Depositional System, Plane Distribution and Exploration Significance of Fan-Delta Mixed Siliciclastic-Carbonate Sediments in Lacustrine Basin: An Example of Member 1-2 of Shahejie Formation in Offshore Bohai Bay, Eastern China
-
摘要: 渤海海域古近系沙河街组一二段广泛发育与扇三角洲沉积体系伴生的混合沉积.通过岩心、显微组构及岩石储层物性等钻井资料,对陆相湖盆背景下扇三角洲混合沉积的沉积环境、砂体成因机理、分布规律及储层机理进行了详细研究.研究成果表明,扇三角洲混合沉积可分为扇三角洲前缘混合沉积和前扇三角洲混合沉积两类亚相.扇三角洲前缘混合沉积包括水下碎屑流混合沉积和河口坝混合沉积成因相类型;前扇三角洲则发育前扇三角洲混合沉积.通过对混合沉积特征分析及成因相内部构成精细解剖,总结出两类陆相断陷湖盆背景下的扇三角洲体系伴生混合沉积模式,分别归结为扇三角洲重力流驱动混合模式与扇三角洲建设-废弃互层型混合模式.结合储层物性特征研究表明,渤海海域扇三角洲混积岩储层具有:(1)在中深层埋深下保持良好的原生孔隙;(2)选择性溶蚀孔隙增加了次生孔隙;(3)碳酸盐含量高,有利于储层酸化改造等储层优势的特征,对渤海海域中深埋藏储层勘探预测具有重要意义.Abstract: Mixed siliciclastic-carbonate sediments accompanied by fan-delta are well developed in the Members 1-2 of Palaeogene Shahejie Formation in the offshore Bohai Bay Basin. A study of core description,photomicrographic observation,and petrophysical properties were performed on the mixed sediment reservoirs in a lacustrine basin,attempting to unravel the depositional environment,formation mechanism,plane distribution and reservoir features of lacustrine mixed sediments. The results show that the main sub-facies within mixed fan-delta association contain mixed fan-delta front and mixed pro-fan delta. Fan-delta frontcan include mixed subaqueous debris flows genetic facies and mixed estuarine bar genetic facies. Pro-fan delta develops mixed pro-fan delta. Based on sedimentary characteristics and internal architectures of each genetic facies,the development model of mixed fan-delta siliciclastic-carbonate sediments in terrestrial rift-subsidence lacustrine basin is attributed to two aspects:the mechanism of fan-delta mixed sediments that is related to gravity driven-tractive and the mechanism of fan-delta mixed sediments that goes through a process of construction-destruction interbedding. This study characterizes the major reservoir characteristics of mixed sediments,providing insights into their advantages as a new kind of petroleum reservoir:(1) a mass of primary porosity has still been preserved in the mid-deep buried depth; (2) secondary porosities have been generated by selective dissolutions; (3) high content of carbonate content assists reservoirs acidification. This sedimentology and reservoir study is expected to facilitate future exploration in mid-deep reservoirs in the offshore Bohai Bay basin.
-
图 1 研究区区域位置及构造划分
a.研究区渤海海域大地构造位置;b.渤海海域构造单元划分及混积岩区域分布, 据詹润等(2013)和解习农等(2018)修改
Fig. 1. Regional location and structure division of study area
图 2 砾质碎屑流混合沉积垂向沉积序列及沉积特征
a. QHD29-2E-A井3 379.00~3 385.00 m岩心素描图及沉积体系划分;b. QHD29-2E-A井,3 380.30~3 380.40 m,岩心照片,颗粒之间杂基支撑(白色箭头);c. QHD29-2E-A井,3 382.50~3 382.65 m,岩心照片,含生物碎屑细砾岩,砾石磨圆好;d. QHD29-2E-A井,3 382.50 m,显微照片,生物碎屑颗粒随机分布于砾质碎屑颗粒之间,单偏光,蓝色铸体;e. QHD29-2E-A井,3 385.17 m,砾质碎屑之间的灰泥质杂基(白色箭头),单偏光,蓝色铸体.M.泥晶灰(云)岩;W.粒泥灰(云)岩;P.泥粒灰(云)岩;G.颗粒灰(云)岩;R.砾屑;S.泥质;F.细粒;Mf.中粒;Cf.粗粒;G.砾
Fig. 2. Vertical sedimentary sequence and sedimentary characteristics of the mixed subaqueous gravelly debris flows
图 3 砾质碎屑流混合沉积理想沉积序列、沉积解释及实际岩心上序列识别(粒度说明见图 2)
Fig. 3. Ideal sedimentary sequence, sedimentary interpretation and sequence-recognizing in actual cores of the mixed subaqueous gravelly debris flows
图 4 砂质碎屑流混合沉积成因相垂向沉积序列及沉积特征(粒度说明见图 2)
a. QHD29-2E-A井3 367.00~3 373.50 m岩心素描图及沉积体系划分;b. QHD29-2E-A井,3 370.65~3 370.77 m,岩心照片,块状含生物细砂岩,含漂砾(白色箭头),无任何牵引流形成的层理构造,见泄水构造(黄色箭头),且底部见似流动构造(粉色箭头);c.沉积物C-M图投点,沉积物点群平行C=M基线;d. QHD29-2E-A井,3 370.53 m,砂岩底界面见似流动构造,下伏薄层泥质粉砂岩,两者为岩性突变面,呈反粒序,泥质粉砂岩中含碳屑,呈定向性,单偏光,蓝色铸体;e. QHD29-2E-A井,3 373.51 m,生物碎屑呈破碎状(黄色箭头),随机分布于陆源碎屑颗粒之间,单偏光,蓝色铸体
Fig. 4. Vertical sedimentary sequence and sedimentary characteristics of the mixed subaqueous sandy debris flows
图 5 砂质碎屑流混合沉积理想沉积序列、沉积解释及实际岩心序列识别(粒度说明见图 2)
Fig. 5. Ideal sedimentary sequence, sedimentary interpretation and sequence-recognizing in actual cores of the mixed subaqueous sandy debris flows
图 6 河口坝混合沉积成因相垂向沉积序列及沉积特征(粒度说明见图 2)
a. QHD29-2E-A井, 3 340.80~3 341.80 m岩心素描图及沉积体系划分;b. QHD29-2E-A井,3 340.85~3 340.95 m,岩心照片,层理构造发育,见平行层理(粉色箭头)和波纹交错层理(黄色箭头);c. QHD29-2E-A井,3 340.78 m,浅水生物碎屑随机伴生于陆源碎屑之间,生物含量大于20%,单偏光,蓝色铸模
Fig. 6. Vertical sedimentary sequence and sedimentary characteristics of the mixed estuarine bar
图 7 河口坝混合沉积理想沉积序列、沉积解释及实际岩心上序列识别(粒度说明见图 2)
Fig. 7. Ideal sedimentary sequence, sedimentary interpretation and sequence-recognizing in actual cores of the mixed estuarine bar
图 8 前扇三角洲混合沉积成因相垂向沉积序列及沉积特征(粒度说明见图 2)
a. BZ36-2-W井3 358.00~3 372.00 m岩心素描图及沉积体系划分;b. BZ36-2-W井,3 258.70~3 258.78 m,岩心照片,砂泥岩互层,见丰富滑塌构造,如球枕构造(白色箭头)、砂球构造(橙色箭头)、卷曲变形构造(黄色箭头);c. BZ36-2-W井,3 261.77~3 261.85 m,岩心照片,砂泥岩互层,见大量微断层(淡粉色箭头);d. BZ36-2-W井,3 271.98 m,块状中-粗粒砂岩层,由细砂或中砂长石颗粒构成.碎屑颗粒分选差,磨圆一般,正交光;e. BZ36-2-W井,3 263.96 m,生物碎屑层呈薄层状夹于泥质层之间,生物碎屑紧密排列,呈一定定向性,正交光,蓝色铸体
Fig. 8. Vertical sedimentary sequence and sedimentary characteristics of the mixed pro-fan delta
图 9 前扇三角洲混合沉积理想沉积序列、沉积解释及实际岩心上序列识别(粒度说明见图 2)
Fig. 9. Ideal sedimentary sequence, sedimentary interpretation and sequence-recognizing in actual cores of the mixed pro-fan delta
图 12 渤海海域扇三角洲混积岩典型储集空间类型
a. QHD29-2E-A井,3 382.25 m,储层内残余原生孔隙(黄色箭头),单偏光,蓝色铸体;b. BZ36-2-W井,2 384.52 m,鲕粒间保存原生粒间孔(黄色箭头),单偏光,蓝色铸体;c. BZ29-4-A井,2 351.33 m,陆源碎屑间原生粒间孔(黄色箭头),单偏光,蓝色铸体;d. QHD29-2E-B井,3 772.10 m,选择性溶蚀形成的次生孔隙,单偏光,蓝色铸体;e. QHD29-2E-C井,3 373.51 m,生物碎屑被溶蚀产生的铸模孔(橙色箭头),单偏光,蓝色铸体;f. BZ26-2-A井,3 263.96 m,生物碎屑形成的铸模孔改善了储层空间,单偏光,蓝色铸体
Fig. 12. Typical reservoir spaces of fan-delta mixed sedimentary in the offshore of the Bohai Bay
表 1 渤海海域扇三角洲混积岩沉积体系及成因相划分
Table 1. Fan-delta mixed siliciclastic-carbonate sedimentary system and genetic facies division in the offshore of the Bohai Bay
沉积环境 成因相组合 成因相 扇三角洲 扇三角洲前缘混合沉积 水下碎屑流混合沉积 河口坝混合沉积 前扇三角洲混合沉积 前三角洲混合沉积 -
[1] Bruner, K. R., Smosna, R., 2000. Stratigraphic-Tectonic Relations in Spain's Cantabrian Mountains: Fan Delta Meets Carbonate Shelf. Journal of Sedimentary Research, 70(6): 1302-1314. https://doi.org/10.1306/031700701302 [2] Buck, S. G., 1980. Stromatolite and Ooid Deposits within the Fluvial and Lacustrine Sediments of the Precambrian Ventersdorp Supergroup of South Africa. Precambrian Research, 12: 311-330. https://doi.org/10.1016/0301-9268(80)90033-9 [3] Cai, G.Q., Guo, F., Liu, X.T., et al., 2009. Carbon and Oxygen Isotope Characteristics and Palaeoenvironmental Implications of Lacustrine Carbonate Rocks from the Shahejie Formation in the Dongying Sag. Earth and Environment, 37(4): 347-354(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdqhx200904006 [4] Campbell, A. E., 2005. Shelf-Geometry Response to Changes in Relative Sea Level on a Mixed Carbonate-Siliciclastic Shelf in the Guyana Basin. Sedimentary Geology, 175(1-4): 259-275. https://doi.org/10.1016/j.sedgeo.2004.09.003 [5] Caracciolo, L., Gramigna, P., Critelli, S., et al., 2013. Petrostratigraphic Analysis of a Late Miocene Mixed Siliciclastic-Carbonate Depositional System (Calabria, Southern Italy): Implications for Mediterranean Paleogeography. Sedimentary Geology, 284: 117-132. https://doi.org/10.1016/j.sedgeo.2012.12.002 [6] Chiarella, D., Longhitano, S. G., 2012. Distinguishing Depositional Environments in Shallow-Water Mixed, Bio-Siliciclastic Deposits on the Basis of the Degree of Heterolithic Segregation (Gelasian, Southern Italy). Journal of Sedimentary Research, 82(12): 969-990. https://doi.org/10.2110/jsr.2012.78 [7] Davis, R. A. Jr., Cuffe, C. K., Kowalski, K. A., et al., 2003. Stratigraphic Models for Microtidal Tidal Deltas; Examples from the Florida Gulf Coast. Marine Geology, 200(1-4): 49-60. https://doi.org/10.1016/s0025-3227(03)00164-6 [8] Du, Q.X., Guo, S.B., Shen, X.L., et al., 2016. Palaeo-Water Characteristics of the Member 1 of Paleogene Shahejie Formation in Southern Nanpu Sag, Bohai Bay Basin. Journal of Palaeogeography, 18(2): 173-183 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb201602004 [9] Du, X.F., Jia, D.H., Wang, Q.M., et al., 2017. Local Provenance System and Its Oil and Gas Exploration Significance: A Case Study of the Paleogene in Bohai Sea Area. China Offshore Oil and Gas, 29(4): 19-27(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZHSD201704003.htm [10] Garcia, F., Soria, J. M., Viseras, C., et al., 2009. High-Frequency Rhythmicity in a Mixed Siliciclastic-Carbonate Shelf (Late Miocene, Guadix Basin, Spain): A Model of Interplay between Climatic Oscillations, Subsidence, and Sediment Dispersal. Journal of Sedimentary Research, 79(5): 302-315. https://doi.org/10.2110/jsr.2009.028 [11] Guo, F.S., 2004. Characteristics and Tectonic Significance of Mixing Sediments of Siliciclastics and Carbonate of Outangdi Formation in Jiangshan, Zhejiang Province. Acta Sedimentologica Sinica, 22(1): 136-141(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb200401021 [12] Huo, S.J., Yang, X.H., Wang, Q.B., et al., 2015. Controlling Factors on Diamictite Reservoir in Shahejie Formation, H-1 Structure, Huanghekou Depression. Geoscience, 29(6): 1348-1359 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201506009 [13] Jiang, M.S., Sha, Q.A., 1995. Research Advances in the Mixed Siliciclastic-Carbonate Sedimentary Systems. Advances in Earth Science, 10(6): 551-554 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500054220 [14] Korngreen, D., Bialik, O. M., 2015. The Characteristics of Carbonate System Recovery during a Relatively Dry Event in a Mixed Carbonate/Siliciclastic Environment in the Pelsonian (Middle Triassic) Proximal Marginal Marine Basins: A Case Study from the Tropical Tethyan Northwest Gondwana Margins. Palaeogeography, Palaeoclimatology, Palaeoecology, 440: 793-812. https://doi.org/10.1016/j.palaeo.2015.09.026 [15] Lee, H. S., Chough, S. K., 2011. Depositional Processes of the Zhushadong and Mantou Formations (Early to Middle Cambrian), Shandong Province, China: Roles of Archipelago and Mixed Carbonate-Siliciclastic Sedimentation on Cycle Genesis during Initial Flooding of the North China Platform. Sedimentology, 58(6): 1530-1572. https://doi.org/10.1111/j.1365-3091.2011.01225.x [16] Li, X.B., Liu, H.Q., Zhang, Z.Y., et al., 2014. "Argillaceous Parcel" Structure: A Direct Evidence of Debris Flow Origin of Deep-Water Massive Sandstone of Yanchang Formation, Upper Triassic, the Ordos Basin. Acta Sedimentologica Sinica, 32(4): 611-622 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201404001.htm [17] Liu, C.L., Zhao, Q.H., Wang, P.X., 2001. Paleolimnological Significance of Carbon and Oxygen Isotopic Ratios of Ostracoda from Oil Source Rocks in Dongying Depression. Earth Science, 26(5): 441-445(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200105001 [18] Liu, S.L., Wang, Q.F., Gong, Y.J., et al., 2012. Paleogene Microfossil Assemblages from the Bohai Area and Their Importance for the Oil and Gas Exploration. Journal of Stratigraphy, 36(4): 700-709(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DCXZ201204004.htm [19] Luo, S.S., Liu, K.Y., He, Y.B., et al., 2004. Study on Sedimentary Facies of Jialingjiang Formation of Early Triassic at Changyuanba Structure. Journal of Oil and Gas Technology, 26(4): 19-21(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jhsyxyxb200404006 [20] Mata, S. A., Bottjer, D. J., 2011. Origin of Lower Triassic Microbialites in Mixed Carbonate-Siliciclastic Successions: Ichnology, Applied Stratigraphy, and the End-Permian Mass Extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 300(1): 158-178. https://doi.org/10.1016/j.palaeo.2010.12.022 [21] Monstad, S., 2000. Carbonate Sedimentation on Inactive Fan-Delta Lobes: Response to Sea-Level Changes, Sant Llorenç Del Munt Fan-Delta Complex, NE Spain. Sedimentary Geology, 138(1): 99-124. https://doi.org/10.1016/S0037-0738(00)00145-7 [22] Mount, J. F, 1984. Mixing of Siliciclastic and Carbonate Sediments in Shallow Shelf Environments. Geology, 12(7): 432-435. https://doi.org/10.1130/0091-7613(1984)12432:MOSACS > 2.0.CO; 2 doi: 10.1130/0091-7613(1984)12432:MOSACS>2.0.CO;2 [23] Palermo, D., Aigner, T., Geluk, M., et al., 2008. Reservoir Potential of a Lacustrine Mixed Carbonate/Siliciclastic Gas Reservoir: The Lower Triassic Rogenstein in the Netherlands. Journal of Petroleum Geology, 31(1): 61-96. https://doi.org/10.1111/j.1747-5457.2008.00407.x [24] Shanmugam, G., 2013. New Perspectives on Deep-Water Sandstones: Implications. Petroleum Exploration and Development, 40(3): 316-324. https://doi.org/10.1016/s1876-3804(13)60038-5 [25] Shi, K.L., Chen, F.W., Duan, Z., et al., 2015. Lacustrine Carbonate Rock Types and Sedimentary Environments of the Lower Jurassic Da'anzhai Member of Heping Reservoir Section in Beibei Area, Chongqing. Journal of Palaeogeography, 17(2): 198-212(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb201502005 [26] Siggerud, E., Steel, R. J., Pollard, J. E., 2000. Bored Pebbles and Ravinement Surface Clusters in a Transgressive Systems Tract, Sant Llorenç Del Munt Fan-Delta Complex, SE Ebro Basin, Spain. Sedimentary Geology, 138(1): 161-177. https://doi.org/10.1016/S0037-0738(00)00148-2 [27] Tan, M.Q., Liu, Z.L., Shen, F., et al., 2016. Features and Model of Mixed Sediments of Da'anzhai Member in Lower Jurassic Ziliujing Formation, Huilong Area, Sichuan Basin. Acta Sedimentologica Sinica, 34(3): 571-581(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201603015 [28] Wang, G.M., Liao, Q.Y., Gao, L., 2009. Sedimentary Characteristics of Mixed Snail-Shell Beach of Es Formation in the West of Gubei Sag. Journal of Oil and Gas Technology, 31(4): 28-30(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jhsyxyxb200904006 [29] Wang, Q.B., Liu, L., Niu, C.M., et al., 2018. Impacts of the Freshwater Diagenetic Environment to the Mix-Deposition of Lacustrine Carbonate and Clastic at the Steep Slope of Shijiutuo Uplift, Bohai Bay Basin. Earth Science, 43(Suppl.2): 234-242(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX2018S2019.htm [30] Wang, Y., 2019. Mixed Sedimentary Characteristics and Pattern of the Fan Delta in the Middle Permian Taerlanggou Profile, Xinjiang Province. Acta Sedimentologica Sinica, 37(5): 922-933(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201905003 [31] Wang, Y., Chen, S.Y., Zhang, G.L., et al., 2017. Classifications of Mixosedimentite and Sedimentary Facies Characteristics of Mixed Sedimentary Facies Belt in Saline Lacustrine Basin: Taking Examples as the Lucaogou Formation in the South of Junggar Basin and the Taerlang Formation in the Northwest of Tuha Basin. Acta Petrolei Sinica, 38(9): 1021-1035, 1065(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYXB201709004.htm [32] Xia, J.S., Liu, X.H., Wang, Z.J., et al., 2017. Sedimentary Characteristics of Sandy Debris Flow in the 3rd Member of Dongying Formation and the 1st Member of Shahejie Formation of the Western Nanpu Sag, Bohai Bay Basin and Its Significance in Hydrocarbon Exploration. Acta Petrolei Sinica, 38(4): 399-413(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201704004 [33] Xia, Q. L., Zhou, X. H., Li, J. P., et al., 2012. Paleogene Sedimentary Evolution and Reservoir Distribution in Bohai Bay Basin. Petroleum Industry Press, Beijing, 104 (in Chinese). [34] Xie, X.N., Ye, M.S., Xu, C. G., et al., 2018. High Quality Reservoirs Characteristics and Forming Mechanisms of Mixed Siliciclastic-Carbonate Sediments in the Bozhong Sag, Bohai Bay Basin. Earth Science, 43(10): 3526-3539 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201810015 [35] Yang, T., Cao, Y.C., Wang, Y.Z., et al., 2015. Types, Sedimentary Characteristics and Genetic Mechanisms of Deep-Water Gravity Flows: A Case Study of the Middle Submember in Member 3 of Shahejie Formation in Jiyang Depression. Acta Petrolei Sinica, 36(9): 1048-1059(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201509003.htm [36] Zhan, R., Zhu, G., Yang, G.L., et al., 2013. The Genesis of the Faults and the Geodynamic Environment during Neogene for Offshore of the Bohai Sea. Earth Science Frontiers, 20(4): 151-165(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201304012 [37] Zhao, G.L., Zhao, C.L., Ye, L.J., 2005. Sedimentary System of "Four Fans and One Channel" in the Bohai Gulf Basin and Its Significance for Petroleum Exploration. Journal of Geomechanics, 11(3): 245-258(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb200503006 [38] 蔡观强, 郭锋, 刘显太, 等, 2009.东营凹陷沙河街组沉积岩碳氧同位素组成的古环境记录.地球与环境, 37(4): 347-354. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdqhx200904006 [39] 杜庆祥, 郭少斌, 沈晓丽, 等, 2016.渤海湾盆地南堡凹陷南部古近系沙河街组一段古水体特征.古地理学报, 18(2): 173-183. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb201602004 [40] 杜晓峰, 加东辉, 王启明, 等, 2017.盆内局部物源体系及其油气勘探意义:以渤海海域古近系为例.中国海上油气, 29(4): 19-27. http://d.wanfangdata.com.cn/Periodical/zghsyq-gc201704003 [41] 郭福生, 2004.浙江江山藕塘底组陆源碎屑与碳酸盐混合沉积特征及其构造意义.沉积学报, 22(1): 136-141. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb200401021 [42] 霍沈君, 杨香华, 王清斌, 等, 2015.黄河口凹陷H-1构造沙河街组混积岩储层控制因素.现代地质, 29(6): 1348-1359. [43] 江茂生, 沙庆安, 1995.碳酸盐与陆源碎屑混合沉积体系研究进展.地球科学进展, 10(6): 551-554. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500054220 [44] 李相博, 刘化清, 张忠义, 等, 2014.深水块状砂岩碎屑流成因的直接证据: "泥包砾"结构:以鄂尔多斯盆地上三叠统延长组研究为例.沉积学报, 32(4): 611-622. http://www.cqvip.com/QK/95994X/20144/67748866504849524852484849.html [45] 刘传联, 赵泉鸿, 汪品先, 2001.东营凹陷生油岩中介形虫氧、碳同位素的古湖泊学意义.地球科学, 26(5): 441-445. http://www.earth-science.net/article/id/1032 [46] 刘士磊, 王启飞, 龚莹杰, 等, 2012.渤海海域古近纪微体化石组合特征及油气勘探意义.地层学杂志, 36(4): 700-709. http://www.cnki.com.cn/Article/CJFDTotal-DCXZ201204004.htm [47] 罗顺社, 刘魁元, 何幼斌, 等, 2004.渤南洼陷沙四段陆源碎屑与碳酸盐混合沉积特征与模式.石油天然气学报, 26(4): 19-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jhsyxyxb200404006 [48] 施开兰, 陈芳文, 段卓, 等, 2015.重庆北碚和平水库剖面下侏罗统大安寨段湖相碳酸盐岩岩石类型及沉积环境.古地理学报, 17(2): 198-212. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb201502005 [49] 谭梦琪, 刘自亮, 沈芳, 等, 2016.四川盆地回龙地区下侏罗统自流井组大安寨段混积岩特征及模式.沉积学报, 34(3): 571-581. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201603015 [50] 王冠民, 廖黔渝, 高亮, 2009.孤北洼陷西部陡坡带沙一段混积螺滩沉积特征.石油天然气学报, 31(4): 28-30. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jhsyxyxb200904006 [51] 王清斌, 刘立, 牛成民, 等, 2018.石臼坨凸起陡坡带大气淡水成岩环境对湖相混积岩储层的影响.地球科学, 43(增刊2): 234-242. doi: 10.3799/dqkx.2018.138 [52] 王越, 2019.新疆塔尔朗沟剖面中二叠统扇三角洲混合沉积特征及模式.沉积学报, 37(5): 922-933. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201905003 [53] 王越, 陈世悦, 张关龙, 等, 2017.咸化湖盆混积岩分类与混积相带沉积相特征:以准噶尔盆地南缘芦草沟组与吐哈盆地西北缘塔尔朗组为例.石油学报, 38(9): 1021-1035, 1065. http://www.cnki.com.cn/Article/CJFDTotal-SYXB201709004.htm [54] 夏景生, 刘晓涵, 王政军, 等, 2017.渤海湾盆地南堡凹陷西部东营组三段-沙河街组一段砂质碎屑流沉积特征及油气勘探意义.石油学报, 38(4): 399-413. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201704004 [55] 夏庆龙, 周心怀, 李建平, 等, 2012.渤海海域古近系层序沉积演化及储层分布规律.北京:石油工业出版社, 104. [56] 解习农, 叶茂松, 徐长贵, 等, 2018.渤海湾盆地渤中凹陷混积岩优质储层特征及成因机理.地球科学, 43(10): 3526-3539. doi: 10.3799/dqkx.2018.277 [57] 杨田, 操应长, 王艳忠, 等, 2015.深水重力流类型、沉积特征及成因机制:以济阳坳陷沙河街组三段中亚段为例.石油学报, 36(9): 1048-1059. http://www.cnki.com.cn/Article/CJFDTotal-SYXB201509003.htm [58] 詹润, 朱光, 杨贵丽, 等, 2013.渤海海域新近纪断层成因与动力学状态.地学前缘, 20(4): 151-165. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201304012 [59] 赵国连, 赵澄林, 叶连俊, 2005.渤海湾盆地"四扇一沟"沉积体系及其油气意义.地质力学学报, 11(3): 245-258. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb200503006