Effects of Basic Intrusions on Shale Mineralogy: A Case Study from Nenjiang Formation in Songliao Basin
-
摘要: 已有研究表明岩浆侵入对页岩矿物学特征产生影响,然而对其影响范围及程度缺少精细解剖,制约了岩浆活动对页岩矿物学特征影响机理的准确认识.以松辽盆地南部与辉绿岩接触的嫩江组页岩为对象,利用岩心观察、XRD、偏光显微镜及扫描电镜等手段,将接触带页岩距辉绿岩由远及近划分为5个带:(1)灰色页岩带,厚19 m,(2)深灰色页岩带,厚11 m,(3)灰黑色页岩带,厚12.9 m,(4)青灰色页岩带,厚1.5 m,(5)灰白色页岩带,厚2.2 m.石英含量增多,平均含量分别为27.0%、33.6%、51.7%、56.7%和52.7%,由陆源碎屑石英过渡为高温自生石英(微晶自形石英及微晶球状石英),重结晶现象加剧;长石含量增多,平均含量分别为8.8%、12.0%、14.0%、15.1%和18.2%,由他形过渡为半自形-自形,重结晶现象加剧;碳酸盐矿物含量先减少后增多,平均含量分别为9.0%、10.0%、7.5%、4.5%和6.0%,菱铁矿及方解石由自形过渡为胶状及脉状;黄铁矿含量逐渐减少,平均含量分别为5.4%、3.5%、1.0%、0%和0%,由草莓状及自形过渡为他形粒状;粘土矿物含量逐渐减少,平均含量分别为46.0%、36.5%、22.5%、20.1%和19.0%,由片状蒙脱石过渡为絮状伊利石.结果表明,基性岩侵入页岩不仅加速了页岩成岩演化进程,而且使页岩脆性矿物增加、塑性矿物减少,可提高页岩储层的脆性及可压性,减弱了页岩气的赋存能力.Abstract: Existing studies have shown that magmatic intrusion has effects on shale mineralogical characteristics, but the lack of a detailed anatomy of its scope and extent has restricted the accurate understanding of the influence mechanism of magmatic activities on shale mineralogical characteristics.Based on contact with diabase in southern Songliao basin shale as an object of the Nenjiang Formation, by means of core observation, XRD, polarizing microscope, and scanning electron microscopy, the contact zone shale is divided from the diabase intrusion from far and near into five zones: gray shale zone, 19 m thick; dark gray shale zone, thick 11 m; gray-black shale zone, 12.9 m thick; blue-gray shale zone, 1.5 m thick; gray-white shale zone, 2.2 m thick. Quartz content increases, with average contents of 27.0%, 33.6%, 51.7%, 56.7%, and 52.7%, respectively. The transition from terrestrial clastic quartz to high-temperature in-situ quartz (microcrystalline self-shaped quartz and microcrystalline spherical quartz), the recrystallization phenomenon intensified. The content of feldspar increases, with average contents of 8.8%, 12.0%, 14.0%, 15.1%, and 18.2%, respectively, which changes from semi-morphic to semi-self-shaped, and the recrystallization phenomenon intensified. The content of carbonate minerals decreases first and then increased, with the average contents of 9.0%, 10.0%, 7.5%, 4.5%, and 6.0%, respectively. The shape of siderite and calcite changes from self-shaped to colloidal and veined. The pyrite content gradually decreases, with average contents of 5.4%, 3.5%, 1.0%, 0%, and 0%, respectively, and transformed from strawberry-like and self-shaped to other-shaped granular. The clay mineral content gradually decreases, with average contents of 46.0%, 36.5%, 22.5%, 20.1%, and 19.0%, respectively, transformed from platy montmorillonite to floc illite.The results show that the intrusion of basic rock into shale not only accelerates the diagenetic evolution of shale, but also increases the brittle minerals and decreases the plastic minerals, which can improve the brittleness and compressibility of shale reservoirs but weaken the ability of shale gas to exist.
-
Key words:
- basic intrusion /
- shale /
- Nenjiang Formation /
- Songliao basin /
- petroleum geology
-
图 1 地质背景及采样情况
a.钱家店地区ZKY2-1井的位置;b.钱家店地区地层综合柱状图;c.ZKY2-1井垂向序列;据荣辉等(2016)修改
Fig. 1. Geological background and sampling conditions
图 3 灰白色页岩带矿物特征
a.灰白色页岩的微晶球状石英,部分发生重结晶,429.7 m;b.灰白色页岩中的自形微晶长石集合体,430.7 m;c.灰白色页岩中的方解石脉,其外围分布有菱铁矿,429.7 m;d.灰白色页岩中的絮状伊利石,429.7 m;e.灰白色页岩中的硅灰石,分布于石英周围,429.7 m;f.灰白色页岩中的堇青石,呈条状及板状,430.7 m;a为扫描电镜二次电子图像,其余为扫描电镜背散射图像.Qtz.石英;fds.长石;ill.伊利石;Cal.方解石;Sd.菱铁矿;Crd.堇青石;Wi.硅灰石
Fig. 3. Mineral characteristics in gray-white shale zone
图 4 青灰色页岩带矿物特征
a.青灰色页岩中的自形石英,具良好晶形,432.8 m;b.青灰色页岩中的半自形钾长石,边缘发生破裂,433 m;c.青灰色页岩中的黄铁矿,呈他形粒状交代菱铁矿,433.4 m;d.青灰色页岩中的菱铁矿脉胶结碎屑颗粒,433 m;均为扫描电镜背散射图像.Py.黄铁矿;其他见图 3说明
Fig. 4. Mineral characteristics in blue-gray shale zone
图 5 灰黑色页岩带矿物特征
a.灰黑色页岩中生长于有机质中的自形石英,436.2 m;b.灰黑色页岩中的钠长石发生破裂,434.2 m;c.灰黑色页岩中黄铁矿晶体残留,442.2 m;d.灰黑色页岩中的方解石及菱铁矿相互交代,438.1 m;a为扫描电镜二次电子图像,其余均为扫描电镜背散射图像.Py.黄铁矿;其他见图 3说明
Fig. 5. Mineral characteristics in gray-black shale zone
图 6 深灰色页岩带矿物特征
a.深灰色页岩中的他形粒状石英,具一定磨圆,456.7 m;b.深灰色页岩中的他形长石,磨圆较好,456.7 m;c.深灰色页岩中的自形黄铁矿,456.7 m;d.深灰色页岩中的自形菱铁矿及方解石集合体,456.7 m;图中均为扫描电镜背散射图像.Py.黄铁矿;其他见图 3说明
Fig. 6. Mineral characteristics in dark-gray shale zone
图 7 灰色页岩带矿物特征
a.灰色页岩中的石英,他形,表面有溶孔,471.8 m;b.灰色页岩中的钾长石边缘粘土化,呈他形,474.8 m;c.灰色页岩中的草莓状及由草莓状向自形晶转化的黄铁矿,462.3 m;d.灰色页岩中自形菱铁矿分布,462.3 m;e.灰色页岩中的片状蒙脱石,474.8 m;f.灰色页岩中的有机质,经压实呈塑性,474.8 m;f为扫描电镜二次电子图像,其余均为扫描电镜背散射图像.Py.黄铁矿;Mnt.蒙脱石;OM.有机质;其他见图 3说明
Fig. 7. Mineral characteristics in gray shale zone
表 1 接触带页岩XRD测试结果(%)
Table 1. The content (%) of constituents of contact zone shale by XRD
编号 深度(m) 石英 长石 方解石 白云石 铁白云石 黄铁矿 菱铁矿 粘土矿物 蒙脱石 伊利石 高岭石 ZKY2-1-58 429.7 42.7 20.9 5.3 0 4.8 0 2.8 17.9 10.6 7.3 0 ZKY2-1-60 430.7 52.0 18.1 0 0 3.8 0 1.5 20.3 12.9 7.4 0 ZKY2-1-61 431.1 58.4 15.1 2.7 0 0 0 0 21.0 9.3 11.7 0 ZKY2-1-62 431.4 57.5 18.5 0 0 2.8 0 0 16.6 0 10.2 6.4 灰白色页岩带均值 52.7 18.2 2.0 0 2.9 0 1.1 19.0 8.2 9.2 1.6 ZKY2-1-64 432.4 54.7 11.6 2.4 0 2.6 0 6.4 18.9 7.1 11.8 0 ZKY2-1-65 432.8 56.2 15.3 2 0 2.6 0 0 19.2 4.7 10.2 4.3 ZKY2-1-66 433.0 58.8 16.4 0 0 0 0 0 21.4 11.3 10.1 0 ZKY2-1-68 433.4 57.1 17.2 0 0 0 0 1.9 20.8 7.7 11.1 0 青灰色页岩带均值 56.7 15.1 1.1 0 1.3 0 2.1 20.1 7.7 10.8 1.1 ZKY2-1-69 434.2 50.7 15.1 0 0 3.7 3.8 5.8 18.5 8.7 8.8 0 ZKY2-1-70 435.1 55.7 14.1 0 0 2.3 0 2.1 22.5 11.3 11.2 0 ZKY2-1-71 436.2 50.9 14.9 2.8 3.9 0 0 3.9 20.1 0 13.1 7.0 ZKY2-1-77 441.0 49.4 11.7 2.3 2.7 0 0 0 29.0 9.7 12.5 0 灰黑色页岩带均值 51.7 14.0 1.3 1.7 1.5 1.0 3.0 22.5 7.4 11.4 1.8 ZKY2-1-80 442.8 48.2 12.8 0 2.6 0 0 2.3 30.9 0 12.4 9.3 ZKY2-1-84 444.0 37.7 16.8 4.0 3.4 0 5.0 2.1 26.3 0 12.9 7.2 ZKY2-1-85 445.7 31.5 13.2 3.9 0 3.9 4.2 2.7 36.2 11.6 11.7 6.1 ZKY2-1-90 456.7 23.1 9.1 6.0 4.6 2.9 4.1 3.1 43.1 19.8 11.9 5.7 ZKY2-1-91 458.5 27.6 8.1 4.8 0 4.3 4.1 0 46.1 28.3 12.5 5.3 深灰色页岩带均值 33.6 12.0 3.7 2.1 2.2 3.5 2.0 36.5 11.9 12.3 6.7 ZKY2-1-92 462.3 26.9 8.3 3.6 0 3 5.5 2.6 46.3 29.8 11.5 5.0 ZKY2-1-98 471.8 25.6 8.2 4.1 0 4.5 5.5 2.2 46.4 28.2 12.1 6.1 ZKY2-1-100 474.8 28.5 9.9 3.8 0 3.4 5.2 0 45.3 27.0 12.0 6.3 灰色页岩带均值 27.0 8.8 3.8 0 3.6 5.4 1.6 46.0 28.3 11.9 5.8 -
[1] Bowker, K.A., 2007. Barnett Shale Gas Production, Fort Worth Basin: Issues and Discussion. AAPG Bulletin, 91(4): 523-533. https://doi.org/10.1306/06190606018 [2] Cao, H.T., Zhan, G.W., Yu, X.Q., et al., 2019. Major Factors Influencing the Productivity of Deep Shale Gas Wells: A Case Study of Yongchuan Block in Southern Sichuan Basin. Natural Gas Industry, 39(Suppl. 1): 118-122(in Chinese with English abstract). [3] Chen, J., Xiao, X.M., 2013. Mineral Composition and Brittleness of Three Sets of Paleozoic Organic-Rich Shales in China South Area. Journal of China Coal Society, 38(5): 822-826(in Chinese with English abstract). http://www.ingentaconnect.com/content/jccs/jccs/2013/00000038/00000005/art00017 [4] Chen, S.B., Zhu, Y.M., Wang, H.Y., et al., 2011. Characteristics and Significance of Mineral Compositions of Lower Silurian Longmaxi Formation Shale Gas Reservoir in the Southern Margin of Sichuan Basin. Acta Petrolei Sinica, 32(5): 775-782(in Chinese with English abstract). http://ci.nii.ac.jp/ncid/BA77785497 [5] Dong, C.M., Ma, C.F., Luan, G.Q., et al., 2015. Pyrolysis Simulation Experiment and Diagenesis Evolution Pattern of Shale. Acta Sedimentologica Sinica, 33(5): 1053-1061(in Chinese with English abstract). http://www.cqvip.com/QK/95994X/20155/666513175.html [6] Einsele, G., Gieskes, J.M., Curray, J., et al., 1980. Intrusion of Basaltic Sills into Highly Porous Sediments, and Resulting Hydrothermal Activity. Nature, 283: 441-445. https://doi.org/10.1038/283441a0 [7] Fernando de Ros, L., 1998. Heterogeneous Generation and Evolution of Diagenetic Quartzarenites in the Silurian-Devonian Furnas Formation of the Paraná Basin, Southern Brazil. Sedimentary Geology, 116(1-2): 99-128. https://doi.org/10.1016/s0037-0738(97)00081-x [8] Gao, R.Q., Cai, X.Y., 1997. Formation Conditions and Distribution of Oil and Gas Fields in Songliao Basin. Petroleum Industry Press, Beijing(in Chinese). [9] Guo, W., Fang, S., Liu, Z.J., et al., 2009. Research on Thermal Evolutionary History during the Period of Quantou-Nenjiang Formation in the South of Songliao Basin. Journal of Oil and Gas Technology, 31(3): 1-6, 13(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JHSX200903001.htm [10] Guo, Y.Y., 2008. Sedimentary System Analysis of Yaojia Formation in Southern Songliao Basin (Dissertation). Jilin University, Changchun(in Chinese with English abstract). [11] Hou, D.J., Feng, Z.H., Huang, Q.H., 2003. Geological and Geochemical Evidences of Anoxic Event in the Songliao Basin, China. Geoscience, 17(3): 311-317(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ200303012.htm [12] Huang, F.T., Huang, Q.H., Chen, C.R., 1998. Rhythm of Geological Events and Interaction of Different Earth Spheres in Mesozoic of the Songliao Basin. Petroleum Exploration and Development, 25(5): 86-89(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK805.024.htm [13] Huang, Q.H., Liang, W.L., Ye, D.Q., et al., 2007. The Characteristics of Cretaceous Microbiotas and Formation of Hydrocarbon-Rich Source Rocks in Songliao Basin. Acta Palaeontologica Sinica, 46(3): 380-386(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GSWX200703013.htm [14] Jia, J.L., Liu, Z.J., Bechtel, A., et al., 2014. Major Factors Controlling Formation of Oil Shale in Nenjiang Formation of Songliao Basin. Earth Science, 39(2): 174-186(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201402006.htm [15] Jiang, K, Zhou, W., Deng, N.E., et al., 2020. Characteristics and Geological Significance of Pyrites in Wufeng and Longmaxi Formation Reservoir Shale in Sichuan Basin, China. Journal of Chengdu University of Technology (Science & Technology Edition), 47(1): 50-64(in Chinese with English abstract). [16] Jiao, Y.Q., Wu, L.Q., Peng, Y.B., et al., 2015. Sedimentary-Tectonic Setting of the Deposition-Type Uranium Deposits Forming in the Paleo-Asian Tectonic Domain, North China. Earth Science Frontiers, 22(1): 189-205(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201501018.htm [17] Li, D., Sun, J., He, J.J., 2014. Reservoir Characteristics and Development Model of Mudstone Metamorphic Belts around the Near-Surface Intrusions: A Case Study in Northern Slope of Gaoyou Sag, Jiangsu Province. Global Geology, 33(1): 164-170(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=SJDZ201401018&dbcode=CJFD&year=2014&dflag=pdfdown [18] Li, H.T., Wu, S.X., Cai, C.F., et al., 2008. Forming Processes of Petroleum-Related Sandstone-Type Uranium Ore: Example from Qianjiadian Uranium Deposit. Geochimica, 37(6): 523-532(in Chinese with English abstract). [19] Li, X., 2016. Impact of Granite Intrusion on Shale Composition and Pore Structure (Dissertation). Nanjing University, Nanjing(in Chinese with English abstract). [20] Li, X.L., Liu, S.W., Xu, M., et al., 2015. Measurement and Analysis of Thermal Properties of Mudstones and Shales in the Lower Yangtze Area, South China. Natural Gas Geoscience, 26(8): 1525-1533(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-TDKX201508013.htm [21] Li, Y.L., Cai, J.G., 2014. Effect of Smectite Illitization on Shale Gas Occurrence in Argillaceous Source Rocks. Petroleum Geology & Experiment, 36(3): 352-358(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD201403015.htm [22] Li, Y.X., Nie, H.K., Long, P.Y., 2009. Development Characteristics of Organic-Rich Shale and Strategic Selection of Shale Gas Exploration Area in China. Natural Gas Industry, 29(12): 115-118, 152-153(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG200912040.htm [23] Liu, C., Xie, Q.B., Wang, G.W., et al., 2015. The Influence of Igneous Intrusion to Detrital Reservoir: Advances and Outlook. Advances in Earth Science, 30(6): 654-667(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ201506004.htm [24] Liu, C., Xie, Q.B., Wang, G.W., et al., 2017. Diagenetic and Metamorphic Characteristics and Implications for Hydrocarbon Reservoirs in the Country Rocks Influenced by Magmatic Emplacement: A Case Study from an Outcrop of Diabase Intrusion in the Southern Songliao Basin. Chinese Journal of Geology, 52(2): 453-469(in Chinese with English abstract). http://www.researchgate.net/publication/319335869_Diagenetic_and_metamorphic_characteristics_and_implications_for_hydrocarbon_reservoirs_in_the_country_rocks_influenced_by_magmatic_emplacement_A_case_study_from_an_outcrop_of_diabase_intrusion_in_the_ [25] Liu, H.Y., Shen, A.J., Wang, Y.Q., et al., 2003. Study on Sequence Stratigraphy and Genesis Assemblages Forming Oil and Gas from Quantou Fm. to Nenjiang Fm. in Southern Songliao Basin. Journal of Changchun University of Science and Technology, 33(4): 469-473(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ200304014.htm [26] Luan, G.Q., Dong, C.M., Ma, C.F., et al., 2016. Pyrolysis Simulation Experiment Study on Diagenesis and Evolution of Organic-Rich Shale. Acta Sedimentologica Sinica, 34(6): 1208-1216(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201606018.htm [27] Luo, W.J., Chen, J.Q., 1997. Bidirectional Convergence Hydrothermal Metallogenesis. Acta Geologica Sinica, 6(Suppl. l): 47-52(in Chinese with English abstract). [28] Luo, Y., He, Z.B., Ma, H.F., et al., 2012. Metallogenic Characteristics of Qianjiadian Sandstone Uranium Deposit in Songliao Basin. Mineral Deposits, 31(2): 391-400(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201202019.htm [29] Ma, Y.M., Lu, X.C., Zhang, X.F., et al., 2013. A Numerical Simulation of the Heat Transfer in Granite Intrusion-Mudstone Contact Zone and Its Geological Implication: A Case Study from Eastern Guangdong Province, China. Geological Journal of China Universities, 19(2): 307-315(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX201302013.htm [30] McKinley, J.M., Worden, R.H., Ruffell, A.H., 2001. Contact Diagenesis: The Effect of an Intrusion on Reservoir Quality in the Triassic Sherwood Sandstone Group, Northern Ireland. Journal of Sedimentary Research, 71(3): 484-495. doi: 10.1306/2DC40957-0E47-11D7-8643000102C1865D [31] Milliken, K.L., Esch, W.L., Reed, R.M., et al., 2012. Grain Assemblages and Strong Diagenetic Overprinting in Siliceous Mudrocks, Barnett Shale (Mississippian), Fort Worth Basin, Texas. AAPG Bulletin, 96(8): 1553-1578. https://doi.org/10.1306/12011111129 [32] Nie, H.K., Zhang, J.C., Bao, S.J., et al., 2012. Shale Gas Accumulation Conditions of the Upper Ordovician-Lower Silurian in Sichuan Basin and Its Periphery. Oil & Gas Geology, 33(3): 335-345(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_journal-chongqing-university-science-technology-natural-sciences-edition_thesis/0201248990730.html [33] Othman, R., Arouri, K.R., Ward, C.R., et al., 2001. Oil Generation by Igneous Intrusions in the Northern Gunnedah Basin, Australia. Organic Geochemistry, 32(10): 1219-1232. https://doi.org/10.1016/s0146-6380(01)00089-4 [34] Pang, Y.Q., Chen, X.L., Fang, X.H., et al., 2010. Discussion on the Interlayer Oxidation and Uranium Metallogenesis in Qianjiadian Uranium Deposit, Songliao Basin. Uranium Geology, 26(1): 9-16, 23(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKDZ201001001.htm [35] Peng, X.L., 2006. Transformation of Sandstone by Magmatic Activity in Petroliferous Basins: A Case Study of the Songliao Basin and Its Peripheral Mesozoic Basins (Dissertation). Jilin University, Changchun(in Chinese with English abstract). [36] Pollastro, R.M., 2007. Total Petroleum System Assessment of Undiscovered Resources in the Giant Barnett Shale Continuous (Unconventional) Gas Accumulation, Fort Worth Basin, Texas. AAPG Bulletin, 91(4): 551-578. https://doi.org/10.1306/06200606007 [37] Rong, H., 2012. Fine Zoning Model of Interlayer Oxidation Zone in Qianjiadian Uranium Deposit and Its Constraints on Uranium Mineralization (Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract). [38] Rong, H., Jiao, Y.Q., Wu, L.Q., et al., 2016. Epigenetic Alteration and Its Constraints on Uranium Mineralization from the Qianjiadian Uranium Deposit, Southern Songliao Basin. Earth Science, 41(1): 153-166(in Chinese with English abstract). [39] Ross, D.J.K., Bustin, R.M., 2009. The Importance of Shale Composition and Pore Structure upon Gas Storage Potential of Shale Gas Reservoirs. Marine and Petroleum Geology, 26(6): 916-927. https://doi.org/10.1016/j.marpetgeo.2008.06.004 [40] Shen, A.J., Kang, W.L., Wang, Y.Q., et al., 2006. Exploration of Cretaceous Sequence Strata and Lithologic Strata in the South of Songliao Basin. Petroleum Industry Press, Beijing(in Chinese). [41] Sun, C.X., Nie, H.K., Liu, G.X., et al., 2019. Quartz Type and Its Control on Shale Gas Enrichment and Production: A Case Study of the Wufeng-Longmaxi Formations in the Sichuan Basin and Its Surrounding Areas, China. Earth Science, 44(11): 3692-3704(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201911009.htm [42] Vaclav, S., Jan, S., Ivana, S., et al., 2004. Contact Metamorphism of Silurian Black Shales by a Basalt Sill: Geological Evidence and Thermal Modeling in the Barrandian Basin. Bulletin of Geosciences, 79(3): 133-145. https://doi.org/10.3140/bull.geosci.2004.03.133. [43] Wang, C., Zhang, B.Q., Shu, Z.G., et al., 2019. Shale Lamination and Its Influence on Shale Reservoir Quality of Wufeng Formation-Longmaxi Formation in Jiaoshiba Area. Earth Science, 44(3): 972-982(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201903024.htm [44] Wang, M.Z., Liu, S.B., Ren, Y.J., et al., 2015. Pore Characteristics and Methane Adsorption of Clay Minerals in Shale Gas Reservoir. Geological Review, 61(1): 207-216(in Chinese with English abstract). http://www.researchgate.net/publication/303637132_Pore_characteristics_and_methane_adsorption_of_clay_minerals_in_shale_gas_reservoir [45] Wang, Q.B., Liu, L., Niu, C.M., et al., 2019. The Geological Evidences and Impacts of Deep Thermal Fluid on Lacustrine Carbonate Reservoir in the Actic Area of the North Part of Bozhong Depression, Bohai Bay Basin. Earth Science, 44(8): 2751-2760(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201908020.htm [46] Wang, Y., Xie, D.L., Xue, C.G., et al., 2010. Influence of Diabase Intrusion on Oil and Gas Reservoir: A Case Study of Fushan Member in the Central and Eastern Part of the North Slope of Gaoyou Sag. Journal of Petroleum and Natural Gas, 32(2): 174-177(in Chinese with English abstract). [47] Xia, Y.L., Lin, J.R., Li, Z.Y., et al., 2003. Prediction and Evaluation of Sandstone-Type Uranium Deposits in Qianjiadian Sag, Songliao Basin and Study on Uranium Metallogenic Regularity. China Nuclear Science and Technology Report, (3): 105-117(in Chinese). [48] Yi, T., Zhou, W., Yang, F., et al., 2020. Types and Characteristics of Quartzs in Shale Gas Reservoirs of the Longmaxi Formation, Sichuan Basin, China. Acta Mineralogica Sinica, 40(2): 127-136(in Chinese with English abstract). [49] Yin, J.H., Zhang, H., Zan, G.J., et al., 2000. Sedimentation Factors Analysis of Uranium Mineralization of Qianjiadian Depression, Kailu Basin, East Inner Mongolia Autonomous Region. Journal of Palaeogeography, 2(4): 76-83(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDLX200004012.htm [50] Yu, W.B., 2009. Study on Mineralization Conditions of Cretaceous Sandstone Type Uranium Deposits in Southern Songliao Basin (Dissertation). Jilin University Changchun(in Chinese with English abstract). [51] Yu, Z.C., Liu, L., Sun, X.M., et al., 2012. Evidence of Paleogene Thermal Fluid Activities and Their Impact on Porosity-Permeability of Reservoir in Qikou Sag. Journal of Jilin University (Earth Science Edition), 42(Suppl. 3): 1-13(in Chinese with English abstract). http://www.researchgate.net/publication/286279509_Evidence_of_Paleogene_thermal_fluid_activities_and_their_impact_on_porosity-permeability_of_reservoir_in_Qikou_sag [52] Zhai, G.Y., Wang, Y.F., Bao, S.J., et al., 2017. Major Factors Controlling the Accumulation and High Productivity of Marine Shale Gas and Prospect Forecast in Southern China. Earth Science, 42(7): 1057-1068(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201707002.htm [53] Zhang, L.Y., Li, Z., Zhu, R.F., 2009. The Formation and Exploitation of Shale Gas. Natural Gas Industry, 29(1): 124-128, 148(in Chinese with English abstract). http://www.researchgate.net/publication/291688552_The_formation_and_exploitation_of_shale_gas [54] Zhang, Q., Jin, W.J., Wang, J.R., et al., 2016. Influence of Magma Hot Field on Hydrocarbon Accumulation. Progress in Geophysics, 31 (4): 1525-1541(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ201604016.htm [55] Zhang, X.M., Shi, W.Z., Xu, Q.H., et al., 2015. Reservoir Characteristics and Controlling Factors of Shale Gas in Jiaoshiba Area, Sichuan Basin. Acta Petrolei Sinica, 36(8): 926-939, 953(in Chinese with English abstract). http://www.cqvip.com/QK/95667X/20158/83898866504849534856484852.html [56] Zhang, Y.H., Zhu, X.M., Wu, X.Z., et al., 2000. Lithofacies and Reservoir Model of Intrusive Rocks and Their Metamorphic Belts. Petroleum Exploration and Development, 27(2): 22-26(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK200002008.htm [57] Zhao, D.F., Xie, D.L., Zang, J.C., et al., 2014. Mineral Compositions of Shale Reservoirs and Related Discussions. Coal Technology, 33(4): 92-95(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MTJS201404036.htm [58] Zhao, K., Yang, L.Q., Li, P., et al., 2013. Morphology and Chemistry Composition of Pyrite in the Laowangzhai Gold Deposit, Ailaoshan Orogenic Belt, SW China. Acta Petrologica Sinica, 29(11): 3937-3948(in Chinese with English abstract). http://www.researchgate.net/publication/285631704_Morphology_and_chemistry_composition_of_pyrite_in_the_Laowangzhai_gold_deposit_Ailaoshan_orogenic_belt_SW_China [59] Zhao, P., Li, X.Q., Sun, J., et al., 2014. Study on Mineral Composition and Brittleness Characteristics of Shale Gas Reservoirs from the Lower Paleozoic in the Southern Sichuan Basin. Geoscience, 28(2): 396-403(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ201402018.htm [60] Zhu, X.J., Cai, J.G., 2012. Progress and Significance of Research on Relation between Specific Surface Area and Organic Matter in Argillaceous Source Rocks. Oil & Gas Geology, 33(3): 375-384(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT201203008.htm [61] Zou, C.N., Dong, D.Z., Wang, S.J., et al., 2010. Geological Characteristics, Formation Mechanism and Resource Potential of Shale Gas in China. Petroleum Exploration and Development, 37(6): 641-653(in Chinese with English abstract). doi: 10.1016/S1876-3804(11)60001-3 [62] 曹海涛, 詹国卫, 余小群, 等, 2019. 深层页岩气井产能的主要影响因素——以四川盆地南部永川区块为例. 天然气工业, 39(增刊1): 118-122. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG2019S1021.htm [63] 陈吉, 肖贤明, 2013. 南方古生界3套富有机质页岩矿物组成与脆性分析. 煤炭学报, 38(5): 822-826. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201305020.htm [64] 陈尚斌, 朱炎铭, 王红岩, 等, 2011. 四川盆地南缘下志留统龙马溪组页岩气储层矿物成分特征及意义. 石油学报, 32(5): 775-782. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201105007.htm [65] 董春梅, 马存飞, 栾国强, 等, 2015. 泥页岩热模拟实验及成岩演化模式. 沉积学报, 33(5): 1053-1061. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201505021.htm [66] 高瑞祺, 蔡希源, 1997. 松辽盆地油气田形成条件与分布规律. 北京: 石油工业出版社. [67] 郭巍, 方石, 刘招君, 等, 2009. 松辽盆地南部泉头组-嫩江组热演化史研究. 石油天然气学报, 31(3): 1-6, 13. doi: 10.3969/j.issn.1000-9752.2009.03.001 [68] 郭莹莹, 2008. 松辽盆地南部姚家组沉积体系分析(硕士学位论文). 长春: 吉林大学. [69] 侯读杰, 冯子辉, 黄清华, 2003. 松辽盆地白垩纪缺氧地质事件的地质地球化学特征. 现代地质, 17(3): 311-317. doi: 10.3969/j.issn.1000-8527.2003.03.012 [70] 黄福堂, 黄清华, 陈春瑞, 1998. 松辽盆地中生代地质事件节律及圈层耦合. 石油勘探与开发, 25(5): 86-89. doi: 10.3321/j.issn:1000-0747.1998.05.025 [71] 黄清华, 梁万林, 叶得泉, 等, 2007. 松辽盆地白垩纪微体生物群分布特征与富烃源岩层的形成. 古生物学报, 46(3): 380-386. doi: 10.3969/j.issn.0001-6616.2007.03.013 [72] 贾建亮, 刘招君, Bechtel, A., 等, 2014. 松辽盆地嫩江组油页岩发育控制因素. 地球科学, 39(2): 174-186. doi: 10.3799/dqkx.2014.017 [73] 蒋柯, 周文, 邓乃尔, 等, 2020. 四川盆地五峰组-龙马溪组页岩储层中黄铁矿特征及地质意义. 成都理工大学学报(自然科学版), 47(1): 50-64. doi: 10.3969/j.issn.1671-9727.2020.01.05 [74] 焦养泉, 吴立群, 彭云彪, 等, 2015. 中国北方古亚洲构造域中沉积型铀矿形成发育的沉积——构造背景综合分析. 地学前缘, 22(1): 189-205. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501018.htm [75] 李丹, 孙建, 何娇娇, 2014. 浅层侵入体泥岩变质带储集特征及发育模式-以江苏高邮凹陷北斜坡侵入体泥岩变质带为例. 世界地质, 33(1): 164-170. doi: 10.3969/j.issn.1004-5589.2014.01.017 [76] 李宏涛, 吴世祥, 蔡春芳, 等, 2008. 油气相关砂岩型铀矿的形成过程: 以钱家店铀矿床为例. 地球化学, 37(6): 523-532. doi: 10.3321/j.issn:0379-1726.2008.06.001 [77] 李霞, 2016. 花岗岩侵入对页岩成分和孔隙结构的影响(硕士学位论文). 南京: 南京大学. [78] 李香兰, 刘绍文, 徐明, 等, 2015. 华南下扬子区泥页岩热物性测试与分析. 天然气地球科学, 26(8): 1525-1533. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201508013.htm [79] 李颖莉, 蔡进功, 2014. 泥质烃源岩中蒙脱石伊利石化对页岩气赋存的影响. 石油实验地质, 36(3): 352-358. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201403015.htm [80] 李玉喜, 聂海宽, 龙鹏宇, 2009. 我国富含有机质泥页岩发育特点与页岩气战略选区. 天然气工业, 29(12): 115-118, 152-153. doi: 10.3787/j.issn.1000-0976.2009.12.034 [81] 刘超, 谢庆宾, 王贵文, 等, 2015. 岩浆侵入作用影响碎屑围岩储层的研究进展与展望. 地球科学进展, 30(6): 654-667. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201506004.htm [82] 刘超, 谢庆宾, 王贵文, 等, 2017. 岩浆侵入对围岩储层的成岩及其变质特征的影响及意义——以松辽盆地南部辉绿岩侵入带露头研究为例. 地质科学, 52(2): 453-469. [83] 刘鸿友, 沈安江, 王艳清, 等, 2003. 松辽盆地南部泉头组-嫩江组层序地层与油气藏成因成藏组合. 吉林大学学报(地球科学版), 33(4): 469-473. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200304014.htm [84] 栾国强, 董春梅, 马存飞, 等, 2016. 基于热模拟实验的富有机质泥页岩成岩作用及演化特征. 沉积学报, 34(6): 1208-1216. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201606018.htm [85] 罗文积, 陈家清, 1997. 双向汇聚热液成矿. 甘肃地质学报, 6(增刊1): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ7S1.010.htm [86] 罗毅, 何中波, 马汉峰, 等, 2012. 松辽盆地钱家店砂岩型铀矿成矿地质特征. 矿床地质, 31(2): 391-400. doi: 10.3969/j.issn.0258-7106.2012.02.018 [87] 马野牧, 陆现彩, 张雪芬, 等, 2013. 花岗岩侵入体-泥质围岩热传输过程的数值模拟及其地质意义: 以粤东典型接触带剖面为例. 高校地质学报, 19(2): 307-315. doi: 10.3969/j.issn.1006-7493.2013.02.013 [88] 聂海宽, 张金川, 包书景, 等, 2012. 四川盆地及其周缘上奥陶统-下志留统页岩气聚集条件. 石油与天然气地质, 33(3): 335-345. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201203004.htm [89] 庞雅庆, 陈晓林, 方锡珩, 等, 2010. 松辽盆地钱家店铀矿床层间氧化与铀成矿作用. 铀矿地质, 26(1): 9-16, 23. doi: 10.3969/j.issn.1000-0658.2010.01.002 [90] 彭晓蕾, 2006. 含油气盆地中岩浆活动对砂岩的改造——以松辽盆地及其外围中生代盆地为例(博士学位论文). 长春: 吉林大学. [91] 荣辉, 2012. 钱家店铀矿床层间氧化带精细分带模型及其对铀成矿的约束(博士学位论文). 武汉: 中国地质大学. [92] 荣辉, 焦养泉, 吴立群, 等, 2016. 松辽盆地南部钱家店铀矿床后生蚀变作用及其对铀成矿的约束. 地球科学, 41(1): 153-166. doi: 10.3799/dqkx.2016.012 [93] 沈安江, 康伟力, 王艳清, 等, 2006. 松辽盆地南部白垩纪层序地层与岩性地层油气藏勘探. 北京: 石油工业出版社. [94] 孙川翔, 聂海宽, 刘光祥, 等, 2019. 石英矿物类型及其对页岩气富集开采的控制: 以四川盆地及其周缘五峰组-龙马溪组为例. 地球科学, 44(11): 3692-3704. doi: 10.3799/dqkx.2019.203 [95] 王超, 张柏桥, 舒志国, 等, 2019. 焦石坝地区五峰组-龙马溪组页岩纹层发育特征及其储集意义. 地球科学, 44(3): 972-982. doi: 10.3799/dqkx.2019.018 [96] 王茂桢, 柳少波, 任拥军, 等, 2015. 页岩气储层粘土矿物孔隙特征及其甲烷吸附作用. 地质论评, 61(1): 207-216. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201501024.htm [97] 王清斌, 刘立, 牛成民, 等, 2019. 渤中凹陷北部陡坡带热液活动及其对湖相碳酸盐岩储层的影响. 地球科学, 44(8): 2751-2760. doi: 10.3799/dqkx.2018.347 [98] 王颖, 谢东霖, 薛成刚, 2010. 辉绿岩侵入作用对油气储层的影响——以高邮凹陷北斜坡中东部地区阜三段为例. 石油天然气学报, 32(2): 174-177. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX201002045.htm [99] 夏毓亮, 林锦荣, 李子颖, 等, 2003. 松辽盆地钱家店凹陷砂岩型铀矿预测评价和铀成矿规律研究. 中国核科技报告, (3): 105-117. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHBG200303008.htm [100] 易婷, 周文, 杨璠, 等, 2020. 四川盆地龙马溪组页岩气储层石英类型与特征. 矿物学报, 40(2): 127-136. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB202002003.htm [101] 殷敬红, 张辉, 昝国军, 等, 2000. 内蒙古东部开鲁盆地钱家店凹陷铀矿成藏沉积因素分析. 古地理学报, 2(4): 76-83. doi: 10.3969/j.issn.1671-1505.2000.04.009 [102] 于文斌, 2009. 松辽盆地南部白垩系砂岩型铀矿成矿条件研究(博士学位论文). 长春: 吉林大学. [103] 于志超, 刘立, 孙晓明, 等, 2012. 歧口凹陷古近纪热流体活动的证据及其对储层物性的影响. 吉林大学学报(地球科学版), 42(增刊3): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ2012S3002.htm [104] 翟刚毅, 王玉芳, 包书景, 等, 2017. 我国南方海相页岩气富集高产主控因素及前景预测. 地球科学, 42(7): 1057-1068. doi: 10.3799/dqkx.2017.085 [105] 张林晔, 李政, 朱日房, 2009. 页岩气的形成与开发. 天然气工业, 29(1): 124-128, 148. doi: 10.3787/j.issn.1000-0976.2009.01.036 [106] 张旗, 金维浚, 王金荣, 等, 2016. 岩浆热场对油气成藏的影响. 地球物理学进展, 31(4): 1525-1541. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201604016.htm [107] 张晓明, 石万忠, 徐清海, 等, 2015. 四川盆地焦石坝地区页岩气储层特征及控制因素. 石油学报, 36(8): 926-939, 953. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201508004.htm [108] 张映红, 朱筱敏, 吴小洲, 等, 2000. 侵入岩及其外变质带岩相与储集层模型. 石油勘探与开发, 27(2): 22-26. doi: 10.3321/j.issn:1000-0747.2000.02.007 [109] 赵迪斐, 解德录, 臧俊超, 等, 2014. 页岩储层矿物成分及相关讨论. 煤炭技术, 33(4): 92-95. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201404036.htm [110] 赵凯, 杨立强, 李坡, 等, 2013. 滇西老王寨金矿床黄铁矿形貌特征与化学组成. 岩石学报, 29(11): 3937-3948. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201311024.htm [111] 赵佩, 李贤庆, 孙杰, 等, 2014. 川南地区下古生界页岩气储层矿物组成与脆性特征研究. 现代地质, 28(2): 396-403. doi: 10.3969/j.issn.1000-8527.2014.02.018 [112] 朱晓军, 蔡进功, 2012. 泥质烃源岩的比表面与有机质关系研究进展及意义. 石油与天然气地质, 33(3): 375-384. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201203008.htm [113] 邹才能, 董大忠, 王社教, 等, 2010. 中国页岩气形成机理、地质特征及资源潜力. 石油勘探与开发, 37(6): 641-653. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201006003.htm