2793-2810(in Chinese with English abstract). https://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-sinica_thesis/0201270233610.html [9] Du, L.L., Zhuang, Y.X., Yang, C.H, et al., 2003. Characters of Zircons in the Mengjiatun Formation in Xintai of Shandong and Their Chronological Significance.Acta Geologica Sinica, 77(3):359-366(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200303007 [10] Geng, Y. S., Liu, F. L., Yang, C. H., 2006. Magmatic Event at the End of the Archean in Eastern Hebei Province and Its Geological Implication. Acta Geologica Sinica-English Edition, 80(6):819-833. https://doi.org/10.1111/j.1755-6724.2006.tb00305.x [11] Green, T. H., Sie, S. H., Ryan, C. G., et al., 1989. Proton Microprobe-Determined Partitioning of Nb, Ta, Zr, Sr and Y between Garnet, Clinopyroxene and Basaltic Magma at High Pressure and Temperature. Chemical Geology, 74(3/4):201-216. https://doi.org/10.1016/0009-2541(89)90032-6 [12] Green, T. H., Blundy, J. D., Adam, J., et al., 2000. SIMS Determination of Trace Element Partition Coefficients between Garnet, Clinopyroxene and Hydrous Basaltic Liquids at 2.0~7.5 GPa and 1 080~1 200℃. Lithos, 53(3):165-187. https://doi.org/10.1016/S0024-4937(00)00023-2 [13] Jian, P., Kröner, A., Windley, B. F., et al., 2012. Episodic Mantle Melting-Crustal Reworking in the Late Neoarchean of the Northwestern North China Craton:Zircon Ages of Magmatic and Metamorphic Rocks from the Yinshan Block. Precambrian Research, 222:230-254. https://doi.org/10.1016/j.precamres.2012.03.002 [14] Jiang, N., Guo, J. H., Zhai, M. G., et al., 2010. ∼2.7 Ga Crust Growth in the North China Craton. Precambrian Research, 179(1/2/3/4):37-49. https://doi.org/10.1016/j.precamres.2010.02.010 [15] Kröner, A., Wilde, S. A., Li, J. H., et al., 2005. Age and Evolution of a Late Archean to Paleoproterozoic Upper to Lower Crustal Section in the Wutaishan/Hengshan/Fuping Terrain of Northern China. Journal of Asian Earth Sciences, 24(5):577-595. https://doi.org/10.1016/j.jseaes.2004.01.001 [16] Kröner, A., Wilde, S. A., Zhao, G. C., et al., 2006. Zircon Geochronology and Metamorphic Evolution of Mafic Dykes in the Hengshan Complex of Northern China:Evidence for Late Palaeoproterozoic Extension and Subsequent High-Pressure Metamorphism in the North China Craton. Precambrian Research, 146(1/2):45-67. https://doi.org/10.1016/j.precamres.2006.01.008 [17] Kusky, T. M., Li, J. H., Tucker, R. D., 2001. The Archean Dongwanzi Ophiolite Complex, North China Craton:2.505-Billion-Year-Old Oceanic Crust and Mantle. Science, 292(5519):1142-1145. https://doi.org/10.1126/science.1059426 [18] Li, J. H., Kusky, T. M., Huang, X. N., 2002. Archean Podiform Chromitites and Mantle Tectonites in Ophiolitic Mélange, North China Craton:A Record of Early Oceanic Mantle Processes. GSA Today, 12(7):4. https://doi.org/10.1130/1052-5173(2002)0120004:apcamt > 2.0.co; 2 doi: 10.1130/1052-5173(2002)012<0004:APCAMT>2.0.CO;2 [19] Li, T. S., Zhai, M. G., Peng, P., et al., 2010. Ca. 2.5 Billion Year Old Coeval Ultramafic-Mafic and Syenitic Dykes in Eastern Hebei:Implications for Cratonization of the North China Craton. Precambrian Research, 180(3):143-155. https://doi.org/10.1016/j.precamres.2010.04.001 [20] Liu, Y.R., Lü, X.B., Liu, M.W., et al., 2019. Mineralogical Characteristics of Pyroxenes from Tulargen Mafic-Ultramafic Intrusion in East Tianshan, China and Their Geological Significance. Journal of Earth Sciences and Environment, 42(4):445-458 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xagcxyxb201904005 [21] Lu, S.N., Chen, Z.H., Xiang, Z.Q., 2008. The World Geopark of Taishan:Geochronological Framework of Ancient Intrusives. Geological Publishing House, Beijing, 1-90 (in Chinese). [22] Ludwig, K.R., 2001a. SQUID 1.02, A User's Manual. Berkeley Geochronology Center Special Publication, Berkeley, 2:1-19. http://www.researchgate.net/publication/285098120_Squid_113b_a_users_manual [23] Ludwig, K.R., 2001b. User's Manual for Isoplot/Ex rev. 2.49:A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley, 1:1-58. [24] Ma, M., Wan, Y., Santosh, M., et al., 2012. Decoding Multiple Tectonothermal Events in Zircons from Single Rock Samples:SHRIMP Zircon U-Pb Data from the Late Neoarchean Rocks of Daqingshan, North China Craton. Gondwana Research, 22(3):810-827. https://doi.org/10.1016/j.gr.2012.02.020 [25] McKenzie, D., O'Nions, R. K, 1991. Partial Melt Distributions from Inversion of Rare Earth Element Concentrations. Journal of Petrology, 32(5):1021-1091. https://doi.org/10.1093/petrology/32.5.1021 [26] Nasdala, L., Hofmeister, W., Norberg, N., et al., 2008. Zircon M257 - A Homogeneous Natural Reference Material for the Ion Microprobe U-Pb Analysis of Zircon. Geostandards and Geoanalytical Research, 32(3):247-265. https://doi.org/10.1111/j.1751Beijing908x.2008.00914.x. doi: 10.1111/j.1751-908X.2008.00914.x [27] Nikogosian, I., Sobolev, A., 1997. Ion-Microprobe Analysis of Melt Inclusions in Olivine:Experience in Estimating the Olivine-Melt Partition Coefficients of Trace Elements. Geochemistry International, 35:119-126. http://www.researchgate.net/publication/279701807_Ion-microprobe_analysis_of_melt_inclusions_in_olivine_Experience_in_estimating_the_melt-olivine_partitioning_coefficients_of_elements [28] Pearce, J.A., 1983. The Role of Sub-Continental Lithosphere in Magma Genesis at ActiveContinental Margins. In: Hawkesworth, C.J., Norry, M.J., eds., Continental Basaltsand Mantle Xenoliths. Shiva Publish Limited, Cambridge, 230-249. [29] Polat, A., Herzberg, C., Munker, C., et al., 2006. Geochemical and Petrological Evidence for a Suprasubduction Zone Origin of Neoarchean (Ca. 2.5 Ga) Peridotites, Central Orogenic Belt, North China Craton. Geological Society of America Bulletin, 118(7/8):771-784. https://doi.org/10.1130/b25845.1. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bdc068afc2abeb85f5e370c99a468ae2 [30] Rampone, E., Borghini, G., Godard, M., et al., 2016. Melt/Rock Reaction at Oceanic Peridotite/Gabbro Transition as Revealed by Trace Element Chemistry of Olivine. Geochimica et Cosmochimica Acta, 190:309-331. https://doi.org/10.1016/j.gca.2016.06.029. [31] Ren, P., Xie, H.Q., Wang, S.J., et al., 2015.2.5~2.7 Ga Tectono Thermal Events in Western Shandong:Geology and Zircon SHRIMP Dating of TTG Rocks in Huangqian Reservoir, Taishan Mountain.Geological Review, 61(5):1068-1078(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201505010.htm [32] Ren, P., Xie, H., Wang, S., et al., 2016. A Ca. 2.60 Ga Tectono-Thermal Event in Western Shandong Province, North China Craton from Zircon U-Pb-O Isotopic Evidence:Plume or Convergent Plate Boundary Process. Precambrian Research, 281:236-252. https://doi.org/10.1016/j.precamres.2016.05.016. [33] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 doi: 10.1144/GSL.SP.1989.042.01.19 [34] Wan, Y. S., Liu, D. Y., Wang, S. J., et al., 2010. Juvenile Magmatism and Crustal Recycling at the End of the Neoarchean in Western Shandong Province, North China Craton:Evidence from SHRIMP Zircon Dating. American Journal of Science, 310(10):1503-1552. https://doi.org/10.2475/10.2010.11 [35] Wan, Y. S., Liu, D. Y., Wang, S. J., et al., 2011. ∼2.7Ga Juvenile Crust Formation in the North China Craton (Taishan-Xintai Area, Western Shandong Province):Further Evidence of an Understated Event from U-Pb Dating and Hf Isotopic Composition of Zircon. Precambrian Research, 186(1/2/3/4):169-180. https://doi.org/10.1016/j.precamres.2011.01.015 [36] Wan, Y. S., Liu, D. Y., Nutman, A., et al., 2012a. Multiple 3.8~3.1 Ga Tectono-Magmatic Events in a Newly Discovered Area of Ancient Rocks (the Shengousi Complex), Anshan, North China Craton. Journal of Asian Earth Sciences, 54/55:18-30. https://doi.org/10.1016/j.jseaes.2012.03.007 [37] Wan, Y., Wang, S., Liu, D., et al., 2012b. Redefinition of Depositional Ages of Neoarchean Supracrustal Rocks in Western Shandong Province, China:SHRIMP U-Pb Zircon Dating. Gondwana Research, 21(4):768-784. https://doi.org/10.1016/j.gr.2011.05.017 [38] Wan, Y.S., Liu, D.Y., Wang, S.J., et al., 2012. Redefinition of Early Precambrian Supracrustal Rocks and Formation Age of BIF in Western Shandong, North China Craton. Acta Petrologica Sinica, 28(11):3457-3475(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201211003 [39] Wan, Y., Dong, C., Wang, S., et al., 2014. Middle Neoarchean Magmatism in Western Shandong, North China Craton:SHRIMP Zircon Dating and LA-ICP-MS Hf Isotope Analysis. Precambrian Research, 255:865-884. https://doi.org/10.1016/j.precamres.2014.07.016 [40] Wan, Y.S., Song, Z.Y., Wang, L.M., et al., 2017. Early Precambrian Evolution of the Qixia Area, Eastern North China Craton:Evidence from Geological Mapping and SHRIMP U-Pb Zircon Dating. Geological Bulletin of China, 36(11):1927-1941(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD201711004.htm [41] Wan, Y.S., Dong, C.Y., Xie, H.Q., et al., 2018. Formation Age of BIF-Bearing Anshan Group Supracrustal Rocks in Anshan-Benxi Area:New Evidence from SHRIMP U-Pb Zircon Dating. Earth Science, 43(1):57-81(in Chinese with English abstract). doi: 10.3799/dqkx.2018.004 [42] Wilde, S. A., Cawood, P. A., Wang, K., et al., 2005. Granitoid Evolution in the Late Archean Wutai Complex, North China Craton. Journal of Asian Earth Sciences, 24(5):597-613. https://doi.org/10.1016/j.jseaes.2003.11.006. [43] Williams, I.S., 1998. U-Th-Pb Geochronology by Ion Microprobe. In: McKibben, M.A., Shanks, W.C.Ⅲ, Ridley, W.I., eds., Applications of Microanalytical Techniques to Understanding Mineralizing Processes.Reviews in Economic Geology, Society of Economic Geologists, 7: 1-35. [44] Yang, J., Wu, F., Wilde, S. A., et al., 2008. Petrogenesis and Geodynamics of Late Archean Magmatism in Eastern Hebei, Eastern North China Craton:Geochronological, Geochemical and ND-HF Isotopic Evidence. Precambrian Research, 167(1):125-149. https://doi.org/10.1016/j.precamres.2008.07.004 [45] Zhao, G., Wilde, S. A., Cawood, P. A., et al., 2002. SHRIMP U-Pb Zircon Ages of the Fuping Complex:Implications for Late Archean to Paleoproterozoic Accretion and Assembly of the North China Craton. American Journal of Science, 302(3):191-226. https://doi.org/10.2475/ajs.302.3.191 [46] Zhao, G., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton:Key Issues Revisited. Precambrian Research, 136(2):177-202. https://doi.org/10.1016/j.precamres.2004.10.002 [47] Zhao, G. C., Cawood, P. A., Wilde, S. A., et al., 2000. Metamorphism of Basement Rocks in the Central Zone of the North China Craton:Implications for Paleoproterozoic Tectonic Evolution. Precambrian Research, 103(1/2):55-88. https://doi.org/10.1016/s0301-9268(00)00076-0 [48] 董春艳, 王晨, 颉颃强, 等, 2018.冀东新太古代晚期界岭口闪长岩成因:U-Pb-Nd-Hf-O同位素研究.岩石学报, 34:2793-2810. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201809018.htm [49] 杜利林, 庄育勋, 杨崇辉, 等, 2003.山东新泰孟家屯岩组锆石特征及其年代学意义.地质学报, 77(3):359-366. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200303007 [50] 刘艳荣, 吕新彪, 刘民武, 等, 2019.东天山图拉尔根铁镁-超铁镁质岩体辉石矿物学特征及其地质意义.地球科学与环境学报, 42(4):445-458. doi: 10.3969/j.issn.1672-6561.2019.04.005 [51] 陆松年, 陈志宏, 相振群, 2008.泰山世界地质公园古老侵入岩系年代格架.北京:地质出版社, 1-90. [52] 任鹏, 颉颃强, 王世进, 等, 2015.鲁西2.5~2.7 Ga构造岩浆热事件:泰山黄前水库TTG侵入岩的野外地质和锆石SHRIMP定年.地质论评, 61(5):1068-1078. http://d.wanfangdata.com.cn/Periodical/dzlp201505009 [53] 万渝生, 董春艳, 颉颃强, 等, 2018.鞍山-本溪地区鞍山群含BIF表壳岩形成时代新证据:锆石SHRIMP U-Pb定年.地球科学, 43(1):57-74. doi: 10.3799/dqkx.2018.004 [54] 万渝生, 刘敦一, 王世进, 等, 2012.华北克拉通鲁西地区早前寒武纪表壳岩系重新划分和BIF形成时代.岩石学报, 28(11):3457-3475. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201211003 [55] 万渝生, 宋志勇, 王来明, 等, 2017.华北克拉通太古宙典型地区栖霞县幅1:5万地质图修编-野外地质调查和SHRIMP锆石U-Pb定年.地质通报, 36(11):1927-1941. doi: 10.3969/j.issn.1671-2552.2017.11.004 -
dqkx-45-7-2610-Table1-4.doc