Studies of Crustal Growth and Deep Lithospheric Architecture and New Issues: Exemplified by the Central Asian Orogenic Belt (Northern Xinjiang)
-
摘要: 岩浆岩区域多元同位素示踪填图是探索地球深部物质组成架构、研究地壳生长的重要途径.中亚造山带作为全球最大、最典型的显生宙增生型造山带,发育巨量岩浆岩,是研究造山带深部物质组成架构及地壳生长的天然实验室.介绍了在中亚造山带西段的北疆地区同位素示踪填图的成果,并探讨了存在和需要研究的新问题.阿尔泰-准噶尔-天山的花岗岩同位素廊带填图初步揭示,阿尔泰中部深部物质较老,准噶尔年轻,东天山-北山更老,这种物质组成结构是同造山水平生长和后造山垂向生长的结果.西天山及邻区Hf同位素填图揭示了同一微陆块内部复杂的新老地壳组成架构,提出周期性地壳生长/再循环模式.同位素填图揭示的深部物质组成类型——尤其是年轻地壳的组成类型——仍需进一步探索.需要探索多元同位素示踪、填图结果的异同、关联性及其影响因素,并与地球物理探测、岩石学实验模拟结果相结合,最终构建以岩石探针和同位素示踪填图为核心的,结合地球物理探测、深部钻探和深部过程模拟的岩石圈三维物质与结构探测的理论和技术方法体系.Abstract: Multiple isotopic mapping of magmatic rocks is a useful tool to unveil the architecture and composition of the deep lithosphere of orogens and to study the crustal growth. As the world's largest and most typical accretionary orogenic belt,the Central Asian Orogenic Belt (CAOB) is an ideal natural laboratory for addressing the scientific issues mentioned above. In this contribution,we synthetically exhibit the recent achievements in isotopic mapping being carried out in northern Xinjiang,SW CAOB,and discuss the relevant issues. Cross-section of Nd-Hf isotopic data across the Altai-Junggar-Tianshan-Beishan orogens preliminarily indicate that some ancient materials are distributed in the central Altai,the Junggar is composed mostly of juvenile components,and the most ancient crustsare found in Eastern Tianshan-Beishan areas. These differences can be attributed to the combination of lateral continental crust growth at the syn-accretionary stage and the vertical growth at late- to post-accretionary stages. The Hf isotopic mapping of felsic rocks in the Western Tianshan and adjacent regions reveals a within-microcontinental heterogeneity in lithospheric architecture,and alternating occurrence in space and time of juvenile and ancient crustal components implies periodic continental growth and reworking. Details of components in the deep lithosphere probed by isotopic mapping,juvenile crustal endmembers particularly,require further studies. We need to explore the results of multi-proxy isotopicsystems and understand the mechanism behind the similarities and differences. Furthermore,deep lithospheric compositions traced by multi-isotopes should be in agreement with geophysical data as well as experimental petrology. Our ultimate goal is to establish a multidisciplinary approach with multi-isotopic mapping as the core,including geophysical detection,deep drilling,and simulation of deep process.
-
图 1 造山带类型划分为3个相互关联的端元类型:碰撞、增生和克拉通内部造山带(Cawood et al., 2009)
Fig. 1. Classification of orogenic belt types into three interrelated end-members: coalitional, accretionary and intracratonic(modified from Cawood et al., 2009)
图 2 全球部分主要造山带不同年龄地壳分布区
可见:中亚造山带是最大、最年轻的区域;北美、格陵兰、欧洲标出的年轻地壳年龄都在1.9~1.7 Ga;中亚造山带地壳年龄比这些标出的年轻地壳更为年轻(很多为显生宙); 据Patchett(2003)
Fig. 2. Distribution of the crust with different ages around the world
图 3 中亚造山带花岗岩
同位素填图鉴别出准噶尔-西南蒙古为最大的年轻地壳区(主体 < 0.8 Ga,个别地带含古老物质信息);据Wang et al.(2017a)
Fig. 3. Distribution map of granitoids in the Central Asian orogenic belt
图 4 阿尔泰-准噶尔-北山花岗岩的εNd(t)值图(a)、Nd同位素模式年龄剖面(b)和Hf同位素模式年龄剖面(c)
Fig. 4. Isotopic map of Altai-Junggar-Beishan granitoids in north Xinjiang, China(a) and profiles of whole rock Nd(b) and zircon Hf model age section(c)
图 6 阿尔泰-东准噶尔花岗岩类εHf(t)值图和TDMC图
Fig. 6. εHf(t) values and Hf model ages for the granitoids in the Altai and East Junggar regions
图 7 阿尔泰-东准噶尔及邻区古生代中酸性岩浆岩中识别的捕获/继承锆石年龄分布(据Zhang et al., 2017).
Fig. 7. Ages of xenocrystic/inherited zircon grains from granitoid rocks and felsic volcanic rocks in the Chinese Altai, East Junggar and nearby regions(modified from Zhang et al., 2017)
图 8 阿尔泰-东准噶尔及邻区岩浆岩捕获/继承锆石年龄省示意图(据Zhang et al., 2017)
Fig. 8. The inferred framework of old zircon xenocryst provinces, based on the variations in spatial characteristics of age and Hf isotopic compositions (tDMC) of xenocrystic zircons within Palaeozoic felsic igneous rocks(modified from Zhang et al., 2017)
图 9 新疆西天山花岗岩和长英质火山岩的Hf同位素模式年龄等值线图
图中ABCD折线为Hf同位素剖面位置;b.穿过北天山和伊犁地块的Hf同位素(模式年龄)剖面(详情见正文)(Huang et al., 出版中); 根据各岩体和火山岩单元的锆石Hf同位素的中位数值生成
Fig. 9. Hf isotope contour map showing the spatial variation of crustal Hf model ages for the Paleozoic granitoid rocks and felsic volcanic rocks in some areas of the West Tianshan
图 10 新疆西天山伊犁地块北缘(a)和南缘(b)古生代长英质岩石的年龄-到缝合带距离图解
据Huang et al.(出版中)
Fig. 10. U-Pb rock age versus distance to the suture of Paleozoic granitoid intrusions and felsic volcanic suites in the (a) northern and (b) southern parts of the Yili Block, showing development and migration of continental arc and back-arc magmatism
-
[1] Belousova, E. A., Kostitsyn, Y. A., Griffin, W. L., et al., 2010. The Growth of the Continental Crust:Constraints from Zircon Hf-Isotope Data. Lithos, 119(3/4):457-466. https://doi.org/10.1016/j.lithos.2010.07.024 [2] Castro, A., Gerya, T., Garcia-Casco, A., et al., 2010. Melting Relations of MORB-Sediment Melanges in Underplated Mantle Wedge Plumes; Implications for the Origin of Cordilleran-Type Batholiths. Journal of Petrology, 51(6):1267-1295. https://doi.org/10.1093/petrology/egq019 [3] Cawood, P. A., Hawkesworth, C. J., Dhuime, B., 2013. The Continental Record and the Generation of Continental Crust. Geological Society of America Bulletin, 125(1/2):14-32. https://doi.org/10.1130/b30722.1 [4] Cawood, P. A., Kröner, A., Collins, W. J., et al., 2009. Accretionary Orogens through Earth History. Geological Society, London, Special Publications, 318(1):1-36. https://doi.org/10.1144/sp318.1 [5] Chen, B., Jahn, B. M., 2004. Genesis of Post-Collisional Granitoids and Basement Nature of the Junggar Terrane, NW China:Nd-Sr Isotope and Trace Element Evidence. Journal of Asian Earth Sciences, 23(5):691-703. https://doi.org/10.1016/s1367-9120(03)00118-4 [6] Collins, W. J., Belousova, E. A., Kemp, A. I. S., et al., 2011. Two Contrasting Phanerozoic Orogenic Systems Revealed by Hafnium Isotope Data. Nature Geoscience, 4(5):333-337. https://doi.org/10.1038/ngeo1127 [7] Condie, K. C., 1998. Episodic Continental Growth and Supercontinents:A Mantle Avalanche Connection?. Earth and Planetary Science Letters, 163(1/2/3/4):97-108. https://doi.org/10.1016/s0012-821x(98)00178-2 [8] Couzinié, S., Laurent, O., Moyen, J. F., et al., 2016. Post-Collisional Magmatism:Crustal Growth not Identified by Zircon Hf-O Isotopes. Earth and Planetary Science Letters, 456:182-195. https://doi.org/10.1016/j.epsl.2016.09.033 [9] Deng, J., Wang, C. M., Bagas, L., et al., 2018. Crustal Architecture and Metallogenesis in the South-Eastern North China Craton. Earth-Science Reviews, 182:251-272. https://doi.org/10.1016/j.earscirev.2018.05.001 [10] Deng, J. F., Su, S. G., Mo, X. X., et al., 2004. The Sequence of Magmatic-Tectonic Events and Orogenic Processes of the Yanshan Belt, North China. Acta Geologica Sinica-English Edition, 78(1):260-266. https://doi.org/10.1111/j.1755-6724.2004.tb00698.x [11] DePaolo, D. J., 1988. Age Dependence of the Composition of Continental Crust:Evidence from Nd Isotopic Variations in Granitic Rocks. Earth and Planetary Science Letters, 90(3):263-271. https://doi.org/10.1016/0012-821x(88)90130-6 [12] DePaolo, D. J., Linn, A. M., Schubert, G., 1990. The Continental Crustal Age Distribution:Methods of Determining Mantle Separation Ages from Sm-Nd Isotopic Data and Application to the Southwestern United States. Journal of Geophysical Research, 96(B2):2071. https://doi.org/10.1029/90jb02219 [13] Dhuime, B., Hawkesworth, C., Cawood, P., 2011. When Continents Formed. Science, 331(6014):154-155. https://doi.org/10.1126/science.1201245 [14] Dickin, A. P., McNutt, R. H., 1989. Nd Model Age Mapping of the Southeast Margin of the Archean Foreland in the Grenville Province of Ontario. Geology, 17(4):299. https://doi.org/10.1130/0091-7613(1989)017 < 0299:nmamot > 2.3.co; 2 doi: 10.1130/0091-7613(1989)017<0299:nmamot>2.3.co;2 [15] Dickin, A. P., McNutt, R. H., 2003. An Application of Nd Isotope Mapping in Structural Geology:Delineating an Allochthonous Grenvillian Terrane at North Bay, Ontario. Geological Magazine, 140(5):539-548. https://doi.org/10.1017/s0016756803008070 [16] Dobretsov, N. L., Buslov, M. M., 2011. Problems of Geodynamics, Tectonics, and Metallogeny of Orogens. Russian Geology and Geophysics, 52(12):1505-1515. https://doi.org/10.1016/j.rgg.2011.11.012 [17] Griffin, W. L., Begg, G. C., O'Reilly, S. Y., 2013. Continental-Root Control on the Genesis of Magmatic Ore Deposits. Nature Geoscience, 6(11):905-910. https://doi.org/10.1038/ngeo1954 [18] Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle:LAM-MC-ICP MS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1):133-147. https://doi.org/10.1016/s0016-7037(99)00343-9 [19] Gray, D. R., Foster, D. A., 2004. Tectonic Evolution of the Lachlan Orogen, Southeast Australia:Historical Review, Data Synthesis and Modern Perspectives. Australian Journal of Earth Sciences, 51(6):773-817. https://doi.org/10.1111/j.1400-0952.2004.01092.x [20] Hacker, B. R., Kelemen, P. B., Behn, M. D., 2011. Differentiation of the Continental Crust by Relamination. Earth and Planetary Science Letters, 307(3/4):501-516. https://doi.org/10.1016/j.epsl.2011.05.024 [21] Hacker, B. R., Kelemen, P. B., Behn, M. D., 2015. Continental Lower Crust. Annual Review of Earth and Planetary Sciences, 43(1):167-205. https://doi.org/10.1146/annurev-earth-050212-124117 [22] Hall, R., 2017. Southeast Asia:New Views of the Geology of the Malay Archipelago. Annual Review of Earth and Planetary Sciences, 45(1):331-358. https://doi.org/10.1146/annurev-earth-063016-020633 [23] Han, B. F., He, G. Q., Wang, S. G., 1999. Postcollisional Mantle-Derived Magmatism, Underplating and Implications for Basement of the Junggar Basin. Science in China Series D: Earth Sciences, 42(2):113-119. https://doi.org/10.1007/bf02878509 [24] Han, B. F., Wang, S. G., Jahn, B. M., et al., 1997. Depleted-Mantle Source for the Ulungur River A-Type Granites from North Xinjiang, China:Geochemistry and Nd-Sr Isotopic Evidence, and Implications for Phanerozoic Crustal Growth. Chemical Geology, 138(3/4):135-159. https://doi.org/10.1016/s0009-2541(97)00003-x [25] Han, B. F., He, G. Q., Wang, S. G., et al, 1998. Postcollisional Mantle-Derived Magmatism and Vertical Growth of the Continental Crust in North Xinjiang. Geological Review, 44:396-409(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800070242 [26] Han, B. F., Ji, J. Q., Song B., et al, 2006. Late Paleozoic Vertical Growth of Continental Crust around the Junggar Basin, Xinjiang, China (Part I):Timing of Post-Collisional Plutonism. Acta Petrologica Sinica. 22:1077-1086(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200605003.htm [27] Hawkesworth, C., Cawood, P., Dhuime, B., 2013. Continental Growth and the Crustal Record. Tectonophysics, 609:651-660. https://doi.org/10.1016/j.tecto.2013.08.013 [28] Hawkesworth, C. J., Kemp, A. I. S., 2006. Evolution of the Continental Crust. Nature, 443(7113):811-817. https://doi.org/10.1038/nature05191 [29] Hawkesworth, C. J., Cawood, P. A., Dhuime, B., et al., 2017. Earth's Continental Lithosphere through Time. Annual Review of Earth and Planetary Sciences, 45(1):169-198. https://doi.org/10.1146/annurev-earth-063016-020525 [30] Hong, D. W., Wang, S. G., Xie, X. L., et al, 2000. Genesis of Positive Ε(Nd, T) Granitoids in the Da Hinggan Mts. Mongolia Orogenic Belt and Growth Continental Crust. Earth Science Frontiers, 7(2):441-456(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dxqy200002016.htm [31] Hong, D. W., Wang, S. G., Xie, X. L., et al, 2003. The Relationship between Supercontinent Evolution and Continental Crustal Growth from the Positive ΕNd Granites in Central Asia. ActaGeologicaSinica, 77(2):203-209 (in Chinese). [32] Hong, D. W., Zhang, J. S., Wang, T., et al., 2004. Continental Crustal Growth and the Supercontinental Cycle:Evidence from the Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 23(5):799-813. https://doi.org/10.1016/s1367-9120(03)00134-2 [33] Hou, Z. Q., Duan, L. F., Lu, Y. J., et al., 2015. Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6):1541-1575. https://doi.org/10.2113/econgeo.110.6.1541 [34] Hu, A. Q., Jahn, B. M., Zhang, G. X., et al., 2000. Crustal Evolution and Phanerozoic Crustal Growth in Northern Xinjiang:Nd Isotopic Evidence. Part I. Isotopic Characterization of Basement Rocks. Tectonophysics, 328(1/2):15-51. https://doi.org/10.1016/s0040-1951(00)00176-1 [35] Huang, H., Wang, T., Tong, Y., et al., 2020. Rejuvenation of Ancient Micro-Continents during Accretionary Orogenesis: Insights from the Yili Block and Adjacent Regions of the SW Central Asian Orogenic Belt. Earth-Science Reviews, 103255. https://doi.org/10.1016/j.earscirev.2020.103255 [36] Jahn, B. M., 2010. Accretionary Orogen and Evolution of the Japanese Islands:Implications from a Sr-Nd Isotopic Study of the Phanerozoic Granitoids from SW Japan. American Journal of Science, 310(10):1210-1249. https://doi.org/10.2475/10.2010.02 [37] Jahn, B. M., Usuki, M., Usuki, T., et al., 2014. Generation of Cenozoic Granitoids in Hokkaido (Japan):Constraints from Zircon Geochronology, Sr-Nd-Hf Isotopic and Geochemical Analyses, and Implications for Crustal Growth. American Journal of Science, 314(2):704-750. https://doi.org/10.2475/02.2014.09 [38] Jahn, B. M., Wu, F. Y., Hong, D. W., 2000a. Important Crustal Growth in the Phanerozoic:Isotopic Evidence of Granitoids from East-Central Asia. Journal of Earth System Science, 109(1):5-20. https://doi.org/10.1007/bf02719146 [39] Jahn, B. M., Wu, F. Y., Chen, B., 2000b. Massive Granitoid Generation in Central Asia:Nd Isotope Evidence and Implication for Continental Growth in the Phanerozoic. Episodes, 23(2):82-92. https://doi.org/10.18814/epiiugs/2000/v23i2/001 [40] Jahn, B. M., 2004. The Central Asian Orogenic Belt and Growth of the Continental Crust in the Phanerozoic. Geological Society, London, Special Publications, 226(1):73-100. https://doi.org/10.1144/gsl.sp.2004.226.01.05 [41] Kemp, A. I. S., Hawkesworth, C. J., 2009. Generation and Secular Evolution of the Continental Crust. The Crust, 3:349. [42] Kovalenko, V. I., Yarmolyuk, V. V., Kovach, V. P., et al., 2004. Isotope Provinces, Mechanisms of Generation and Sources of the Continental Crust in the Central Asian Mobile Belt:Geological and Isotopic Evidence. Journal of Asian Earth Sciences, 23(5):605-627. https://doi.org/10.1016/s1367-9120(03)00130-5 [43] Kröner, A., Kovach, V., Alexeiev, D., et al., 2017. No Excessive Crustal Growth in the Central Asian Orogenic Belt:Further Evidence from Field Relationships and Isotopic Data. Gondwana Research, 50:135-166. https://doi.org/10.1016/j.gr.2017.04.006 [44] Kröner, A., Kovach, V., Belousova, E., et al., 2014. Reassessment of Continental Growth during the Accretionary History of the Central Asian Orogenic Belt. Gondwana Research, 25(1):103-125. https://doi.org/10.1016/j.gr.2012.12.023 [45] Kröner, A., Kovach, V. P., Kozakov, I. K., et al., 2015. Zircon Ages and Nd-Hf Isotopes in UHT Granulites of the Ider Complex:A Cratonic Terrane within the Central Asian Orogenic Belt in NW Mongolia. Gondwana Research, 27(4):1392-1406. https://doi.org/10.1016/j.gr.2014.03.005 [46] Lee, C. T. A., Morton, D. M., Kistler, R. W., et al., 2007. Petrology and Tectonics of Phanerozoic Continent Formation:From Island Arcs to Accretion and Continental Arc Magmatism. Earth and Planetary Science Letters, 263(3/4):370-387. https://doi.org/10.1016/j.epsl.2007.09.025 [47] Li, P. F., Sun, M., Shu, C. T., et al., 2019. Evolution of the Central Asian Orogenic Belt along the Siberian Margin from Neoproterozoic-Early Paleozoic Accretion to Devonian Trench Retreat and a Comparison with Phanerozoic Eastern Australia. Earth-Science Reviews, 198:102951. https://doi.org/10.1016/j.earscirev.2019.102951 [48] Maruyama, S., 1997. Pacific-Type Orogeny Revisited:Miyashiro-Type Orogeny Proposed. The Island Arc, 6(1):91-120. https://doi.org/10.1111/j.1440-1738.1997.tb00042.x [49] McCulloch, M. T., Bennett, V. C., 1994. Progressive Growth of the Earth's Continental Crust and Depleted Mantle:Geochemical Constraints. Geochimica et Cosmochimica Acta, 58(21):4717-4738. https://doi.org/10.1016/0016-7037(94)90203-8 [50] Mo, X. X. 2011. Magma and Magmatic Rocks:"Probes" and Evolution Records in the Deep Earth. Journal of Nature, 33 (5):255-259 (in Chinese). [51] Mole, D. R., Fiorentini, M. L., Cassidy, K. F., et al., 2013. Crustal Evolution, Intra-Cratonic Architecture and the Metallogeny of an Archaean Craton. Geological Society, London, Special Publications, 393(1):23-80. https://doi.org/10.1144/sp393.8 [52] Moyen, J. F., Laurent, O., Chelle-Michou, C., et al., 2017. Collision Vs. Subduction-Related Magmatism:Two Contrasting Ways of Granite Formation and Implications for Crustal Growth. Lithos, 277:154-177. https://doi.org/10.1016/j.lithos.2016.09.018 [53] Murphy, J. B., Nance, R. D., 2002. Sm-Nd Isotopic Systematics as Tectonic Tracers:An Example from West Avalonia in the Canadian Appalachians. Earth-Science Reviews, 59(1/2/3/4):77-100. https://doi.org/10.1016/s0012-8252(02)00070-3 [54] Niu, Y. L., Zhao, Z. D., Zhu, D. C., et al., 2013. Continental Collision Zones are Primary Sites for Net Continental Crust Growth:A Testable Hypothesis. Earth-Science Reviews, 127:96-110. https://doi.org/10.1016/j.earscirev.2013.09.004 [55] Patchett, 2003. Ages and Growth of the Continental Crust from Radiogenic Isotopes. Treatise on Geochemistry, Volume 3: 321-34. [56] Robinson, P. T., Trumbull, R. B., Schmitt, A., et al., 2015. The Origin and Significance of Crustal Minerals in Ophiolitic Chromitites and Peridotites. Gondwana Research, 27(2):486-506. https://doi.org/10.1016/j.gr.2014.06.003 [57] Royden, L. H., 1993. The Tectonic Expression Slab Pull at Continental Convergent Boundaries. Tectonics, 12(2):303-325. https://doi.org/10.1029/92tc02248 [58] Rudnick, R. L., 1995. Making Continental Crust. Nature, 378(6557):571-578. https://doi.org/10.1038/378571a0 [59] Rudnick, R., Gao S., 2003. The Role of Lower Crustal Recycling in Continent Formation. Geochmica Et Cosmochimica Acta. [60] Safonova, I., 2017. Juvenile Versus Recycled Crust in the Central Asian Orogenic Belt:Implications from Ocean Plate Stratigraphy, Blueschist Belts and Intra-Oceanic Arcs. Gondwana Research, 47:6-27. https://doi.org/10.1016/j.gr.2016.09.003 [61] Safonova, I. Y., Santosh, M., 2014. Accretionary Complexes in the Asia-Pacific Region:Tracing Archives of Ocean Plate Stratigraphy and Tracking Mantle Plumes. Gondwana Research, 25(1):126-158. https://doi.org/10.1016/j.gr.2012.10.008 [62] Scholl, D. W., von Huene, R., 2009. Implications of Estimated Magmatic Additions and Recycling Losses at the Subduction Zones of Accretionary (Non-Collisional) and Collisional (Suturing) Orogens. Geological Society, London, Special Publications, 318(1):105-125. https://doi.org/10.1144/sp318.4 [63] Seltmann, R., Konopelko, D., Biske, G., et al., 2011. Hercynian Post-Collisional Magmatism in the Context of Paleozoic Magmatic Evolution of the Tien Shan Orogenic Belt. Journal of Asian Earth Sciences, 42(5):821-838. https://doi.org/10.1016/j.jseaes.2010.08.016 [64] Şengör, A. M. C., Natal'in, B. A., Burtman, V. S., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364(6435):299-307. https://doi.org/10.1038/364299a0 [65] Sisson, V. B., Roeske, S., Pavlis, T. L. (Editors), 2003. Geology of a Transpressional Orogen Developed During Ridge-Trench Interaction along the North Pacific Margin. Geological Society of America Special Paper 371. Geological Society of America, Boulder, Colorado: 375. [66] Song, P., Wang, T., Tong, Y., et al., 2019. Contrasting Deep Crustal Compositions between the Altai and East Junggar Orogens, SW Central Asian Orogenic Belt: Evidence from Zircon Hf Isotopic Mapping. Lithos, 328-329: 297-311. https://doi.org/10.1016/j.lithos.2018.12.039 [67] Spencer, C. J., Roberts, N. M. W., Santosh, M., 2017. Growth, Destruction, and Preservation of Earth's Continental Crust. Earth-Science Reviews, 172:87-106. https://doi.org/10.1016/j.earscirev.2017.07.013 [68] Stern, R. J., Ali, K. A., Liegeois, J. P., et al., 2010. Distribution and Significance of Pre-Neoproterozoic Zircons in Juvenile Neoproterozoic Igneous Rocks of the Arabian-Nubian Shield. American Journal of Science, 310(9):791-811. https://doi.org/10.2475/09.2010.02 [69] Stern, R. J., Scholl, D. W., 2010. Yin and Yang of Continental Crust Creation and Destruction by Plate Tectonic Processes. International Geology Review, 52(1):1-31. https://doi.org/10.1080/00206810903332322 [70] Sun, M., Yuan, C., Xiao, W. J., et al., 2008. Zircon U-Pb and Hf Isotopic Study of Gneissic Rocks from the Chinese Altai:Progressive Accretionary History in the Early to Middle Palaeozoic. Chemical Geology, 247(3/4):352-383. https://doi.org/10.1016/j.chemgeo.2007.10.026 [71] Tang, G. J., Chung, S. L., Hawkesworth, C. J., et al., 2017. Short Episodes of Crust Generation during Protracted Accretionary Processes:Evidence from Central Asian Orogenic Belt, NW China. Earth and Planetary Science Letters, 464:142-154. doi: 10.1016/j.epsl.2017.02.022 [72] Van Staal, C. R., Barr, S. M., Murphy, J. B., 2012. Provenance and Tectonic Evolution of Ganderia:Constraints on the Evolution of the Iapetus and Rheic Oceans. Geology, 40(11):987-990. https://doi.org/10.1130/g33302.1 [73] Wang, T., Li, W. P., Li, J. B., et al., 2008. Increase of Juvenal Mantle-Derived Composition from Syn-Orogenic to Post-Orogenic Granites of the East Part of the Eastern Tianshan(China) and Implications for Continental Vertical Growth:Sr and Nd Isotopic Evidence. Acta Geologica Sinica, 24(4):762-772 (in Chinese). [74] Wang, T., Jahn, B. M., Kovach, V. P., et al., 2009. Nd-Sr Isotopic Mapping of the Chinese Altai and Implications for Continental Growth in the Central Asian Orogenic Belt. Lithos, 110(1/2/3/4):359-372. https://doi.org/10.1016/j.lithos.2009.02.001 [75] Wang, T., Tong, Y., Zhang, L., et al., 2017a. Phanerozoic Granitoids in the Central and Eastern Parts of Central Asia and their Tectonic Significance. Journal of Asian Earth Sciences, 145:368-392. https://doi.org/10.1016/j.jseaes.2017.06.029 [76] Wang, T., Gladkochub, D., Hou Z. Q., et al., 2017b.Orogenic Architecture and Crustal Growth from Accretion to Collision. IGCP Application (IGCP-662 Project). [77] Wang, T., Wang, X. X, Guo, L., et al. 2017. Granite and Tectonics. Acta PetrologicaS inica, 33 (05):1459-1478 (in Chinese). [78] Wang, T., and Hou Z. Q., 2018. Isotopic Mapping and Deep Material Probing(Ⅰ):Revealing the Compositional Evolution of the Lithosphere and Crustal Growth Processes. Earth Science Frontiers, 25(6):1-19 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY201806003.htm [79] Wang, X. X., Wang, T., Castro, A., et al., 2015. Proterozoic Rapakivi Granites from the North Qaidam Orogen, NW China:Implications for Basement Attribution. Gondwana Research, 28(4):1516-1529. https://doi.org/10.1016/j.gr.2014.09.018 [80] Wang, X. X., Wang, T., Ke, C. H., et al., 2015. Nd-Hf Isotopic Mapping of Late Mesozoic Granitoids in the East Qinling Orogen, Central China:Constraint on the Basements of Terranes and Distribution of Mo Mineralization. Journal of Asian Earth Sciences, 103:169-183. https://doi.org/10.1016/j.jseaes.2014.07.002 [81] Wang, Z. Q., Yan, Q. R., Yan, Z., et al. 2009. New Division of Main Tectonic Units in the Qinling Orogenic Belt. Acta Geologica Sinica, 83 (11):1527-1546 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200911001 [82] Wilhem, C., Windley, B. F., Stampfli, G. M., 2012. The Altaids of Central Asia:A Tectonic and Evolutionary Innovative Review. Earth-Science Reviews, 113(3/4):303-341. https://doi.org/10.1016/j.earscirev.2012.04.001 [83] Windley, B. F., Alexeiev, D., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1):31-47. https://doi.org/10.1144/0016-76492006-022 [84] Wu, F. Y., Jahn, B. M., Wilde, S., et al., 2000. Phanerozoic Crustal Growth:U-Pb and Sr-Nd Isotopic Evidence from the Granites in Northeastern China. Tectonophysics, 328(1/2):89-113. https://doi.org/10.1016/s0040-1951(00)00179-7 [85] Wu, Y.B., 2019. Paleozoic Magmatism in the Qinling Orogen and Its Geodynamic Significance. Earth Science, 44(12):4173-4177(in Chinese with English abstract). [86] Xiao, W. J., Windley, B. F., Han, C. M., et al., 2017. Late Paleozoic to Early Triassic Multiple Roll-Back and Oroclinal Bending of the Mongolia Collage in Central Asia. Earth-Science Reviews, 186:94-128. https://doi.org/10.1016/j.earscirev.2017.09.020 [87] Xiao, W. J., Windley, B. F., Sun, S., Li, et al., 2015. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia:Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences, 43(1):477-507. https://doi.org/10.1146/annurev-earth-060614-105254 [88] Xu, X. W., Li, X. H., Jiang, N., et al., 2015. Basement Nature and Origin of the Junggar Terrane:New Zircon U-Pb-Hf Isotope Evidence from Paleozoic Rocks and their Enclaves. Gondwana Research, 28(1):288-310. https://doi.org/10.1016/j.gr.2014.03.011 [89] Yang, Q. D., Wang, T., Guo, L., et al., 2017. Nd Isotopic Variation of Paleozoic-Mesozoic Granitoids from the Da Hinggan Mountains and Adjacent Areas, NE Asia:Implications for the Architecture and Growth of Continental Crust. Lithos, 272-273:164-184. https://doi.org/10.1016/j.lithos.2016.11.015 [90] Yan, Z., Wang, Z. Q, Li, J. L., et al., 2012. Tectonic Properties of the Western Qinling Wedge and Their Accretionary OrogenicProcesses. Acta Petrologica Sinica, 28 (06):1808-1828 (in Chinese). [91] Zhang, J., Wang, T., Tong, Y., et al., 2017. Tracking Deep Ancient Crustal Components by Xenocrystic/inherited Zircons of Palaeozoic Felsic Igneous Rocks from the Altai-East Junggar Terrane and Adjacent Regions, Western Central Asian Orogenic Belt and its Tectonic Significance. International Geology Review, 59(16):2021-2040. https://doi.org/10.1080/00206814.2017.1308841 [92] Zhang, J. J., Wang, T., Zhang, L., et al., 2015. Tracking Deep Crust by Zircon Xenocrysts within Igneous Rocks from the Northern Alxa, China:Constraints on the Southern Boundary of the Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 108:150-169. https://doi.org/10.1016/j.jseaes.2015.04.019 [93] Zheng, Y.F., Chen, Y.X, 2019. Crust-Mantle Interaction in Continental Subduction Zones. Earth Science, 44(12): 3961-3983(in Chinese with English abstract). [94] Zhou, J. B., Wilde, S. A., Zhao, G. C., et al., 2018. Nature and Assembly of Microcontinental Blocks within the Paleo-Asian Ocean. Earth-Science Reviews, 186:76-93. https://doi.org/10.1016/j.earscirev.2017.01.012 [95] Zhou, X. H., Chen, W. J. 2001. Sr-Nd-Pb Isotope Mapping of the Late Mesozoic Volcanic Rocks in the Northern Margin of the North China Craton and Its Tectonic Significance. Geochemistry, 30 (1):10-23 (in Chinese). [96] Zimmermann, S., Hall, R., 2016. Provenance of Triassic and Jurassic Sandstones in the Banda Arc:Petrography, Heavy Minerals and Zircon Geochronology. Gondwana Research, 37:1-19. https://doi.org/10.1016/j.gr.2016.06.001 [97] 韩宝福, 何国琦, 王式洸, 等, 1998.新疆北部碰撞后幔源岩浆活动与陆壳纵向生长.地质论评, 44:396-409. doi: 10.3321/j.issn:0371-5736.1998.04.009 [98] 韩宝福, 季建清, 宋彪, 等, 2006.新疆准噶尔晚古生代陆壳垂向生长(1)——后碰撞深成岩浆活动的时限.岩石学报, 22(5):1077-1086. http://d.wanfangdata.com.cn/periodical/ysxb98200605003 [99] 洪大卫, 王式洸, 谢锡林, 等, 2000.兴蒙造山带正εNd(t)值花岗岩的成因和大陆地壳生长.地学前缘, 7(2):441-456. doi: 10.3321/j.issn:1005-2321.2000.02.012 [100] 洪大卫, 王式光, 谢锡林, 等, 2003.从中亚正εNd值花岗岩看超大陆演化和大陆地壳生长的关系.地质学报, 77(2):203-209. doi: 10.3321/j.issn:0001-5717.2003.02.008 [101] 莫宣学, 2011.岩浆与岩浆岩:地球深部"探针"与演化记录.自然杂志, 33(5):255-259. http://qikan.cqvip.com/Qikan/Article/Detail?id=39656172 [102] 王涛, 李伍平, 李金宝, 等, 2008.东天山东段同造山到后造山花岗岩幔源组分的递增及陆壳垂向生长意义——Sr、Nd同位素证据.岩石学报, 24(04):762-772. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200804015 [103] 王涛, 王晓霞, 郭磊, 等, 2017.花岗岩与大地构造.岩石学报, 33(5):1459-1478. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201705006 [104] 王涛, 侯增谦.2018.同位素填图与深部物质探测(Ⅰ):揭示岩石圈组成演变与地壳生长.地学前缘, 25(6):1-19. http://d.wanfangdata.com.cn/periodical/dxqy201806003 [105] 王宗起, 闫全人, 闫臻, 等, 2009.秦岭造山带主要大地构造单元的新划分.地质学报, 83(11):1527-1546. doi: 10.3321/j.issn:0001-5717.2009.11.001 [106] 吴元保, 2019.秦岭造山带古生代岩浆作用及地球动力学意义.地球科学, 44(12):4173-4177. doi: 10.3799/dqkx.2019.266 [107] 闫臻, 王宗起, 李继亮, 等, 2012.西秦岭楔的构造属性及其增生造山过程.岩石学报, 28(6):1808-1828. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201206008 [108] 郑永飞, 陈伊翔, 2019.大陆俯冲带壳幔相互作用.地球科学, 44(12):3961-3983. doi: 10.3799/dqkx.2019.982 [109] 周新华, 陈文寄. 2001.华北克拉通北缘晚中生代火山岩Sr-Nd-Pb同位素填图及其构造意义.地球化学, 30(1):10-23. doi: 10.3321/j.issn:0379-1726.2001.01.003