• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    北祁连水洞峡蛇绿岩形成时代与构造环境

    郭晶 李云帅 张建新 路增龙

    郭晶, 李云帅, 张建新, 路增龙, 2021. 北祁连水洞峡蛇绿岩形成时代与构造环境. 地球科学, 46(5): 1644-1656. doi: 10.3799/dqkx.2020.176
    引用本文: 郭晶, 李云帅, 张建新, 路增龙, 2021. 北祁连水洞峡蛇绿岩形成时代与构造环境. 地球科学, 46(5): 1644-1656. doi: 10.3799/dqkx.2020.176
    Guo Jing, Li Yunshuai, Zhang Jianxin, Lu Zenglong, 2021. Age and Tectonic Affinity of Shuidongxia Ophiolite in North Qilian Orogen. Earth Science, 46(5): 1644-1656. doi: 10.3799/dqkx.2020.176
    Citation: Guo Jing, Li Yunshuai, Zhang Jianxin, Lu Zenglong, 2021. Age and Tectonic Affinity of Shuidongxia Ophiolite in North Qilian Orogen. Earth Science, 46(5): 1644-1656. doi: 10.3799/dqkx.2020.176

    北祁连水洞峡蛇绿岩形成时代与构造环境

    doi: 10.3799/dqkx.2020.176
    基金项目: 

    中国地质调查局项目 12120115027001

    详细信息
      作者简介:

      郭晶(1989-),女,讲师,矿物学、岩石学、矿床学专业,研究方向为岩石学.ORCID: 0000-0001-9093-7232. E-mail: guojing5322@126.com

      通讯作者:

      李云帅, ORCID: 0000-0002-3618-5890.E-mail: liyunshuai@tju.edu.cn

    • 中图分类号: P581

    Age and Tectonic Affinity of Shuidongxia Ophiolite in North Qilian Orogen

    • 摘要: 蛇绿岩的时空关系与构造归属是深入认识俯冲带演化和重建古板块构造格局的关键地质依据之一.水洞峡蛇绿岩作为北祁连南带蛇绿岩东段的重要组成部分,其形成时代和构造环境一直缺乏准确的限定.采用LA-ICP-MS对水洞峡蛇绿岩中的辉长岩进行了锆石U-Pb测年,所获得的206Pb/238U加权平均年龄为497.0±2.4 Ma(MSWD=0.84),该年龄代表了辉长岩的结晶年龄,表明水洞峡蛇绿岩的形成时代应该为晚寒武世,这与祁连南带蛇绿岩的形成时代基本一致.蛇纹岩的矿物化学特征以及镁铁质-超镁铁质岩的全岩地球化学研究结果表明,水洞峡蛇绿岩中的蛇纹岩、辉长岩和玄武岩均表现出明显的与俯冲带密切相关的地球化学特征.结合北祁连已有的研究资料,玉石沟-水洞峡蛇绿岩应该属于SSZ型,该蛇绿岩在弧-陆碰撞过程中向南仰冲到中祁连地块之上.

       

    • 图  1  祁连造山带地质图(a)以及水洞峡地质简图(b)

      a.据Fu et al.(2018, 2019);b.据黄增保等(2010)

      Fig.  1.  Geological map of Qilian orogenic belt (a) and simplified geological map of Shuidongxia (b)

      图  2  水洞峡蛇绿岩野外露头照片(a, b)和岩相学照片(c~f)

      Spl.尖晶石; Srp.蛇纹石; Chr.铬铁矿; Cpx.辉石; Amp.角闪石; Pl.斜长石; Bt.黑云母

      Fig.  2.  Photographs of field occurrences (a, b) and microscopic textures (c-f) of the Shuidongxia ophiolite

      图  3  水洞峡蛇纹岩中尖晶石的Mg#-Cr# (a)和Al2O3-TiO2图解(b)

      Kamenetsky et al.(2001)

      Fig.  3.  Plots of Mg#-Cr# (a) and Al2O3-TiO2 (b) for the spinel from the serpentinite in Shuidongxia

      图  4  水洞峡辉长岩锆石CL图像(a)和U-Pb年龄谐和图(b~c)

      Fig.  4.  Cathodoluminescence (CL) images (a) and U-Pb concordia diagram (b-c) of zircons from gabbro in Shuidongxia

      图  5  水洞峡辉长岩和玄武岩Nb/Y-Zr/Ti(a)和SiO2-FeOT/MgO(b)图解

      a.据Pearce(1996);b.据Miyashiro(1974)

      Fig.  5.  Nb/Y-Zr/Ti plot (a) and SiO2-FeOT/MgO plot (b) of gabbro and basalt in Shuidongxia

      图  6  水洞峡辉长岩、蛇纹岩和玄武岩球粒陨石标准化稀土元素配分曲线(a, c)和微量元素蛛网图(b, d)

      球粒陨石、原始地幔和N-MORB值据Sun and McDonough(1989);弧前橄榄岩据Pearce et al. (2000)

      Fig.  6.  Chondrite-normalized REE diagrams (a, c) and spider diagrams (b, d) of gabbro, basalt and serpentinite in the Shuidongxia

      图  7  水洞峡辉长岩‒玄武岩不同元素相关性图解

      Fig.  7.  Correlation diagrams of different elements for gabbro-basalt from Shuidongxia

      图  8  水洞峡玄武岩Th/Yb-Nb/Yb(a)和Hf/3-Th-Ta(b)构造判别图解

      a.据Pearce(2003);b.据Wood(1980)

      Fig.  8.  Th/Yb-Nb/Yb (a) and Hf/3-Th-Ta (b) diagrams of basalt in Shuidongxia

      表  1  北祁连水洞峡蛇纹岩中尖晶石电子探针分析结果

      Table  1.   Representative electron microprobe analyses of spinel in serpentinite from Shuidongxia, North Qilian orogen

      样品 DL13-2.1 DL13-2.2
      SiO2 0 0 0.04 0 0.01 0 0 0 0.01
      TiO2 0.15 0.19 0.08 0.09 0.13 0.18 0.17 0.09 0.16
      Al2O3 16.29 15.85 16.15 16.74 15.73 15.67 15.98 15.85 16.45
      Cr2O3 49.86 49.73 49.92 49.43 49.27 49.13 49.63 49.22 49.57
      FeO 23.80 24.51 23.58 23.12 24.26 25.37 24.24 24.22 24.10
      MnO 0.40 0.41 0.42 0.39 0.38 0.39 0.39 0.38 0.37
      MgO 9.50 9.61 9.71 10.29 9.99 9.44 9.42 9.52 9.59
      Na2O 0.01 0.02 0 0.04 0.03 0.02 0.01 0 0.01
      K2O 0 0.01 0 0.01 0 0.01 0 0 0
      P2O5 0.02 0.01 0.02 0.01 0.01 0.02 0.01 0.02 0.01
      NiO 0.04 0.04 0 0.10 0.08 0.05 0.05 0.03 0.02
      ZnO 0.19 0.16 0.09 0.05 0.05 0.17 0.17 0.10 0.19
      Total 100.25 100.51 100.02 100.24 99.93 100.43 100.05 99.44 100.47
      Si 0 0 0 0 0 0 0 0 0
      Ti 0.01 0 0 0 0 0 0.01 0 0.01
      Al 0.61 0.60 0.60 0.62 0.59 0.59 0.60 0.60 0.62
      Cr 1.27 1.26 1.28 1.25 1.26 1.25 1.27 1.27 1.27
      Fe3+ 0.11 0.13 0.11 0.12 0.15 0.15 0.12 0.13 0.12
      Fe2+ 0.53 0.52 0.52 0.49 0.51 0.53 0.53 0.53 0.53
      Mn 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
      Mg 0.45 0.46 0.47 0.49 0.48 0.45 0.45 0.46 0.46
      Na 0 0 0 0 0 0 0 0 0
      K 0 0 0 0 0 0 0 0 0
      P 0 0 0 0 0 0 0 0 0
      Ni 0 0 0 0 0 0 0 0 0
      Zn 0 0 0 0 0 0 0 0 0
      Cr# 67.58 68.03 67.85 66.69 67.69 67.83 67.75 67.72 67.24
      Mg# 46.11 46.64 46.98 49.74 48.61 45.90 45.85 46.52 46.27
      Al# 30.69 29.84 30.41 31.28 29.81 29.64 30.29 30.12 30.87
      Fe# 5.47 6.64 5.53 6.13 7.29 7.43 5.99 6.39 5.79
      Fe2+/Fe3+ 4.90 3.97 4.78 4.03 3.57 3.69 4.50 4.27 4.61
      注:氧化物单位为%.
      下载: 导出CSV

      表  2  北祁连水洞峡辉长岩(DL13-1.1)锆石U-Pb定年数据

      Table  2.   Zircon U-Pb data (DL13-1.1) of gabbro from Shuidongxia, North Qilian orogen


      Pb
      (10-6)
      U
      (10-6)
      206Pb/
      238U
      207Pb/
      235U
      207Pb/
      206Pb
      208Pb/
      232Th
      232Th/
      238U
      206Pb/
      238U
      207Pb/
      235U
      207Pb/
      206Pb
      1 7 91 0.080 1 0.000 9 0.651 8 0.021 1 0.059 0 0.001 9 0.026 0 0.000 6 0.392 3 0.001 5 497 6 510 17 567 71
      2 13 157 0.080 2 0.000 9 0.654 4 0.015 0 0.059 2 0.001 3 0.026 8 0.000 4 0.419 0 0.002 8 497 5 511 12 574 48
      3 6 76 0.079 3 0.000 8 0.643 0 0.019 6 0.058 8 0.001 7 0.030 9 0.000 8 0.405 0 0.003 8 492 5 504 15 560 63
      4 7 77 0.081 3 0.000 9 0.659 1 0.021 0 0.058 8 0.001 8 0.030 0 0.000 7 0.470 2 0.000 6 504 6 514 16 559 68
      5 9 108 0.080 3 0.000 9 0.642 5 0.016 3 0.058 0 0.001 5 0.027 3 0.000 4 0.489 2 0.003 3 498 5 504 13 531 57
      6 8 95 0.080 2 0.000 9 0.658 7 0.016 3 0.059 6 0.001 4 0.027 7 0.000 6 0.399 9 0.001 6 497 6 514 13 588 52
      7 10 122 0.080 6 0.000 8 0.651 2 0.016 3 0.058 6 0.001 4 0.027 8 0.000 3 0.508 0 0.003 0 500 5 509 13 553 53
      8 5 65 0.080 7 0.000 9 0.660 2 0.026 1 0.059 4 0.002 4 0.027 4 0.000 9 0.381 8 0.005 9 500 6 515 20 580 87
      9 9 109 0.078 7 0.000 9 0.646 9 0.017 6 0.059 6 0.001 5 0.029 3 0.001 0 0.379 5 0.003 7 489 5 507 14 589 54
      10 6 71 0.081 7 0.000 9 0.647 0 0.025 2 0.057 5 0.002 3 0.028 2 0.000 9 0.295 9 0.000 9 506 6 507 20 509 89
      11 12 146 0.078 9 0.000 8 0.631 0 0.013 1 0.058 0 0.001 2 0.026 1 0.000 4 0.355 2 0.001 6 490 5 497 10 528 45
      12 11 125 0.080 3 0.000 9 0.640 3 0.014 6 0.057 8 0.001 3 0.026 7 0.000 3 0.506 8 0.002 3 498 5 502 11 522 49
      13 9 110 0.078 9 0.000 8 0.622 5 0.016 4 0.057 2 0.001 5 0.026 6 0.000 4 0.563 8 0.002 4 489 5 491 13 501 56
      14 6 74 0.080 2 0.000 9 0.669 8 0.023 4 0.060 6 0.002 1 0.026 5 0.000 5 0.504 9 0.005 1 497 5 521 18 624 74
      15 8 106 0.080 0 0.000 9 0.614 5 0.016 8 0.055 7 0.001 5 0.025 4 0.000 6 0.284 7 0.001 4 496 5 486 13 440 60
      16 17 195 0.081 1 0.000 9 0.655 6 0.012 2 0.058 6 0.001 0 0.028 2 0.000 4 0.468 2 0.002 8 503 6 512 10 553 39
      17 6 66 0.081 5 0.000 9 0.628 9 0.024 4 0.056 0 0.002 2 0.027 9 0.000 8 0.360 8 0.001 9 505 6 495 19 451 86
      18 16 178 0.080 3 0.000 9 0.669 8 0.013 1 0.060 5 0.001 1 0.027 3 0.000 4 0.562 3 0.004 6 498 6 521 10 622 41
      19 7 84 0.079 7 0.000 9 0.659 4 0.022 4 0.060 0 0.002 1 0.027 2 0.000 5 0.502 0 0.003 2 495 5 514 17 603 74
      20 11 129 0.079 4 0.000 9 0.668 7 0.016 0 0.061 0 0.001 4 0.026 9 0.000 5 0.517 7 0.006 5 493 6 520 12 641 48
      注:氧化物单位为%.
      下载: 导出CSV

      表  3  北祁连水洞峡蛇纹岩、辉长岩、玄武岩的主量元素(%)和微量元素(10-6)分析结果

      Table  3.   Major (%) and trace (10-6) elements of different blocks from Shuidongxia, North Qilian orogen

      蛇纹岩 辉长岩 玄武岩
      样品 DL13-2.1 DL13-2.2 DL13-2.3 DL13-1.1 DL13-1.2 DL13-1.3 DL13-3.1 DL13-3.2 DL13-3.3
      SiO2 34.60 34.56 34.42 51.78 51.24 51.62 48.37 46.79 46.06
      TiO2 0.02 0.02 0.02 0.61 0.74 0.57 2.09 2.09 2.04
      Al2O3 0.12 0.40 0.26 13.25 13.59 12.80 15.28 14.61 13.99
      Fe2O3 4.78 4.65 4.78 2.50 2.80 2.48 7.89 9.54 8.61
      FeO 2.11 2.09 2.17 6.81 6.80 7.35 4.16 2.85 2.53
      MnO 0.11 0.13 0.12 0.19 0.19 0.21 0.12 0.13 0.12
      MgO 39.22 39.03 38.85 8.41 8.13 8.67 4.04 4.00 5.46
      CaO 0.70 0.45 0.87 9.78 9.57 9.69 5.21 6.56 7.51
      Na2O 0.04 0.04 0.04 3.22 3.43 3.08 4.99 4.58 4.50
      K2O 0.01 0.01 0.01 0.54 0.54 0.66 0.79 1.04 0.98
      P2O5 0.01 0.01 0.01 0.07 0.08 0.07 0.36 0.38 0.46
      LOI 18.23 18.38 18.35 1.86 2.00 1.63 5.88 6.62 6.87
      Total 99.95 99.77 99.90 99.02 99.11 98.83 99.18 99.19 99.13
      Mg# 91.69 91.81 91.54 62.56 61.12 61.96 39.26 38.67 48.92
      FeOT 6.40 6.27 6.46 9.06 9.31 9.58 11.25 11.42 10.26
      FeOT/MgO 0.16 0.16 0.17 1.08 1.15 1.10 2.78 2.86 1.88
      Li 0.54 0.33 0.40 3.19 4.47 3.00 15.63 15.79 15.20
      Cr 1 935 2 287 2 028 312 298 304 60 147 223
      V 3.54 13.69 9.24 255 243 253 330 295 258
      Ni 2 139 2 251 214 76 79 75 35 87 144
      Pb 0.66 0.47 0.53 2.26 2.13 2.21 3.97 3.87 4.01
      Cs 0.03 0.03 0.03 1.91 1.56 1.97 1.64 2.34 2.93
      Rb 0.22 0.16 0.17 10.84 10.61 12.45 10.97 15.24 17.20
      Sr 6.06 3.54 6.74 283.58 280.52 295.00 365.50 366.14 443.67
      Ba 2.33 1.58 2.07 150.42 162.95 254.83 374.00 288.86 463.33
      Th 0.03 0.02 0.03 0.37 0.40 0.34 1.86 1.98 1.94
      U 0.01 0.00 0.01 0.12 0.12 0.10 0.93 0.79 0.75
      Nb 0.04 0.04 0.04 1.41 1.28 1.42 5.55 5.68 5.07
      Ta 0.02 0.02 0.01 0.18 0.23 0.11 0.35 0.33 0.29
      Zr 0.28 0.26 0.26 36.6 46.5 26.53 162.00 158.00 167.00
      Hf 0.01 0.01 0.01 1.10 1.38 0.92 4.76 4.54 4.65
      La 0.06 0.04 0.05 3.22 4.04 3.23 20.13 21.73 29.97
      Ce 0.11 0.08 0.09 7.80 9.75 7.60 45.45 47.53 61.80
      Pr 0.02 0.011 0.01 1.11 1.39 1.09 5.80 6.09 7.77
      Nd 0.08 0.06 0.07 5.45 6.83 5.31 24.60 25.54 32.03
      Sm 0.02 0.01 0.02 1.67 2.07 1.68 5.90 5.83 6.57
      Eu 0.01 0.00 0.01 0.59 0.72 0.59 1.86 1.80 2.01
      Gd 0.02 0.02 0.02 2.20 2.72 2.20 6.50 6.21 6.60
      Tb 0.01 0.00 0.01 0.38 0.48 0.38 1.14 1.06 1.04
      Dy 0.03 0.02 0.03 2.60 3.17 2.66 6.67 5.93 5.52
      Ho 0.01 0.01 0.01 0.55 0.69 0.57 1.43 1.24 1.11
      Er 0.03 0.02 0.02 1.68 2.09 1.72 4.19 3.56 3.02
      Tm 0.01 0.00 0.01 0.24 0.29 0.24 0.65 0.55 0.45
      Yb 0.04 0.03 0.04 1.53 1.90 1.58 3.95 3.29 2.66
      Lu 0.01 0.01 0.01 0.24 0.30 0.25 0.62 0.51 0.41
      Y 0.23 0.15 0.22 14.50 18.04 14.46 35.27 33.8 37.9
      δEu 0.81 1.34 1.05 0.93 0.93 0.93 0.92 0.92 0.93
      (La/Yb)N 1.13 1.36 1.10 1.10 1.22 1.02 4.25 6.66 10.89
      REE 0.44 0.30 0.38 29.25 36.41 29.11 128.89 130.87 160.96
      LREE/HREE 2.12 2.22 1.94 1.62 1.77 1.57 4.34 5.42 7.37
      下载: 导出CSV
    • [1] Aldanmaz, E., Yaliniz, M.K., Güctekin, A., et al., 2008. Geochemical Characteristics of Mafic Lavas from the Neotethyan Ophiolites in Western Turkey: Implications for Heterogeneous Source Contribution during Variable Stages of Ocean Crust Generation. Geological Magazine, 145(1): 37-54. doi: 10.1017/S0016756807003986
      [2] Fu, C.L., Yan, Z., Aitchison, J.C., et al., 2019. Abyssal and Suprasubduction Peridotites in the Lajishan Ophiolite Belt: Implication for Initial Subduction of the Proto-Tethyan Ocean. The Journal of Geology, 127(4): 393-410. doi: 10.1086/703488
      [3] Fu, C.L., Yan, Z., Wang, B.Z., 2019. Discussion on the Age and Tectonic Affinity of the Mafic Rocks in Qingshui-Zhangjiachuan of the Conjunction Area between the Qinling and Qilian Orogenic Belts. Acta Petrologica Sinica, 35(10): 3141-3160 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.10.12
      [4] Fu, C.L., Yan, Z., Wang, Z.Q., et al., 2018. Lajishankou Ophiolite Complex: Implications for Paleozoic Multiple Accretionary and Collisional Events in the South Qilian Belt. Tectonics, 37(5): 1321-1346. doi: 10.1029/2017TC004740
      [5] Hou, Q.Y., Zhang, H.F., Zhang, B.R., et al., 2005. Characteristics and Tectonic Affinity of Lajishan Paleo- Mantle in Qilian Orogenic Belt: A Geochemical Study of Basalts. Earth Science, 30(1): 61-70 (in Chinese with English abstract).
      [6] Hu, Z.X., Liu, Y., Sun, W.L., et al., 2015. The Magmatic Record in the Peridotites from Yushigou Oilian Orogen and the Petrogenesis of the Ophiolite-Type Chromitites. Northwestern Geology, 48(1): 1-15 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XBDI201501001.htm
      [7] Huang, H., Niu, Y.L., Nowell, G., et al., 2015. The Nature and History of the Qilian Block in the Context of the Development of the Greater Tibetan Plateau. Gondwana Research, 28: 209-224. doi: 10.1016/j.gr.2014.02.010
      [8] Huang, Z.B., Zhang, Y.K., Lu, J.R., et al., 2010. Geochemical Features and Tectonic Setting of the Shuidongxia Ophiolite in North Qilian. Gansu Geology, 19(2): 1-7 (in Chinese with English abstract).
      [9] Kamenetsky, V. S., Crawford, A. J., Meffre, S., 2001. Factors Controlling Chemistry of Magmatic Spinel: An Empirical Study of Associated Olivine, Cr-Spinel and Melt Inclusions from Primitive Rocks. Journal of Petrology, 42(4): 655-671. doi: 10.1093/petrology/42.4.655
      [10] Lu, S.N., Li, H.K., Wang, H.C., et al., 2009. Detrital Zircon Population of Proterozoic Metasedimentary Strata in the Qinling-Qilian-Kunlun Orogen. Acta Petrologica Sinica, 25(9): 2195-2208 (in Chinese with English abstract).
      [11] Miyashiro, A., 1974. Volcanic Rock Series in Island Arcs and Active Continental Margins. American Journal of Science, 274: 321-355. doi: 10.2475/ajs.274.4.321
      [12] Meng, F.C., Zhang, J.X., Guo, C.M., et al., 2010. Constraints on the Evolution of the North Qilian Ocean Basin: MOR-Type and SSZ-Type Ophiolites from Dachadaban. Acta Petrologica et Mineralogica, 29(5): 453-466 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-mineralogica_thesis/0201254450828.html
      [13] Pearce, J.A., 1996. A User's Guide to Basalt Discrimination Diagrams. Geological Association of Canada Special Publication, 12: 79-113.
      [14] Pearce, J.A., 2003. Supra-Subduction Zone Ophiolites: The Search for Modern Analogues. In: Dilek, Y., Newcomb, S., eds., Ophiolite Concept and the Evolution of Geological Thought. Geological Society of America Special Paper, 373: 269-293.
      [15] Pearce, J.A., 2014. Immobile Element Fingerprinting of Ophiolites. Elements, 10: 101-108. doi: 10.2113/gselements.10.2.101
      [16] Pearce, J.A., Barker, P.F., Edwards, S.J., et al., 2000. Geochemistry and Tectonic Significance of Peridotites from the South Sandwich Arc-Basin System, South Atlantic. Contribution to Mineralogy and Petrology, 139: 36-53. doi: 10.1007/s004100050572
      [17] Pearce, J.A., Stern, R.J., Bloomer, S.H., et al., 2005. Geochemical Mapping of the Mariana Arc-Basin System: Implications for the Nature and Distribution of Subduction Components. Geochemistry, Geophysics, Geosystems, 6(7): Q07006. doi: 10.1029/2004GC000895/full
      [18] Qian, Q., Zhang, Q., Sun, X.M., 2001a. Tectonic Setting and Mantle Source Characteristics of Jiugequan Basalts, North Qilian: Constraints from Trace Elements and Nd-Isotopes. Acta Petrologica Sinica, 17(3): 385-394 (in Chinese with English abstract).
      [19] Qian, Q., Zhang, Q., Sun, X.M., et al., 2001b. Geochemical Features, and Tectonic Setting of the Laohushan Basalts, North Qilian. Chinese Journal of Geology, 36(4): 444-453 (in Chinese with English abstract).
      [20] Shi, R.D., 2005. Comment on the Progress in and Problems on Ophiolite Study. Geological Review, 51(6): 681-693 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200506013.htm
      [21] Shi, R.D., Yang, J.S., Wu, C.L., et al., 2004. First SHRIMP Dating for the Formation of the Late Sinian Yushigou Ophiolite, North Qilian Mountains. Acta Geologica Sinica, 78(5): 649-657 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200405008.htm
      [22] Song, S. G., Niu, Y. L., Su, L., et al., 2013. Tectonics of the North Qilian Orogen, NW China. Gondwana Research, 23: 1378-1401. doi: 10.1016/j.gr.2012.02.004
      [23] Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
      [24] Tseng, C.Y., Yang, H.J., Yang, H.Y., et al., 2007. The Dongcaohe Ophiolite from the North Qilian Mountains: A Fossil Oceanic Crust of the Paleo-Qilian Ocean. Chinese Science Bulletin, 52(7): 2390-2401. http://www.cqvip.com/QK/71135X/201107/25300203.html
      [25] Tung, K.A., Yang, H.Y., Yang, H.J., et al., 2016. Magma Sources and Petrogenesis of the Early-Middle Paleozoic Backarc Granitoids from the Central Part of the Qilian Block, NW China. Gondwana Research, 38: 197-219. doi: 10.1016/j.gr.2015.11.012
      [26] Wan, Y.S., Xu, Z.Q., Yang, J.S., et al., 2003. The Precambrian High‐Grade Basement of the Qilian Terrane and Neighboring Areas: Its Ages and Compositions. Acta Geoscientia Sinica, 24(4): 319-324 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB200304004.htm
      [27] Wang, G.C., Zhang, P., 2019. A New Understanding on the Emplacement of Ophiolitic Mélanges and Its Tectonic Significance: Insights from the Structural Analysis of the Remnant Oceanic Basin-Type Ophiolitic Mélanges. Earth Science, 44(5): 1688-1704 (in Chinese with English abstract).
      [28] Wood, D.A., 1980. The Application of a Th-Hf-Ta Diagram to Problems of Tectonomagmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province. Earth Planetary Science Letters, 50(1): 11-30. doi: 10.1016/0012-821X(80)90116-8
      [29] Xia, L.Q., Li, X.M., Yu, J.Y., et al., 2016. Mid-Late Neoproterozoic to Early Paleozoic Volcanism and Tectonic Evolution of the Qilianshan, NW China. Geo. Res. J. , 9-12: 1-41. http://www.sciencedirect.com/science/article/pii/S2214242816300092
      [30] Xia, L.Q., Xia, Z.C., Xu, X.Y., 1998. Early Paleozoic Mid‐Ocean Ridgeocean Island and Back‐Arc Basin Volcanism in the North Qilian Mountains. Acta Geologica Sinica, 72(4): 301-312 (in Chinese with English abstract).
      [31] Xia, X.H., Song, S.G., Niu, Y.L., 2012. Tholeiite- Boninite Terrane in the North Qilian Suture Zone: Implications for Subduction Initiation and Back-Arc Basin Development. Chemical Geology, 328: 259-277. doi: 10.1016/j.chemgeo.2011.12.001
      [32] Xiao, W.J., Li, J. L., Song, D.F., et al., 2019. Structural Analyses and Spatio-Temporal Constraints of Accretionary Orogens. Earth Science, 44(5): 1661-1687 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201905019.htm
      [33] Xiao, W.J., Windley, B.F., Yong, Y., et al., 2009. Early Paleozoic to Devonian Multiple-Accretionary Model for the Qilian Shan, NW China. Journal of Asian Earth Sciences, 35(3-4): 323-333. doi: 10.1016/j.jseaes.2008.10.001
      [34] Xiao, X.C., Chen, G.M., Zhu, Z.Z., 1978. The Geological Significance of Ancient Ophiolite Belt in Qilian Mountain. Acta Geologica Sinica, 52(4): 281-295 (in Chinese with English abstract).
      [35] Xu, X.Y., Zhao, J.T., Li, X.M., et al., 2003. Rare Earth Elements in Siliceous Rocks from North Qilian Mountains: Implications for Tectonic Environment. Geological Science and Technology Information, 22(3): 22-26(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200303004.htm
      [36] Xu, Z.Q., Xu, H F., Zhang, J.X., et al., 1994. The Zhoulangnanshan Caledonian Subductive Complex in the Northern Qilian Mountains and Its Dynamics. Acta Geologica Sinica, 68(1): 1-15 (in Chinese with English abstract). http://www.cqvip.com/QK/86253X/199403/1005047316.html
      [37] Yan, Z., Aitchison, J., Fu, C.L., et al., 2015. Hualong Complex, South Qilian Terrane: U-Pb and Lu-Hf Constraints on Neoproterozoic Micro-Continental Fragments Accreted to the Northern Proto-Tethyan Margin. Precambrian Research, 266: 65-85. doi: 10.1016/j.precamres.2015.05.001
      [38] Yan, Z., Fu, C.L., Aitchison, J.C., et al., 2019a. Early Cambrian Multi Arc-Ophiolite Complex: A Relic of the Proto-Tethys Oceanic Lithosphere in the Qilian Orogen, NW China. International Journal of Earth Sciences, 108(4): 1147-1164. doi: 10.1007/s00531-019-01699-6
      [39] Yan, Z., Fu, C.L., Aitchison, J.C., et al., 2019b. Retro-Foreland Basin Development in Response to Proto-Tethyan Ocean Closure, NE Tibet Plateau. Tectonics, 38(12): 4229-4248. doi: 10.1029/2019TC005560
      [40] Yan, Z., Wang, Z.Q., Fu, C.L., et al., 2018. Characteristics and Thematic Geological Mapping of Mélanges. Geological Bulletin of China, 37(2/3): 167-191 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD2018Z1001.htm
      [41] Yan, Z., Xiao, W.J., Windley, B.F., et al., 2010. Silurian Clastic Sediments in the North Qilian Shan, NW China: Chemical and Isotopic Constraints on Their Forearc Provenance with Implications for the Paleozoic Evolution of the Tibetan Plateau. Sedimentary Geology, 231(3): 98-114. http://www.sciencedirect.com/science/article/pii/S0037073810002411
      [42] Zeng, J.Y., Yang, H.R., Yang, H.Y., et al., 2007. Dongcaohe Ophiolite of Northern Qilian: A Remnant of an Early Paleozoic Oceanic Crust. Chinese Science Bulletin, 52(7): 825-835 (in Chinese). doi: 10.1360/csb2007-52-7-825
      [43] Zhang, J.X., Xu, Z.Q., Chen, W., et al., 1997. A Tentative Discussion on the Ages of the Subduction‐Accretionary Complex/Volcanic Arcs in the Middle Sector of North Qilian Mountain. Acta Petrologica et Mineralogica, 16(2): 112-119 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW702.001.htm
      [44] Zhang, P.F., Zhou, M.F., Robinson, P.T., et al., 2019. Evolution of Nascent Mantle Wedges during Subduction Initiation: Li-O Isotopic Evidence from the Luobusa Ophiolite, Tibet. Geochimica et Cosmochimica Acta, 245: 35-58. doi: 10.1016/j.gca.2018.09.037
      [45] Zhang, Q., Sun, X.M., Zhou, D.J., et al., 1997. The Characteristics of North Qilian Ophiolites, Forming Settings and Their Tectonic Significance. Advance in Earth Sciences, 12(4): 64-91 (in Chinese with English abstract).
      [46] 付长垒, 闫臻, 王秉璋, 2019. 秦祁结合部清水-张家川基性岩形成时代和构造归属探讨. 岩石学报, 35(10): 3141-3160. doi: 10.18654/1000-0569/2019.10.12
      [47] 侯青叶, 张宏飞, 张本仁, 等, 2005. 祁连造山带中部拉脊山古地幔特征及其归属: 来自基性火山岩的地球化学证据. 地球科学, 30(1): 61-70. doi: 10.3321/j.issn:1000-2383.2005.01.008
      [48] 胡振兴, 刘益, 孙文礼, 等, 2015. 祁连山玉石沟橄榄岩岩浆作用的记录和铬铁矿的成因. 西北地质, 48(1): 1-15. doi: 10.3969/j.issn.1009-6248.2015.01.001
      [49] 黄增保, 张有奎, 吕菊蕊, 等, 2010. 北祁连水洞峡蛇绿岩地球化学特征及构造环境. 甘肃地质, 19(2): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ201002002.htm
      [50] 陆松年, 李怀坤, 王惠初, 等, 2009. 秦-祁-昆造山带元古宙副变质岩层碎屑锆石年龄谱研究. 岩石学报, 25(9): 2195-2208. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200909013.htm
      [51] 孟繁聪, 张建新, 郭春满, 等, 2010. 大岔大坂MOR型和SSZ型蛇绿岩对北祁连洋演化的制约. 岩石矿物学杂志, 29(5): 453-466. doi: 10.3969/j.issn.1000-6524.2010.05.001
      [52] 钱青, 张旗, 孙晓猛, 2001a. 北祁连九个泉玄武岩的形成环境及地幔源区特征: 微量元素和Nd同位素地球化学制约. 岩石学报, 17(3): 385-394. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200103005.htm
      [53] 钱青, 张旗, 孙晓猛, 等, 2001b. 北祁连老虎山玄武岩和硅岩的地球化学特征及形成环境. 地质科学, 36(4): 444-453. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200104008.htm
      [54] 史仁灯, 2005. 蛇绿岩研究进展存在问题及思考. 地质论评, 51(6): 681-693. doi: 10.3321/j.issn:0371-5736.2005.06.010
      [55] 史仁灯, 杨经绥, 吴才来, 等, 2004. 北祁连玉石沟蛇绿岩形成于晚震旦世的SHRIMP年龄证据. 地质学报, 78(5): 649-657. doi: 10.3321/j.issn:0001-5717.2004.05.009
      [56] 万渝生, 许志琴, 杨经绥, 等, 2003. 祁连造山带及邻区前寒武纪深变质基底的时代和组成. 地球学报, 24(4): 319-324. doi: 10.3321/j.issn:1006-3021.2003.04.005
      [57] 王国灿, 张攀, 2019. 蛇绿混杂岩就位机制及其大地构造意义新解: 基于残余洋盆型蛇绿混杂岩构造解析的启示. 地球科学, 44(5): 1688-1704. doi: 10.3799/dqkx.2019.056
      [58] 夏林圻, 夏祖春, 徐学义, 1998. 北祁连山早古生代洋脊-洋岛和弧后盆地火山作用. 地质学报, 72(4): 301-312. doi: 10.3321/j.issn:0001-5717.1998.04.002
      [59] 肖文交, 李继亮, 宋东方, 等, 2019. 增生型造山带结构解析与时空制约. 地球科学, 44(5): 1661-1687. doi: 10.3799/dqkx.2019.979
      [60] 肖序常, 陈国铭, 朱志直, 1978. 祁连山古蛇绿岩带的地质构造意义. 地质学报, 52(4): 281-295. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE197804002.htm
      [61] 徐学义, 赵江天, 李向民, 等, 2003. 北祁连山早古生代硅质岩稀土元素特征及构造环境意义. 地质科技情报, 22(3): 22-26. doi: 10.3969/j.issn.1000-7849.2003.03.004
      [62] 许志琴, 徐惠芬, 张建新, 等, 1994. 北祁连走廊南山加里东俯冲杂岩增生地体及其动力学. 地质学报, 68(1): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199401000.htm
      [63] 闫臻, 王宗起, 付长垒, 等, 2018. 混杂岩基本特征与专题地质填图. 地质通报, 37(2/3): 167-191. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2018Z1001.htm
      [64] 曾建元, 杨怀仁, 杨宏仪, 等, 2007. 北祁连东草河蛇绿岩: 一个早古生代的洋壳残片. 科学通报, 52(7): 825-835. doi: 10.3321/j.issn:0023-074X.2007.07.017
      [65] 张建新, 许志琴, 陈文, 等, 1997. 北祁连中段俯冲-增生杂岩/火山弧的时代探讨. 岩石矿物杂志, 16(2): 112-119. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW702.001.htm
      [66] 张旗, 孙晓猛, 周德进, 等, 1997. 北祁连蛇绿岩的特征、形成环境及其构造意义. 地球科学进展, 12(4): 64-91. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ704.008.htm
    • 加载中
    图(8) / 表(3)
    计量
    • 文章访问数:  851
    • HTML全文浏览量:  195
    • PDF下载量:  72
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-08-27
    • 刊出日期:  2021-05-15

    目录

      /

      返回文章
      返回