Identification of the ~2.09 Ga and ~1.76 Ga Granitoids in the Northwestern Yangtze Block: Records of the Assembly and Break-Up of Columbia Supercontinent
-
摘要: 扬子地块保存了较多与Columbia超大陆演化有关的岩石记录,但是其聚合-裂解过程、在超大陆重建中的位置等还存在较大争论.对扬子地块西北缘碑坝地区马元花岗闪长岩和白玉钾长花岗岩进行了锆石U-Pb年代学、全岩地球化学和锆石Hf同位素研究.测年结果表明,上述花岗质岩石分别形成于~2 090 Ma和~1 760 Ma.地球化学组成上,马元~2 090 Ma花岗闪长岩受蚀变影响,表现出强过铝质的特点,微量元素低Sr、Cr、Ni,高Y和Yb,相对富集轻稀土、亏损高场强元素,与钙碱性花岗质岩石相似,锆石εHf(t)值为+0.91~+2.59;白玉~1 760 Ma钾长花岗岩高Si,富碱,低Al、Mg、Mn和P,A/CNK值在0.96~1.04之间,微量元素富集Th、Zr、Hf,相对富集Nb、Ta,贫Sr,稀土元素总量高,轻稀土富集,轻重稀土之间分异明显,并表现出强烈的负Eu异常,10 000×Ga/Al值为3.30~3.73,Zr+Nb+Ce+Y含量为797×10-6~1 495×10-6,锆石饱和温度高达897~939℃,表现出A型花岗岩的特点,锆石εHf(t)值为-13.58~-10.29.结合锆石微量元素、氧逸度及前人研究成果表明,马元2 090~2 080 Ma花岗质岩石最有可能形成于岩浆弧的环境,存在新生和古老地壳物质两种岩浆来源,而白玉1 790~1 760 Ma A型花岗岩形成于陆内裂谷盆地,来源于古老地壳物质的部分熔融,它们分别是Columbia超大陆聚合-裂解在扬子地块的地质响应.综合区域地球物理和岩浆-变质事件的成果,表明扬子地块可能位于Columbia超大陆的边部,与Laurentia克拉通相连.Abstract: The Yangtze Block preserves large quantities of Paleoproterozoic rocks which hold the evidence of the Columbia supercontinent cycle, however, its evolution from the assembly to break-up and relative location in the palaeosupercontinent, are still in dispute. In this study, we present an integrated dataset of whole-rock geochemistry, zircon U-Pb age and Lu-Hf isotope of the Mayuan and Baiyu granitoids in the Beiba area of the northwestern Yangtze Block. Zircon U-Pb dating reveals that the Mayuan granodiorite and the Baiyu K-feldspar granite were emplaced at ~2 090 Ma and ~1 760 Ma, respectively. Geochemically, the Mayuan granodiorite shows strongly peraluminous characteristics with depletion in Sr, Cr, Ni, enrichment in Y and Yb, relatively enriched in LREE and depleted in HFSE, and these features bear resemblance to those of cal-alkali granite; in addition, its zircon Lu-Hf isotopic analyses yield positive εHf(t) values of +0.91 to +2.59. The Baiyu K-feldspar granite is alkali-rich and enriched in Sr, low Al, Mg, Mn and P, with A/CNK of 0.96-1.04; the trace elements show enrichment in Th, Na, Ta, Zr, Hf and depletion in Sr, Eu, with high total REE concentration, high LREE/HREE ratio, and strongly negative Eu anomalies; moreover, the granite has high HFSEs (Zr+Nb+Ce+Y=797×10-6-1 495×10-6) and 10 000×Ga/Al ratios (3.30-3.73). Together with high zircon saturation temperatures (897-939 ℃) from the K-feldspar granite, they are classified as A-type granites with negative εHf(t) values from -13.58 to -10.29. Integrated with the analysis of trace elements and oxygen fugacity of zircon and previous research results, the Mayuan 2 090-2 080 Ma granitoids were likely to be generated by remelting of both juvenile and old crustal components within an arc-related setting; the Baiyu 1 790-1 760 Ma K-feldspar granite may be derived from partial melting of ancient crustal materials within the intracontinental rift setting. And they are likely to be the responses to the assembly and break-up of the Columbia supercontinent. Taking account of geophysical data and magmatic-metamorphic events, it is suggested that the Yangtze Block was spatially linked to Laurentia in the Columbia supercontinent.
-
图 1 扬子地块前寒武纪(> 1.7 Ga)岩石分布(据Zhao and Cawood, 2012; 邓奇等, 2017改编)
数据来自Zhang et al.(2006)、Sun et al.(2008)、Wu et al.(2008, 2009, 2012)、Xiong et al.(2009)、Peng et al.(2009)、Zhang et al.(2011)、王子正等(2013)、Yin et al.(2013)、Li et al.(2014, 2019)、Hou et al.(2015)、邱啸飞等(2015)、Wang et al.(2015, 2016)、Chen and Xing(2016)、邓奇等(2017)、Hui et al.(2017)、Kou et al.(2017)、Zhu et al.(2017)、Zhou et al.(2017)、Han et al.(2017, 2018, 2019, 2020)、Guo et al.(2018)、Liu et al.(2019)、Cui et al.(2019, 2020)、黄明达等(2019)、Lu et al.(2019)、Wang and Dong(2019)、Qiu et al.(2020).图据中国地图(审图号:GS(2016)2893号)修改
Fig. 1. Geological map showing the distribution of Precambrian rocks(> 1.7 Ga)in the Yangtze Block (modified from Zhao and Cawood, 2012; Deng et al., 2017)
图 2 碑坝地区地质简图及采样位置(据Ling et al., 2003; 邓奇等, 2017修改)
Fig. 2. Simplified geological map and sample location in the Beiba area (modified from Ling et al., 2003; Deng et al., 2017)
图 3 碑坝地区马元花岗闪长岩样品18NZ05-2(a、b)和白玉花岗岩样品16BY09-14(c、d)野外露头和镜下显微照片
Qtz.石英;Pl.斜长石;Kfs.钾长石;Bt.黑云母;Ms.白云母
Fig. 3. Field photographs showing outcrops and photomicrographs illustrating petrographic characteristics of the sample 18NZ05-2 (a, b) from the Mayuan granodiorite and the sample 16BY09-14 (c, d) from the Baiyu granite in the Beiba area
图 4 碑坝地区马元花岗闪长岩样品18NZ05-2(a~d)和白玉花岗岩样品16BY09-14(e~h)代表性锆石CL图像
图中白色比例尺均为50 μm;绿色为Hf同位素测点位置、序号和εHf(t)值;黄色为U-Pb年龄测点位置、序号和年龄值
Fig. 4. Cathodeluminescence (CL) images of typical zircon grains of the sample 18NZ05-2 (a-d) from the Mayuan granodiorite and the sample 16BY09-14 (e-h) from the Baiyu granite in the Beiba area
图 7 碑坝地区花岗质岩石样品SiO2-Na2O+K2O(a)和A/CNK-A/NK(b)图解
底图据Middlemost(1994)、Maniar and Piccoli(1989)
Fig. 7. Nb/Y vs. Zr/TiO2 (a) and A/CNK vs. A/ NK (b) plots for the granitoid samples in the Beiba area
图 8 球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b)
原始地幔标准化数据、球粒陨石标准化数据引自文献Sun and McDonough (1989)
Fig. 8. Chondrite-normalized REE distribution patterns (a) and primitive mantle-normalized spidergrams (b)
图 9 碑坝地区花岗质岩石样品LOI与主微量元素协变图解
图例同图 7
Fig. 9. LOI vs. major and trace elements variation diagrams for the granitoid samples in the Beiba area
图 10 碑坝地区花岗质岩石样品Zr+Nb+Ce+Y-FeOT/MgO(a)和SiO2-P2O5(b)图解
底图据Whalen et al.(1987)、Chappell and White(1992)
Fig. 10. Zr+Nb+Ce+Y vs. FeOT/MgO (a) and SiO2 vs. P2O5 (b) plots for the granitoid samples in the Beiba area
图 12 碑坝地区花岗质岩石样品Rb-Y+Nb(a)和Y-Sr/Y(b)图解
底图据Pearce et al.(1984)、Drummond and Defant(1990)
Fig. 12. Rb vs. Y+Nb (a) and Y vs. Sr/Y (b) plots for the granitoid samples in the Beiba area
图 13 碑坝地区花岗质岩石样品锆石微量元素构造-岩浆背景判别图
Fig. 13. Discrimination diagram of tectono-magmatic setting based on trace elements in igneous zircon from the granitoid samples in the Beiba area
图 14 扬子地块在Columbia超大陆中的重建模式图(据Eglington et al., 2013; Wang et al., 2016)
Fig. 14. A model for reconstructing the Yangtze Block in the Colombia supercontinent (modified from Eglington et al., 2013; Wang et al., 2016)
-
[1] Berman, R. G., Pehrsson, S., Davis, W. J., et al., 2013. The Arrowsmith Orogeny:Geochronological and Thermobarometric Constraints on Its Extent and Tectonic Setting in the Rae Craton, with Implications for Pre-Nuna Supercontinent Reconstruction. Precambrian Research, 232:44-69. https://doi.org/10.1016/j.precamres.2012.10.015 [2] Campbell, I. H., Allen, C. M., 2008. Formation of Supercontinents Linked to Increases in Atmospheric Oxygen. Nature Geoscience, 1(8):554. https://doi.org/10.1038/ngeo259 [3] Cawood, P. A., Zhao, G. C., Yao, J. L., et al., 2018. Reconstructing South China in Phanerozoic and Precambrian Supercontinents. Earth-Science Reviews, 186:173-194. https://doi.org/10.1016/j.earscirev.2017.06.001 [4] Chappell, B. W., White, A. J. R., 1992. I-and S-Type Granites in the Lachlan Fold Belt. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1-2):1-26. https://doi.org/10.1017/s0263593300007720 [5] Chappell, B. W., White, A. J. R., Wyborn, D., 1987. The Importance of Residual Source Material (Restite) in Granite Petrogenesis. Journal of Petrology, 28(6):1111-1138. https://doi.org/10.1093/petrology/28.6.1111 [6] Chen, Z. H., Xing, G. F., 2016. Geochemical and Zircon U-Pb-Hf-O Isotopic Evidence for a Coherent Paleoproterozoic Basement Beneath the Yangtze Block, South China. Precambrian Research, 279:81-90. https://doi.org/10.1016/j.precamres.2016.04.002 [7] Cui, X. Z., Wang, J., Ren, G. M., et al., 2020. Paleoproterozoic Tectonic Evolution of the Yangtze Block:New Evidence from Ca. 2.36 to 2.22 Ga Magmatism and 1.96 Ga Metamorphism in the Cuoke Complex, SW China. Precambrian Research, 337:105525. https://doi.org/10.1016/j.precamres.2019.105525 [8] Cui, X. Z., Wang, J., Sun, Z. M., et al., 2019. Early Paleoproterozoic (Ca. 2.36 Ga) Post-Collisional Granitoids in Yunnan, SW China:Implications for Linkage between Yangtze and Laurentia in the Columbia Supercontinent. Journal of Asian Earth Sciences, 169:308-322. https://doi.org/10.1016/j.jseaes.2018.10.026 [9] Deng, Q., Wang, J., Wang, Z. J., et al., 2016. Middle Neoproterozoic Magmatic Activities and Their Constraints on Tectonic Evolution of the Jiangnan Orogen. Geotectonica et Metallogenia, 40(4):753-771 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201604010 [10] Deng, Q., Wang, Z. J., Wang, J., et al., 2017. Discovery of the Baiyu~1.79 Ga A-Type Granite in the Beiba Area of the Northwestern Margin of Yangtze Block:Constraints on Tectonic Evolution of South China. Acta Geologica Sinica, 91(7):1454-1466 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201707005.htm [11] Dong, S. W., Zhang, Y. Q., Gao, R., et al., 2015. A Possible Buried Paleoproterozoic Collisional Orogen Beneath Central South China:Evidence from Seismic-Reflection Profiling. Precambrian Research, 264:1-10. https://doi.org/10.1016/j.precamres.2015.04.003 [12] Drummond, M. S., Defant, M. J., 1990. A Model for Trondhjemite-Tonalite-Dacite Genesis and Crustal Growth via Slab Melting:Archean to Modern Comparisons. Journal of Geophysical Research Atmospheres, 95(B13):21503. https://doi.org/10.1029/jb095ib13p21503 [13] Eglington, B. M., Pehrsson, S. J., Ansdell, K. M., et al., 2013. A Domain-Based Digital Summary of the Evolution of the Palaeoproterozoic of North America and Greenland and Associated Unconformity-Related Uranium Mineralization. Precambrian Research, 232:4-26. https://doi.org/10.1016/j.precamres.2013.01.021 [14] Ernst, R. E., Wingate, M. T. D., Buchan, K. L., et al., 2008. Global Record of 1 600-700 Ma Large Igneous Provinces (LIPs):Implications for the Reconstruction of the Proposed Nuna (Columbia) and Rodinia Supercontinents. Precambrian Research, 160(1-2):159-178. https://doi.org/10.1016/j.precamres.2007.04.019 [15] Evans, D. A. D., Mitchell, R. N., 2011. Assembly and Breakup of the Core of Paleoproterozoic-Mesoproterozoic Supercontinent Nuna. Geology, 39(5):443-446. https://doi.org/10.1130/G31654.1 [16] Geng, Y. S., Shen, Q. H., Du, L. L., et al., 2016. Regional Metamorphism and Continental Growth and Assembly in China. Acta Petrologica Sinica, 32(9):2579-2608 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201609001 [17] Grimes, C. B., Wooden, J. L., Cheadle, M. J., et al., 2015. "Fingerprinting" Tectono-Magmatic Provenance Using Trace Elements in Igneous Zircon. Contributions to Mineralogy and Petrology, 170(5-6):46. https://doi.org/10.1007/s00410-015-1199-3 [18] Guo, J. W., Zheng, J. P., Ping, X. Q., et al., 2018. Paleoproterozoic Porphyries and Coarse-Grained Granites Manifesting a Vertical Hierarchical Structure of Archean Continental Crust Beneath the Yangtze Craton. Precambrian Research, 314:288-305. https://doi.org/10.1016/j.precamres.2018.06.012 [19] Han, Q. S., Peng, S. B., 2020. Paleoproterozoic Subduction within the Yangtze Craton:Constraints from Nb-Enriched Mafic Dikes in the Kongling Complex. Precambrian Research, 340:105634. https://doi.org/10.1016/j.precamres.2020.105634 [20] Han, Q. S., Peng, S. B., Kusky, T., et al., 2017. A Paleoproterozoic Ophiolitic Mélange, Yangtze Craton, South China:Evidence for Paleoproterozoic Suturing and Microcontinent Amalgamation. Precambrian Research, 293:13-38. https://doi.org/10.1016/j.precamres.2017.03.004 [21] Han, Q. S., Peng, S. B., Polat, A., et al., 2018. A Ca. 2.1 Ga Andean-Type Margin Built on Metasomatized Lithosphere in the Northern Yangtze Craton, China:Evidence from High-Mg Basalts and Andesites. Precambrian Research, 309:309-324. https://doi.org/10.1016/j.precamres.2017.05.015 [22] Han, Q. S., Peng, S. B., Polat, A., et al., 2019. Petrogenesis and Geochronology of Paleoproterozoic Magmatic Rocks in the Kongling Complex:Evidence for a Collisional Orogenic Event in the Yangtze Craton. Lithos, 342-343:513-529. https://doi.org/10.1016/j.lithos.2019.05.015 [23] Hoffman, P. F., 1991. Did the Breakout of Laurentia Turn Gondwanaland Inside-Out?. Science, 252(5011):1409-1412. https://doi.org/10.1126/science.252.5011.1409 [24] Hou, L., Ding, J., Deng, J., et al., 2015. Geology, Geochronology, and Geochemistry of the Yinachang Fe-Cu-Au-REE Deposit of the Kangdian Region of SW China:Evidence for a Paleo-Mesoproterozoic Tectono-Magmatic Event and Associated IOCG Systems in the Western Yangtze Block. Journal of Asian Earth Sciences, 103:129-149. https://doi.org/10.1016/j.jseaes.2014.09.016 [25] Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. Improved in Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9):1391-1399. https://doi.org/10.1039/C2JA30078H [26] Huang, M. D., Cui, X. Z., Cheng, A. G., et al., 2019.Late Paleoproterozoic A-Type Granitic Rocks in the Northern Yangtze Block:Evidence for Breakup of the Columbia Supercontinent. Acta Geologica Sinica, 93(3):565-584 (in Chinese with English abstract). http://www.researchgate.net/publication/333558938_Late_Paleoproterozoic_A-type_granitic_rocks_in_the_northern_Yangtze_Block_Implications_for_breakup_of_the_Columbia_supercontinent [27] Hui, B., Dong, Y. P., Cheng, C., et al., 2017. Zircon U-Pb Chronology, Hf Isotope Analysis and Whole-Rock Geochemistry for the Neoarchean-Paleoproterozoic Yudongzi Complex, Northwestern Margin of the Yangtze Craton, China. Precambrian Research, 301:65-85. https://doi.org/10.1016/j.precamres.2017.09.003 [28] Hui, B., Dong, Y. P., Zhang, F. F., et al., 2019. Geochronology and Geochemistry of Ca. 2.48 Ga Granitoid Gneisses from the Yudongzi Complex in the North-Western Yangtze Block, China. Geological Journal, 54(2):879-896. https://doi.org/10.1002/gj.3396 [29] King, P. L., White, A. J. R., Chappell, B. W., et al., 1997. Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3):371-391. https://doi.org/10.1093/petroj/38.3.371 [30] Kou, C. H., Zhang, Z. C., Santosh, M., et al., 2017. Oldest Volcanic-Hosted Submarine Iron Ores in South China:Evidence from Zircon U-Pb Geochronology and Geochemistry of the Paleoproterozoic Dahongshan Iron Deposit. Gondwana Research, 49:182-204. https://doi.org/10.1016/j.gr.2017.05.016 [31] Lee, C. T. A., Leeman, W. P., Canil, D., et al., 2005. Similar V/Sc Systematics in MORB and Arc Basalts:Implications for the Oxygen Fugacities of Their Mantle Source Regions. Journal of Petrology, 46(11):2313-2336. https://doi.org/10.1093/petrology/egi056 [32] Li, L. M., Lin, S. F., Davis, D. W., et al., 2014. Geochronology and Geochemistry of Igneous Rocks from the Kongling Terrane:Implications for Mesoarchean to Paleoproterozoic Crustal Evolution of the Yangtze Block. Precambrian Research, 255:30-47. https://doi.org/10.1016/j.precamres.2014.09.009 [33] Li, Q. W., Zhao, J. H., Wang, W., 2019. Ca. 2.0 Ga Mafic Dikes in the Kongling Complex, South China:Implications for the Reconstruction of Columbia. Journal of Asian Earth Sciences, 169:323-335. https://doi.org/10.1016/j.jseaes.2018.09.022 [34] Li, X. H., Li, Z. X., Li, W. X., et al., 2007. U-Pb Zircon, Geochemical and Sr-Nd-Hf Isotopic Constraints on Age and Origin of Jurassic I-and A-Type Granites from Central Guangdong, SE China:A Major Igneous Event in Response to Foundering of a Subducted Flat-Slab?. Lithos, 96(1-2):186-204. https://doi.org/10.1016/j.lithos.2006.09.018 [35] Li, Z. X., Bogdanova, S. V., Collins, A. S., et al., 2008. Assembly, Configuration, and Break-Up History of Rodinia:A Synthesis. Precambrian Research, 160(1-2):179-210. https://doi.org/10.1016/j.precamres.2007.04.021 [36] Ling, W. L., 1996. Isotopic Geochronology and Crustal Growth of Proterozoic Basement along the Northern Margin of Yangtze Craton:Ⅰ. Houhe Group and Xixiang Group. Earth Science, 21(5):491-494 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX605.007.htm [37] Ling, W. L., Gao, S., Cheng, J. P., et al., 2006. Neoproterozoic Magmatic Events within the Yangtze Continental Interior and Along Its Northern Margin and Their Tectonic Implication:Constraint from the ELA-ICPMS U-Pb Geochronology of Zircons from the Huangling and Hannan Complexes. Acta Petrologica Sinica, 22(2):387-396 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200602011.htm [38] Ling, W. L., Gao, S., Zhang, B. R., et al., 1997. Early Precambrian Continental Crust Evolution at the Northern Margin of Yangtze Craton:Constrain from the Elemental and Isotopic Geochemical Study of Houhe Complex. Journal of Mineralogy and Petrology, 17(4):26-32 (in Chinese with English abstract). http://www.researchgate.net/publication/296128876_Early_Precambrian_continental_crust_evolution_at_the_northern_margin_of_Yangtze_craton_constrain_from_the_elemental_and_isotopic_geochemical_study_of_Houhe_complex [39] Ling, W. L., Gao, S., Zhang, B. R., et al., 2001. The Recognizing of Ca. 1.95 Ga Tectono-Thermal Event in Kongling Nucleus and Its Significance for the Evolution of Yangtze Block, South China. Chinese Science Bulletin, 46(4):326-329. https://doi.org/10.1007/bf03187196 [40] Ling, W. L., Gao, S., Zhang, B. R., et al., 2003. Neoproterozoic Tectonic Evolution of the Northwestern Yangtze Craton, South China:Implications for Amalgamation and Break-Up of the Rodinia Supercontinent. Precambrian Research, 122(1-4):111-140. https://doi.org/10.1016/S0301-9268(02)00222-X [41] Liu, D. Y., Jian, P., Zhang, Q., et al., 2003. SHRIMP Dating of Adakites in the Tulingkai Ophiolite, Inner Mongolia:Evidence for the Early Paleozoic Subduction. Acta Geologica Sinica, 77(3):317-327 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200303004 [42] Liu, K., Lu, G. M., Wang, Z. Z., et al., 2019. The Paleoproterozoic Bimodal Magmatism in the SW Yangtze Block:Implications for Initial Breakup of the Columbia Supercontinent. Lithos, 332-333:23-38. https://doi.org/10.1016/j.lithos.2019.02.021 [43] Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1):34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 [44] Lu, G. M., Wang, W., Ernst, R. E., et al., 2019. Petrogenesis of Paleo-Mesoproterozoic Mafic Rocks in the Southwestern Yangtze Block of South China:Implications for Tectonic Evolution and Paleogeographic Reconstruction. Precambrian Research, 322:66-84. https://doi.org/10.1016/j.precamres.2018.12.019 [45] Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5):635-643. https://doi.org/10.1130/0016-7606(1989)1010635:TDOG > 2.3.CO; 2 doi: 10.1130/0016-7606(1989)1010635:TDOG>2.3.CO;2 [46] Martin, H., Smithies, R. H., Rapp, R., et al., 2005. An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid:Relationships and Some Implications for Crustal Evolution. Lithos, 79(1-2):1-24. https://doi.org/10.1016/j.lithos.2004.04.048 [47] Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4):215-224. https://doi.org/10.1016/0012-8252(94)90029-9 [48] Næraa, T., Scherstén, A., Rosing, M. T., et al., 2012. Hafnium Isotope Evidence for a Transition in the Dynamics of Continental Growth 3.2 Gyr Ago. Nature, 485(7400):627-630. https://doi.org/10.1038/nature11140 [49] Nam, T. N., Toriumi, M., Sano, Y., et al., 2003.2.9, 2.36, and 1.96 Ga Zircons in Orthogneiss South of the Red River Shear Zone in Viet Nam:Evidence from SHRIMP U-Pb Dating and Tectonothermal Implications. Journal of Asian Earth Sciences, 21(7):743-753. https://doi.org/10.1016/S1367-9120(02)00089-5 [50] Nance, R. D., Murphy, J. B., Santosh, M., 2014. The Supercontinent Cycle:a Retrospective Essay. Gondwana Research, 25(1):4-29. https://doi.org/10.1016/j.gr.2012.12.026 [51] Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956 [52] Peng, M., Wu, Y. B., Wang, J., et al., 2009. Paleoproterozoic Mafic Dyke from Kongling Terrain in the Yangtze Craton and Its Implication. Chinese Science Bulletin, 54(6):1098-1104. https://doi.org/10.1007/s11434-008-0558-0 [53] Qiu, X. F., Jiang, T., Zhao, X. M., et al., 2020. Baddeleyite U-Pb Geochronology and Geochemistry of Late Paleoproterozoic Mafic Dykes from the Kongling Complex of the Northern Yangtze Block, South China. Precambrian Research, 337:105537. https://doi.org/10.1016/j.precamres.2019.105537 [54] Qiu, X. F., Yang, H. M., Lu, S. S., et al., 2015. Geochronological and Geochemical Study for the Paleoproterozoic A-Type Granite in the Nucleus of the Yangtze Craton and Its Tectonic Implication. Geoscience, 29(4):884-895 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201504018 [55] Qiu, X. F., Yang, H. M., Zhao, X. M., et al., 2019. Neoarchean Granitic Gneissesinthe Kongling Complex, Yangtze Craton:Petrogenesis and TectonicImplications. Earth Science, 44(2):415-426 (in Chinese with English abstract). [56] Rogers, J. J. W., Santosh, M., 2002. Configuration of Columbia, a Mesoproterozoic Supercontinent. Gondwana Research, 5(1):5-22. https://doi.org/10.1016/S1342-937X(05)70883-2 [57] Sun, M., Chen, N. S., Zhao, G. C., et al., 2008. U-Pb Zircon and Sm-Nd Isotopic Study of the Huangtuling Granulite, Dabie-Sulu Belt, China:Implication for the Paleoproterozoic Tectonic History of the Yangtze Craton. American Journal of Science, 308(4):469-483. https://doi.org/10.2475/04.2008.03 [58] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [59] Trail, D., Watson, E. B., Tailby, N. D., 2012. Ce and Eu Anomalies in Zircon as Proxies for the Oxidation State of Magmas. Geochimica et Cosmochimica Acta, 97:70-87. https://doi.org/10.1016/j.gca.2012.08.032 [60] Wang, K., Dong, S. W., 2019. New Insights into Paleoproterozoic Tectonics of the Yangtze Block in the Context of Early Nuna Assembly:Possible Collisional Granitic Magmatism in the Zhongxiang Complex, South China. Precambrian Research, 334:105452. https://doi.org/10.1016/j.precamres.2019.105452 [61] Wang, W., Cawood, P. A., Zhou, M. F., et al., 2016. Paleoproterozoic Magmatic and Metamorphic Events Link Yangtze to Northwest Laurentia in the Nuna Supercontinent. Earth and Planetary Science Letters, 433:269-279. https://doi.org/10.1016/j.epsl.2015.11.005 [62] Wang, W., Lu, G. M., Huang, S. F., et al., 2019. Geological Evolution of the Yangtze Block in Paleo-to Meso-Proterozoic and Its Implication on the Reconstruction of the Columbia Supercontinent. Bulletin of Mineralogy, Petrology and Geochemistry, 38(1):30-52 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KYDH201901004.htm [63] Wang, W., Zhou, M. F., 2014. Provenance and Tectonic Setting of the Paleo-to Mesoproterozoic Dongchuan Group in the Southwestern Yangtze Block, South China:Implication for the Breakup of the Supercontinent Columbia. Tectonophysics, 610:110-127. https://doi.org/10.1016/j.tecto.2013.11.009 [64] Wang, W., Zhou, M. F., Zhao, X. F., et al., 2014. Late Paleoproterozoic to Mesoproterozoic Rift Successions in SW China:Implication for the Yangtze Block-North Australia-Northwest Laurentia Connection in the Columbia Supercontinent. Sedimentary Geology, 309:33-47. https://doi.org/10.1016/j.sedgeo.2014.05.004 [65] Wang, Z. J., Wang, J., Deng, Q., et al., 2015. Paleoproterozoic Ⅰ-Type Granites and Their Implications for the Yangtze Block Position in the Columbia Supercontinent:Evidence from the Lengshui Complex, South China. Precambrian Research, 263:157-173. https://doi.org/10.1016/j.precamres.2015.03.014 [66] Wang, Z. Z., Guo, Y., Yang, B., et al., 2013. Discovery of the 1.73 Ga Haizi Anorogenic Type Granite in the Western Margin of Yangtze Craton, and Its Geological Significance. Acta Geologica Sinica, 87(7):931-942 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DZXE201307004&dbcode=CJFD&year=2013&dflag=pdfdown [67] Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4):407-419. https://doi.org/10.1007/BF00402202 [68] Wu, F. Y., Li, X. H., Yang, J. H., et al., 2007. Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6):1217-1238 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200706001 [69] Wu, Y. B., Gao, S., Gong, H. J., et al., 2009. Zircon U-Pb Age, Trace Element and Hf Isotope Composition of Kongling Terrane in the Yangtze Craton:Refining the Timing of Palaeoproterozoic High-Grade Metamorphism. Journal of Metamorphic Geology, 27(6):461-477. https://doi.org/10.1111/j.1525-1314.2009.00826.x [70] Wu, Y. B., Gao, S., Zhang, H. F., et al., 2012. Geochemistry and Zircon U-Pb Geochronology of Paleoproterozoic Arc Related Granitoid in the Northwestern Yangtze Block and Its Geological Implications. Precambrian Research, 200/201/202/203:26-37. https://doi.org/10.1016/j.precamres.2011.12.015 [71] Wu, Y. B., Zheng, Y. F., Gao, S., et al., 2008. Zircon U-Pb Age and Trace Element Evidence for Paleoproterozoic Granulite-Facies Metamorphism and Archean Crustal Rocks in the Dabie Orogen. Lithos, 101(3-4):308-322. https://doi.org/10.1016/j.lithos.2007.07.008 [72] Wu, Y. B., Zhou, G. Y., Gao, S., et al., 2014. Petrogenesis of Neoarchean TTG Rocks in the Yangtze Craton and Its Implication for the Formation of Archean TTGs. Precambrian Research, 254:73-86. https://doi.org/10.1016/j.precamres.2014.08.004 [73] Xiong, Q., Zheng, J. P., Yu, C. M., et al., 2009. Zircon U-Pb Age and Hf Isotope of Quanyishang A-Type Granite in Yichang:Signification for the Yangtze Continental Cratonization in Paleoproterozoic. Chinese Science Bulletin, 54(3):436-446. https://doi.org/10.1007/s11434-008-0401-7 [74] Xiong, X. S., Gao, R., Wang, H. Y., et al., 2016. Frozen Subduction in the Yangtze Block:Insights from the Deep Seismic Profiling and Gravity Anomaly in East Sichuan Fold Belt. Earthquake Science, 29(2):61-70. https://doi.org/10.1007/s11589-016-0140-9 [75] Yin, C. Q., Lin, S. F., Davis, D. W., et al., 2013.2.1-1.85 Ga Tectonic Events in the Yangtze Block, South China:Petrological and Geochronological Evidence from the Kongling Complex and Implications for the Reconstruction of Supercontinent Columbia. Lithos, 182-183:200-210. https://doi.org/10.1016/j.lithos.2013.10.012 [76] Yu, J. H., Wang, L. J., O'Reilly, S. Y., et al., 2009. A Paleoproterozoic Orogeny Recorded in a Long-Lived Cratonic Remnant (Wuyishan Terrane), Eastern Cathaysia Block, China. Precambrian Research, 174(3-4):347-363. https://doi.org/10.1016/j.precamres.2009.08.009 [77] Zhai, Q. G., Jahn, B. M., Wang, J., et al., 2016. Oldest Paleo-Tethyan Ophiolitic Mélange in the Tibetan Plateau. Geological Society of America Bulletin, 128(3-4):355-373. https://doi.org/10.1130/b31296.1 [78] Zhang, L. J., Ma, C. Q., Wang, L. X., et al., 2011. Discovery of Paleoproterozoic Rapakivi Granite on the Northern Margin of the Yangtze Block and Its Geological Significance. Chinese Science Bulletin, 56(3):306-318. https://doi.org/10.1007/s11434-010-4236-7 [79] Zhang, S. B., Wu, P., Zheng, Y. F., 2019. Mafic Magmatic Records of Rodinia Amalgamation in the Northern Margin of the South China Block. Earth Science, 44(12):4157-4166 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201912026 [80] Zhang, S. B., Zheng, Y. F., Wu, Y. B., et al., 2006. Zircon U-Pb Age and Hf-O Isotope Evidence for Paleoproterozoic Metamorphic Event in South China. Precambrian Research, 151(3-4):265-288. https://doi.org/10.1016/j.precamres.2006.08.009 [81] Zhao, G. C., Cawood, P. A., 2012. Precambrian Geology of China. Precambrian Research, 222-223:13-54. https://doi.org/10.1016/j.precamres.2012.09.017 [82] Zhao, G. C., Sun, M., Wilde, S. A., 2002. Reconstruction of a Pre-Rodinia Supercontinent:New Advances and Perspectives. Chinese Science Bulletin, 47(19):1585-1588. https://doi.org/10.1007/BF03184102 [83] Zhao, G. C., Sun, M., Wilde, S. A., et al., 2004. A Paleo-Mesoproterozoic Supercontinent:Assembly, Growth and Breakup. Earth-Science Reviews, 67(1-2):91-123. https://doi.org/10.1016/j.earscirev.2004.02.003 [84] Zhao, J. H., Zhou, M. F., 2009. Secular Evolution of the Neoproterozoic Lithospheric Mantle underneath the Northern Margin of the Yangtze Block, South China. Lithos, 107(3-4):152-168. https://doi.org/10.1016/j.lithos.2008.09.017 [85] Zhou, G. Y., Wu, Y. B., Wang, H., et al., 2017. Petrogenesis of the Huashanguan A-Type Granite Complex and Its Implications for the Early Evolution of the Yangtze Block. Precambrian Research, 292:57-74. https://doi.org/10.1016/j.precamres.2017.02.005 [86] Zhu, W. G., Bai, Z. J., Zhong, H., et al., 2017. The Origin of the C. 1.7 Ga Gabbroic Intrusion in the Hekou Area, SW China:Constraints from SIMS U-Pb Zircon Geochronology and Elemental and Nd Isotopic Geochemistry. Geological Magazine, 154(2):286-304. https://doi.org/10.1017/s0016756815001119 [87] Zong, K. Q., Klemd, R., Yuan, Y., et al., 2017. The Assembly of Rodinia:The Correlation of Early Neoproterozoic (Ca. 900 Ma) High-Grade Metamorphism and Continental Arc Formation in the Southern Beishan Orogen, Southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290:32-48. https://doi.org/10.1016/j.precamres.2016.12.010 [88] 邓奇, 王剑, 汪正江, 等, 2016.江南造山带新元古代中期(830~750 Ma)岩浆活动及对构造演化的制约.大地构造与成矿学, 40(4):753-771. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201604010 [89] 邓奇, 汪正江, 王剑, 等, 2017.扬子地块西北缘碑坝地区白玉~1.79 Ga A型花岗岩的发现及其对构造演化的制约.地质学报, 91(7):1454-1466. http://kns.cnki.net/KCMS/detail/detail.aspx?dbCode=CJFD&filename=DZXE201707005&tableName=CJFDPREP [90] 耿元生, 沈其韩, 杜利林, 等, 2016.区域变质作用与中国大陆地壳的形成与演化.岩石学报, 32(9):2579-2608. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201609001 [91] 黄明达, 崔晓庄, 程爱国, 等, 2019.扬子北缘晚元古代A型花岗质岩:Columbia超大陆裂解的证据.地质学报, 93(3):565-584. http://www.geojournals.cn/dzxbe/ch/reader/view_abstract.aspx?file_no=2017376&flag=1 [92] 凌文黎, 1996.扬子克拉通北缘元古宙基底同位素地质年代学和地壳增生历史:I.后河群和西乡群.地球科学, 21(5):491-494. http://www.cnki.com.cn/Article/CJFDTotal-DQKX605.007.htm [93] 凌文黎, 高山, 程建萍, 等, 2006.扬子陆核与陆缘新元古代岩浆事件对比及其构造意义——来自黄陵和汉南侵入杂岩ELA-ICPMS锆石U-Pb同位素年代学的约束.岩石学报, 22(2):387-396. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200602011 [94] 凌文黎, 高山, 张本仁, 等, 1997.扬子克拉通北缘早前寒武纪地壳演化——后河杂岩元素和同位素地球化学限制.矿物岩石, 17(4):26-32. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700784253 [95] 刘敦一, 简平, 张旗, 等, 2003.内蒙古图林凯蛇绿岩中埃达克岩SHRIMP测年:早古生代洋壳消减的证据.地质学报, 77(3):317-327. http://d.wanfangdata.com.cn/Periodical/dizhixb200303004 [96] 邱啸飞, 杨红梅, 卢山松, 等, 2015.扬子陆核古元古代A型花岗岩的年代学与地球化学研究及其构造意义.现代地质, 29(4):884-895. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201504018 [97] 邱啸飞, 杨红梅, 赵小明, 等, 2019.扬子克拉通崆岭杂岩新太古代花岗片麻岩成因及其构造意义.地球科学, 44(2):415-426. doi: 10.3799/dqkx.2018.198 [98] 王伟, 卢桂梅, 黄思访, 等, 2019.扬子陆块古-中元古代地质演化与Columbia超大陆重建.矿物岩石地球化学通报, 38(1):30-52. http://www.cnki.com.cn/Article/CJFDTotal-KYDH201901004.htm [99] 王子正, 郭阳, 杨斌, 等, 2013.扬子克拉通西缘1.73 Ga非造山型花岗斑岩的发现及其地质意义.地质学报, 87(7):931-942. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201307003 [100] 吴福元, 李献华, 杨进辉, 等, 2007.花岗岩成因研究的若干问题.岩石学报, 23(6):1217-1238. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200706001 [101] 张少兵, 吴鹏, 郑永飞, 2019.罗迪尼亚超大陆聚合在华南陆块北缘的镁铁质岩浆岩记录.地球科学, 44(12):4157-4166. doi: 10.3799/dqkx.2019.252 -
dqkxzx-45-9-3295-附表.doc