• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    应力历史对饱和软土固结系数的影响

    王江锋 袁威 何况 郑培信

    王江锋, 袁威, 何况, 郑培信, 2020. 应力历史对饱和软土固结系数的影响. 地球科学, 45(12): 4640-4648. doi: 10.3799/dqkx.2020.184
    引用本文: 王江锋, 袁威, 何况, 郑培信, 2020. 应力历史对饱和软土固结系数的影响. 地球科学, 45(12): 4640-4648. doi: 10.3799/dqkx.2020.184
    Wang Jiangfeng, Yuan Wei, He Kuang, Zheng Peixin, 2020. Influence of Stress History on Consolidation Coefficient of Saturated Soft Soil. Earth Science, 45(12): 4640-4648. doi: 10.3799/dqkx.2020.184
    Citation: Wang Jiangfeng, Yuan Wei, He Kuang, Zheng Peixin, 2020. Influence of Stress History on Consolidation Coefficient of Saturated Soft Soil. Earth Science, 45(12): 4640-4648. doi: 10.3799/dqkx.2020.184

    应力历史对饱和软土固结系数的影响

    doi: 10.3799/dqkx.2020.184
    基金项目: 

    国家自然科学基金资助项目 U1704243

    详细信息
      作者简介:

      王江锋(1976-), 男, 博士, 副教授, 从事隧道与地下工程、岩土加固与测试等方面的科研与教学工作.ORCID:0000-0003-0029-9324.E-mail:398909366@qq.com

    • 中图分类号: P642

    Influence of Stress History on Consolidation Coefficient of Saturated Soft Soil

    • 摘要: 为了探究不同固结状态下的饱和软土固结系数的变化规律,在太沙基固结理论的基础上,利用渗透系数和孔隙比的关系、孔隙比和固结应力的关系,分别推导出了在正常固结和超固结状态下固结系数(Cv)随固结应力变化的关系式,将关系式代入Terzaghi方程,进而获得考虑应力历史和固结应力影响的修正Terzaghi一维固结方程;通过室内固结试验和工程应用分析对固结系数关系式和修正的Terzaghi一维固结方程的准确性进行验证.结果表明,对于正常固结的软土,当固结应力小于前期固结应力时,固结系数随应力的增大而增大;当固结应力大于前期固结应力时,固结系数随应力的增大而减小.对于超固结状态的软土,固结系数随应力的增大而增大,最后趋于平缓.当上覆荷载较小时,修正前后的Terzaghi一维固结方程计算结果相近;但当上覆荷载较大时,修正后的Terzaghi一维固结方程计算的固结度明显滞后于修正前的计算结果.前期的应力历史和后期的固结应力对软土固结系数的影响是不容忽视的,修正后的Terzaghi一维固结方程更能真实反映土体的固结性状.

       

    • 图  1  正常固结土孔隙比与固结应力之间的关系

      Fig.  1.  Relationship between porosity ratio of normal consolidated soil and vertical stress

      图  2  超固结土孔隙比与固结应力之间的关系

      a.σ0≤σ0+Δσ≤σc; b.σ0+Δσ≥σc

      Fig.  2.  Relationships between porosity ratio of over consolidated soil and vertical stress

      图  3  本文试样正常固结时Cv’关系

      Fig.  3.  Cv' diagram for normal consolidation of samples in this paper

      图  4  本文试样超固结时Cv’关系

      Fig.  4.  Cv - σ' diagram for over consolidation of samples in this paper

      图  5  林鹏等(2003)试样正常固结时Cv’关系

      Fig.  5.  Cv' diagram for normal consolidation of samples by Lin et al.(2003)

      图  6  林鹏等(2003)试样超固结时Cv’关系

      Fig.  6.  Cv- σ' diagram for over consolidation of samples by Lin et al.(2003)

      图  7  模型简化图

      Fig.  7.  Simplified diagram of model

      图  8  不同荷载下固结度与时间关系曲线

      a.正常固结; b.超固结

      Fig.  8.  Relationships between degree of consolidation and time under different loadings

      图  9  不同荷载下沉降与时间关系曲线

      a.正常固结; b.超固结

      Fig.  9.  Relationship between settlement and time under different loadings

      表  1  土的物理力学性质指标

      Table  1.   Physical and mechanical properties of soil

      天然重度(kn/m3) 含水率(%) 塑性指数(%) 液限(%) 黏粒含量(%) 孔隙比 压缩指数 回弹指数
      16.95 46.42 25.27 58.38 70.7 1.19 0.46 0.06
      下载: 导出CSV

      表  2  试验方案

      Table  2.   Testing plans for consolidation test

      固结状态 试样编号 加载路径(kPa)及持续时间
      正常固结 1,2 25(1 d)→50(1 d)→100(1 d)→150(1 d)→0→50(60 min)
      3,4 25(1 d)→50(1 d)→100(1 d)→150(1 d)→0→100(60 min)
      5,6 25(1 d)→50(1 d)→100(1 d)→150(1 d)→0→150(60 min)
      7,8 25(1 d)→50(1 d)→100(1 d)→150(1 d)→0→200(60 min)
      9,10 25(1 d)→50(1 d)→100(1 d)→150(1 d)→0→400(60 min)
      11,12 25(1 d)→50(1 d)→100(1 d)→150(1 d)→0→800(60 min)
      超固结 13,14 25(1 d)→50(1 d)→100(1 d)→200(1 d)→400(1 d)→800(1 d)→0→50(60 min)
      15,16 25(1 d)→50(1 d)→100(1 d)→200(1 d)→400(1 d)→800(1 d)→0→100(60 min)
      17,18 25(1 d)→50(1 d)→100(1 d)→200(1 d)→400(1 d)→800(1 d)→0→150(60 min)
      19,20 25(1 d)→50(1 d)→100(1 d)→200(1 d)→400(1 d)→800(1 d)→0→200(60 min)
      21,22 25(1 d)→50(1 d)→100(1 d)→200(1 d)→400(1 d)→800(1 d)→0→400(60 min)
      23,24 25(1 d)→50(1 d)→100(1 d)→200(1 d)→400(1 d)→800(1 d)→0→800(60 min)
      下载: 导出CSV
    • [1] Chen, B., Sun, D.A., Lü, H.B., 2013.Experimental Study of Compression Behavior of Marine Soft Clays.Rock and Soil Mechanics, 34(2):381-388(in Chinese with English abstract).
      [2] Gao, J., Dang, F.N., Ding, J.L., et al., 2019.Research on Soft Soil Consolidation Calculation Method Considering the Impacts of Initial Consolidation State.Chinese Journal of Rock Mechanics and Engineering, 38(Suppl.1):3189-3196(in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S0013795214001768
      [3] GB/T 50123-2019, 2019.Standard for Soil Test Method.China Planning Press, Beijing, 74-80(in Chinese).
      [4] Ge, Q., Liang, X., Gong, X.L., et al., 2017.Application and Comparison of Various Methods for Determining Hydraulic Conductivity in Saturated Clay-Rich Deposits:A Case Study of Clay-Rich Sediments in North Jiangsu Coastal Plain.Earth Science, 42(5):793-803 (in Chinese with English abstract).
      [5] Gui, Y., Yu, Z.H., Liu, H.M., et al., 2016.Experimental Study of the Change Law of Consolidation Coefficient of the Plateau Lacustrine Peaty Soil.Chinese Journal of Rock Mechanics and Engineering, 35(Suppl.1):3259-3267(in Chinese with English abstract).
      [6] Jia, R., Lei, H.Y., 2019.Experimental Study of Anisotropic Consolidation Behavior of Ariake Clay.Rock and Soil Mechanics, 40(6):2231-2238(in Chinese with English abstract). doi: 10.16285/j.rsm.2018.1581
      [7] Lei, H.Y., Feng S.X., Jiang, Y., 2018.Geotechnical Characteristics and Consolidation Properties of Tianjin Marine Clay.Geomechanics and Engineering, 16(2):125-140. https://doi.org/10.12989/gae.2018.16.2.125
      [8] Lin, P., Xu, Z.H., Xu, P., et al., 2003.Research on Coefficient of Consolidation of Soft Clay under Compression.Rock and Soil Mechanics, 24(1):106-108, 112(in Chinese with English abstract).
      [9] Lü, W.Q., Dong, Z.L., Chen, P.S., et al., 2009.Research on Relationship between Permeability Coefficient and Consolidation Stress of Normal Consolidation Clay.Rock and Soil Mechanics, 30(3):769-773(in Chinese with English abstract). https://www.researchgate.net/publication/287473339_Research_on_relationship_between_permeability_coefficient_and_consolidation_stress_of_normal_consolidation_clay
      [10] Meng, G.T., Wang, S.H., Zhang, D.B., et al., 2001.Determination of Consolidation Coefficient by Piezo-Cone Penetration Test.Earth Science, 26(1):93-98(in Chinese with English abstract).
      [11] Mesri, G., Ajlouni, M., 2007.Engineering Properties of Fibrous Peats.Journal of Geotechnical and Geoenvironmental Engineering, 133(7):850-866. https://doi.org/10.1061/(asce)1090-0241(2007)133:7(850)
      [12] Singhl, S.K., 2005.Estimating Consolidation Coefficient and Final Settlement:Triangular Excess Pore-Water Pressure.Journal of Geotechnical and Geoenvironmental Engineering, 131(8):1050-1055. https://doi.org/10.1061/(asce)1090-0241(2005)131:8(1050)
      [13] Singhl, S.K., 2008.Identifying Consolidation Coefficient:Linear Excess Pore-Water Pressure.Journal of Geotechnical and Geoenvironmental Engineering, 134(8):1205-1209. https://doi.org/10.1061/(asce)1090-0241(2008)134:8(1205)
      [14] Terzaghi, K., 1943.Theoretical Soil Mechanic.John Wiley and Sons Inc., New York, 265-296. doi: 10.1002/9780470172766
      [15] Wu, X.T., 2013.Research on Relation between Consolidation Coefficient and Consolidation Stress of Silt in Wenzhou Shoal.Rock and Soil Mechanics, 34(6):1675-1680(in Chinese with English abstract). https://www.researchgate.net/publication/281306807_Research_on_relation_between_consolidation_coefficient_and_consolidation_stress_of_silt_in_Wenzhou_shoal
      [16] Yu, C., Liu, S.Y., 2004.Calculation and Experiment on Consolidation Coefficient for Soft Clay Considering Different Stress Levels.Rock and Soil Mechanics, 25(Suppl.2):103-107(in Chinese with English abstract).
      [17] Zhang, W.M., Gu, X.W., Wang, F., et al., 2015.Swelling Tests on Soils and Simulation Method for Unloading-Swelling Process.Chinese Journal of Geotechnical Engineering, 37(6):979-987(in Chinese with English abstract). https://www.researchgate.net/publication/283024670_Swelling_tests_on_soils_and_simulation_method_for_unloading-swelling_process
      [18] Zhang, W.M., Gu, X.W., Wang, F., 2016.Back Analysis of Terzaghi Consolidation Coefficient.Chinese Journal of Geotechnical Engineering, 38(Suppl.1):99-103(in Chinese with English abstract).
      [19] Zhang, Y.P., Yu, Y.N., Zhang, T.Q., et al., 2002.A Method for Evaluating Coefficient of Consolidation.Chinese Journal of Geotechnical Engineering, 24(5):616-618(in Chinese with English abstract).
      [20] Zhu, G.F., Yin, J.H., 2005.Consolidation of a Soil Layer Subsequent to Cessation of Deposition.Canadian Geotechnical Journal, 42(2):678-682. https://doi.org/10.1139/t04-105
      [21] 陈波, 孙德安, 吕海波, 2013.海相软土压缩特性的试验研究.岩土力学, 34(2):381-388. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201302014.htm
      [22] 高俊, 党发宁, 丁九龙, 等, 2019.考虑初始固结状态影响的软基固结计算方法研究.岩石力学与工程学报, 38(增刊1):3189-3196. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1060.htm
      [23] GB/T 50123-2019, 2019.土工试验方法标准.北京: 中国计划出版社, 74-80.
      [24] 葛勤, 梁杏, 龚绪龙, 等, 2017.不同饱和黏性土渗透系数预测方法的应用与对比:以苏北沿海平原黏土为例.地球科学, 42(5):793-803. doi: 10.3799/dqkx.2017.067
      [25] 桂跃, 余志华, 刘海明, 等, 2016.高原湖相泥炭土固结系数变化规律试验研究.岩石力学与工程学报, 35(增刊1):3259-3267. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S1075.htm
      [26] 加瑞, 雷华阳, 2019.有明黏土各向异性固结特性的试验研究.岩土力学, 40(6):2231-2238. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201906022.htm
      [27] 林鹏, 许镇鸿, 徐鹏, 等, 2003.软土压缩过程中固结系数的研究.岩土力学, 24(1):106-108, 112. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200301025.htm
      [28] 吕卫清, 董志良, 陈平山, 等, 2009.正常固结软土渗透系数与固结应力关系研究.岩土力学, 30(3):769-773. doi: 10.3969/j.issn.1000-7598.2009.03.035
      [29] 孟高头, 王四海, 张德波, 等, 2001.用孔压静力触探求固结系数的研究.地球科学, 26(1):93-98. http://www.earth-science.net/article/id/816
      [30] 吴雪婷, 2013.温州浅滩淤泥固结系数与固结应力关系研究.岩土力学, 34(6):1675-1680. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201306024.htm
      [31] 余闯, 刘松玉, 2004.考虑应力水平的软土固结系数计算与试验研究.岩土力学, 25(增刊2):103-107. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2004S200J.htm
      [32] 章为民, 顾行文, 王芳, 等, 2015.土的卸荷回弹试验及其时间过程的计算方法.岩土工程学报, 37(6):979-987. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201506003.htm
      [33] 章为民, 顾行文, 王芳, 2016.Terzaghi固结系数的试验反演分析.岩土工程学报, 38(增刊1):99-103. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2016S1020.htm
      [34] 张仪萍, 俞亚南, 张土乔, 等, 2002.室内固结系数的一种推算方法.岩土工程学报, 24(5):616-618. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200205016.htm
    • 加载中
    图(9) / 表(2)
    计量
    • 文章访问数:  763
    • HTML全文浏览量:  105
    • PDF下载量:  27
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-05-27
    • 刊出日期:  2020-12-15

    目录

      /

      返回文章
      返回