Zircon U-Pb Geochronology, Geochemistry and Petrogenesis of Miocene Syenite in Chazi Area, Tibet
-
摘要: 查孜正长岩体是拉萨地块中段新发现的中新世钾质-超钾质侵入岩,岩性主要为中粗粒石英角闪正长岩和斑状石英正长岩,有暗色包体发育.对两种正长岩进行了岩石学、锆石U-Pb年代学和地球化学研究.结果显示,两种岩石的锆石U-Pb年龄分别为10.37±0.24 Ma、11.06±0.39 Ma,代表它们形成于中新世,是拉萨地块后碰撞岩浆作用的产物.查孜正长岩具有相对高钾(K2O=6.75%~7.39%)、低镁(MgO=1.44%~2.97%)的特征,K2O/Na2O>1,属钾质岩;具有与超钾质岩石相似的微量元素特征,强烈富集Rb、Th、U、K等大离子亲石元素(LILE)和轻稀土元素(LREE),相对亏损Nb、Ta、Zr、Hf、Ti、P等高场强元素(HFSE)和重稀土元素(HREE),但Cr(22.7×10-6~64.6×10-6)、Ni(18.9×10-6~46.6×10-6)含量明显偏低.其中,斑状石英正长岩的SiO2含量相对较高,但MgO、K2O、Cr、Ni、REE和Y等元素含量比石英角闪正长岩的低.综合分析认为,查孜正长岩主要形成于岩浆混合作用,是富集岩石圈地幔部分熔融形成的超钾质岩浆与地壳物质部分熔融形成的酸性岩浆混合的结果,两种岩石的地球化学差异主要是岩浆混合的程度和比例不同导致的;它的形成可能与岩石圈地幔的减薄作用有关.Abstract: The Chazi syenite mass is a newly discovered Miocene potassic-ultrapotassic intrusive rock in the middle Lhasa block, and its lithology is mainly composed of medium-coarse grained quartz hornblende syenite and porphyraceous quartz syenite. Mafic magmatic Enclaves were found in the syenite body. Petrography, zircon U-Pb dating and geochemical analysis were done, in order to study the petrogenesis of the Chazi syenite. Zircon U-Pb ages of 10.37±0.24 Ma and 11.06±0.39 Ma were obtained for these two rock types respectively, which represent that they were formed in the Miocene Epoch and product of post-collision magmatism in the Lhasa block. The Chazi syenite rocks have relatively high K2O (6.75%-7.39%) and low MgO (1.44%-2.97%), with K2O/Na2O > 1, so they are potassic rocks. They have similar characteristics of trace elements to the ultrapotassic rocks:strongly enriched in large ion lithophile elements (LILE) such as Rb, Th, U and K, and light rare earth elements (LREE), relatively depleted in high field strength elements (HFSE) such as Nb, Ta, Zr, Hf, Ti and P, and heavy rare earth elements (HREE), but the contents of Cr (22.7×10-6-64.6×10-6) and Ni (18.9×10-6-46.6×10-6) of the syenite are obviously lower. Compared with porphyraceous quartz syenite rocks, the quartz hornblende syenite rocks have relatively higher SiO2, and lower elements sucn as TiO2, FeOT, MgO, K2O, Cr, Ni, REE and Y. By comprehensive analyses, it is proposed that the Chazi syenite was mainly formed by magma mixing, and produced by the mixing between the ultrapotassic magma that originated from the lithosphere mantle partial melting, and acid magma that originated from the continental crust partial melting. The chemical differcence of two rock types is mainly due to the different degrees of magma mixing and ratio of mixed magma.The Chazi syenite possibly resulted from convective thinning or delamination of over thickened mantle lithosphere.
-
Key words:
- middle Lhasa Block /
- Chazi area /
- Miocene /
- syenite /
- zircon U-Pb age /
- geochemistry /
- magma mixing
-
图 1 拉萨地块构造简图(a)和查孜地区地质简图(b)
图a据Zhu et al. (2011)修改. BNSZ.班公湖-怒江缝合带;SNMZ.狮泉河-纳木错蛇绿混杂岩带;LMF.洛巴堆-米拉山断裂带;YZSZ.雅鲁藏布江缝合带;NL.北拉萨地块;ML.中拉萨地块;SL.南拉萨地块
Fig. 1. Tectonic sketch of the Lhasa Block (a) and simplified geological map of the Chazi region (b)
图 4 样品的TAS (a)、A/CNK-A/NK (b)、SiO2-K2O (c)和Na2O-K2O (d)图解
图中文献数据来自Ding et al. (2003)、Gao et al.(2007, 2009)、Guo et al. (2013)、Liu et al. (2017)、Tian et al. (2017)和Zeng et al. (2017).拉萨地块超钾质岩石范围据刘栋等(2011)和Liu et al. (2017)修改
Fig. 4. Diagrams of TAS (a), A/CNK-A/NK (b), SiO2-K2O (c) and Na2O-K2O (d) for the samples
图 5 样品稀土元素球粒陨石标准化配分曲线图(a)和微量元素原始地幔标准化蛛网图(b)
球粒陨石标准化值据Boynton(1984); 原始地幔标准化值据Sun and McDonough (1989).拉萨地块超钾质火山岩和埃达克质岩石的微量元素配分范围参考刘栋等(2011)
Fig. 5. Chondrite-normalized REE pattern (a) and primitive mantle-normalized trace element spider diagram (b) for the samples
图 6 SiO2-Sr/Y (a)、SiO2-Y/Yb (b)、SiO2-Dy/Yb (c)和La-La/Yb (d)图解
HPFC.高压分异结晶; LPFC.低压分异结晶.文献数据同图 4
Fig. 6. Diagrams of SiO2-Sr/Y (a), SiO2-Y/Yb (b), SiO2-Dy/Yb (c) and La-La/Yb (d)
图 7 MgO-FeOT (a)、Ni-MgO (b)、MgO-CaO/Na2O (c)和Y-Sr/Y (d)图解
图d中的岩浆混合过程模拟曲线据Liu et al. (2017); 文献数据同图 4
Fig. 7. Diagrams of MgO-FeOT (a), Ni-MgO (b), MgO-CaO/Na2O (c) and Y-Sr/Y (d)
-
[1] Ahmed, H. A., Ma, C. Q., Wang, L. X., et al., 2018. Petrogenesis and Tectonic Implications of Peralkaline A-Type Granites and Syenites from the Suizhou-Zaoyang Region, Central China. Journal of Earth Science, 29(5):1181-1202. https://doi.org/10.1007/s12583-018-0877-2 [2] Boynton, W. V., 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson, P., ed., Rare Earth Element Geochemistry. Elsevier, Amsterdam. https://doi.org/10.1016/b978-0-444-42148-7.50008-3 [3] Chen, J.L., Xu, J.F., Kang, Z.Q., et al., 2007. Geochemistry and Origin of Miocene Volcanic Rocks in Cazé Area, South-Western Qinghai-Xizang Plateau. Geochimica, 36(5):437-447 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200705002 [4] Chen, J. L., Zhao, W. X., Xu, J. F., et al., 2012. Geochemistry of Miocene Trachytes in Bugasi, Lhasa Block, Tibetan Plateau:Mixing Products between Mantle- and Crust-Derived Melts? Gondwana Research, 21(1):112-122. https://doi.org/10.1016/j.gr.2011.06.008 [5] Cheng, Z. H., Guo, Z. F, 2017. Post-Collisional Ultrapotassic Rocks and Mantle Xenoliths in the Sailipu Volcanic Field of Lhasa Terrane, South Tibet:Petrological and Geochemical Constraints on Mantle Source and Geodynamic Setting. Gondwana Research, 46:17-42. https://doi.org/10.1016/j.gr.2017.02.008 [6] Ding, L., Kapp, P., Zhong, D. L., et al., 2003. Cenozoic Volcanism in Tibet:Evidence for a Transition from Oceanic to Continental Subduction. Journal of Petrology, 44(10):1833-1865. https://doi.org/10.1093/petrology/egg061 [7] Ding, L., Yue, Y.H., Cai, F.L., et al., 2006. 40Ar/39Ar Geochronology, Geochemical and Sr-Nd-O Isotopic Characteristics of the High-Mg Ultrapotassic Rocks in Lhasa Block of Tibet:Implications in the Onset Time and Depth of NS-Striking Rift System. Acta Geologica Sinica, 80(9):1252-1261(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dzxe200609003.htm [8] Dong, G.C., Mo, X.X., Zhao, Z.D., et al., 2006. Magma Mixing in Middle Part of Gangdise Magma Belt:Evidences from Granitoid Complex. Acta Petrologica Sinica, 22(4):835-844 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200604007.htm [9] Gao, Y. F., Hou, Z. Q., Kamber, B. S., et al., 2007. Lamproitic Rocks from a Continental Collision Zone:Evidence for Recycling of Subducted Tethyan Oceanic Sediments in the Mantle beneath Southern Tibet. Journal of Petrology, 48(4):729-752. https://doi.org/10.1093/petrology/egl080 [10] Gao, Y. F., Wei, R. H., Ma, P. X., et al., 2009. Post-Collisional Ultrapotassic Volcanism in the Tangra Yumco-Xuruco Graben, South Tibet:Constraints from Geochemistry and Sr-Nd-Pb Isotope. Lithos, 110(1-4):129-139. https://doi.org/10.1016/j.lithos.2008.12.005 [11] Guo, Z. F., Wilson, M., Zhang, M. L., et al., 2013. Post-Collisional, K-Rich Mafic Magmatism in South Tibet:Constraints on Indian Slab-to-Wedge Transport Processes and Plateau Uplift. Contributions to Mineralogy and Petrology, 165(6):1311-1340. https://doi.org/10.1007/s00410-013-0860-y [12] Guo, Z. F., Wilson, M., Zhang, M. L., et al., 2015. Post-Collisional Ultrapotassic Mafic Magmatism in South Tibet:Products of Partial Melting of Pyroxenite in the Mantle Wedge Induced by Roll-Back and Delamination of the Subducted Indian Continental Lithosphere Slab. Journal of Petrology, 56(7):1365-1406. https://doi.org/10.1093/petrology/egv040 [13] Huang, F., Chen, J. L., Xu, J. F., et al., 2015. Os-Nd-Sr Isotopes in Miocene Ultrapotassic Rocks of Southern Tibet:Partial Melting of a Pyroxenite-bearing Lithospheric Mantle? Geochimica et Cosmochimica Acta, 163:279-298. https://doi.org/10.1016/j.gca.2015.04.053 [14] Li, Y., Zhang, S.Z., Li, F.Q., et al., 2018. Zircon U-Pb Ages and Implications of the Dianzhong Formation in Chazi Area, Middle Lhasa Block, Tibet. Earth Science, 43(8):2755-2766 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201808016 [15] Liu, D., Zhao, Z. D., DePaolo, D. J., et al., 2017. Potassic Volcanic Rocks and Adakitic Intrusions in Southern Tibet:Insights into Mantle-Crust Interaction and Mass Transfer from Indian Plate. Lithos, 268-271:48-64. https://doi.org/10.1016/j.lithos.2016.10.034 [16] Liu, D., Zhao, Z.D., Zhu, D.C., et al., 2011. The Petrogenesis of Postcollisional Potassic-Ultrapotassic Rocks in Xungba Basin, Western Lhasa Terrane:Constraints from Zircon U-Pb Geochronology and Geochemistry. Acta Petrologica Sinica, 27(7):2045-2059 (in Chinese with English abstract). https://www.researchgate.net/publication/274713358_The_petrogenesis_of_postcollisional_potassic-ultrapotassic_rocks_in_Xungba_basin_western_Lhasa_terrane_Constraints_from_zircon_U-Pb_geochronology_and_geochemistry [17] Liu, D., Zhao, Z.D., Zhu, D.C., et al., 2014. Postcollisional Potassic and Ultrapotassic Rocks in Southern Tibet:Mantle and Crustal Origins in Response to India-Asia Collision and Convergence. Geochimica et Cosmochimica Acta, 143:207-231. https://doi.org/10.1016/j.gca.2014.03.031 [18] Lu, R., Liang, T., Bai, F.J., et al., 2013. LA-ICP-MS U-Pb Zircon Age and Hf Isotope Composition of Mogou Syenite, Western Henan Province. Geological Review, 59(2):355-368 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201302017 [19] MacPherson, C. G., Dreher, S. T., Thirlwall, M. F., 2006. Adakites without Slab Melting:High Pressure Differentiation of Island Arc Magma, Mindanao, the Philippines. Earth and Planetary Science Letters, 243(3-4):581-593. https://doi.org/10.1016/j.epsl.2005.12.034 [20] Montel, J. M., Vielzeuf, D., 1997. Partial Melting of Metagreywackes, Part Ⅱ. Compositions of Minerals and Melts. Contributions to Mineralogy and Petrology, 128(2-3):176-196. https://doi.org/10.1007/s004100050302 [21] Niu, X. L., Yang, J. S., Liu, F., et al., 2016. Origin of Baotoudong Syenites in North China Craton:Petrological, Mineralogical and Geochemical Evidence. Science China Earth Sciences, 59(1):95-110. https://doi.org/10.1007/s11430-015-5216-1 [22] Peccerillo, A., 1992. Potassic and Ultrapotassic Rocks:Compositional Characteristics, Petrogenesis, and Geologic Significance. Episodes, 15(4):243-251. https://doi.org/10.18814/epiiugs/1992/v15i4/002 [23] Rapp, R. P., Watson, E. B, 1995. Dehydration Melting of Metabasalt at 8-32 kbar:Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4):891-931. https://doi.org/10.1093/petrology/36.4.891 [24] Sun, C.G., Zhao, Z.D., Mo, X.X., et al., 2007. Geochemistry and Origin of the Miocene Sailipu Ultrapotassic Rocks in Western Lhasa Block, Tibetan Plateau. Acta Petrologica Sinica, 23(11):2715-2726 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200711004 [25] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [26] Tian, S. H., Yang, Z. S., Hou, Z. Q., et al., 2017. Subduction of the Indian Lower Crust beneath Southern Tibet Revealed by the Post-Collisional Potassic and Ultrapotassic Rocks in SW Tibet. Gondwana Research, 41:29-50. https://doi.org/10.1016/j.gr.2015.09.005 [27] Turner, S., Arnaud, N., Liu, J., et al., 1996. Post-Collision, Shoshonitic Volcanism on the Tibetan Plateau:Implications for Convective Thinning of the Lithosphere and the Source of Ocean Island Basalts. Journal of Petrology, 37(1):45-71. https://doi.org/10.1093/petrology/37.1.45 [28] Wang, B.D., Xu, J.F., Zhang, X.G., et al., 2008. Petrogenesis of Miocene Volcanic Rocks in the Sailipu Area, Western Tibetan Plateau:Geochemical and Sr-Nd Isotopic Constraints. Acta Petrologica Sinica, 24(2):265-278 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200802009.htm [29] Wang, Z.Z., Chen, X.H., Li, B., et al., 2019. The Discovery of the Paleoproterozoic Syenite in Helishan, Gansu Province, and Its Implications for the Tectonic Attribution of the Alxa Block. Geology in China, 46(5):1094-1104 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201905011 [30] Williams, H. M., Turner, S. P., Pearce, J. A., et al., 2004. Nature of the Source Regions for Post-Collisional, Potassic Magmatism in Southern and Northern Tibet from Geochemical Variations and Inverse Trace Element Modelling. Journal of Petrology, 45(3):555-607. https://doi.org/10.1093/petrology/egg094 [31] Wu, Y. B., Zheng, Y. F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(15):1554-1569. https://doi.org/10.1007/bf03184122 [32] Zhang, L. H., Guo, Z. F., Zhang, M. L., et al., 2017. Post-Collisional Potassic Magmatism in the Eastern Lhasa Terrane, South Tibet:Products of Partial Melting of Mélanges in a Continental Subduction Channel. Gondwana Research, 41:9-28. https://doi.org/10.1016/j.gr.2015.11.007 [33] Zhang, Z.Q., Wang, K.X., Wang, G., et al., 2018. Petrogenesis and Tectonic Significances of the Paleozoic Jiling Syenite in the Mountain Longshou Area, Gansu Province. Geological Review, 64(4):1017-1029 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201804018 [34] Zhao, D.H., Ping, X.Q., Zheng, J.P., et al., 2019. Geochemistry and Its Geological Significance of the Quartz Syenites in the Early Indosinian from the Tietang Gorge, West Qinling. Earth Science, 44(12):4203-4221 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201912032 [35] Zhao, W., Mechie, J., Brown, L. D., et al., 2001. Crustal Structure of Central Tibet as Derived from Project INDEPTH Wide-Angle Seismic Data. Geophysical Journal International, 145(2):486-498. https://doi.org/10.1046/j.0956-540x.2001.01402.x [36] Zhao, Z.D., Mo, X.X., Nomade, S., et al., 2006. Post-Collisional Ultrapotassic Rocks in Lhasa Block, Tibetan Plateau:Spatial and Temporal Distribution and Its Implications. Acta Petrologica Sinica, 22(4):787-794 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200604003.htm [37] Zeng, Y.C., Chen, J.L., Xu, J.F., et al., 2017. Origin of Miocene Cu-bearing Porphyries in the Zhunuo Region of the Southern Lhasa Subterrane:Constraints from Geochronology and Geochemistry. Gondwana Research, 41:51-64. https://doi.org/10.1016/j.gr.2015.06.011 [38] Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2011. The Lhasa Terrane:Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1-2):241-255. https://doi.org/10.1016/j.epsl.2010.11.005 [39] Zhu, M.T., Wu, G., Xie, H.J., et al., 2011. Geochronology and Geochemistry of the Kekesai Intrusion in Western Tianshan, NW China and Its Geological Implications. Acta Petrologica Sinica, 27(10):3041-3054 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201110020 [40] Zhu, R. Z., Lai, S. C., Qin, J. F., et al., 2018. Early-Cretaceous Syenites and Granites in the Northeastern Tengchong Block, SW China:Petrogenesis and Tectonic Implications. Acta Geologica Sinica (English Edition), 92(4):1349-1365. https://doi.org/10.1111/1755-6724.13631 [41] 陈建林, 许继峰, 康志强, 等, 2007.青藏高原西南部查孜地区中新世钾质火山岩地球化学及其成因.地球化学, 36(5):437-447. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200705002 [42] 丁林, 岳雅慧, 蔡福龙, 等, 2006.西藏拉萨地块高镁超钾质火山岩及对南北向裂谷形成时间和切割深度的制约.地质学报, 80(9):1252-1261. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200609003 [43] 董国臣, 莫宣学, 赵志丹, 等, 2006.冈底斯岩浆带中段岩浆混合作用:来自花岗杂岩的证据.岩石学报, 22(4):835-844. http://d.wanfangdata.com.cn/Periodical_ysxb98200604007.aspx [44] 李勇, 张士贞, 李奋其, 等, 2018.拉萨地块中段查孜地区典中组火山岩锆石U-Pb年龄及地质意义.地球科学, 43(8):2755-2766. doi: 10.3799/dqkx.2018.593 [45] 刘栋, 赵志丹, 朱弟成, 等, 2011.青藏高原拉萨地块西部雄巴盆地后碰撞钾质-超钾质火山岩年代学与地球化学.岩石学报, 27(7):2045-2059. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201107013 [46] 卢仁, 梁涛, 白凤军, 等, 2013.豫西磨沟正长岩LA-ICP-MS锆石U-Pb年代学及Hf同位素.地质论评, 59(2):355-368. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201302017 [47] 孙晨光, 赵志丹, 莫宣学, 等, 2007.青藏高原拉萨地块西部中新世赛利普超钾质岩石的地球化学与岩石成因.岩石学报, 23(11):2715-2726. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200711004 [48] 王保弟, 许继峰, 张兴国, 等, 2008.青藏高原西部赛利普中新世火山岩源区:地球化学及Sr-Nd同位素制约.岩石学报, 24(2):265-278. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200802009.htm [49] 王增振, 陈宣华, 李冰, 等, 2019.甘肃合黎山古元古代正长岩的发现及其对阿拉善地块大地构造属性的启示.中国地质, 46(5):1094-1104. http://www.cnki.com.cn/Article/CJFDTotal-DIZI201905011.htm [50] 张志强, 王凯兴, 王刚, 等, 2018.甘肃龙首山芨岭地区古生代正长岩成因及构造意义.地质论评, 64(4):1017-1029. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201804018 [51] 赵东辉, 平先权, 郑建平, 等, 2019.西秦岭印支早期铁堂峡石英正长斑岩的地球化学特征及其地质意义.地球科学, 44(12):4203-4221. doi: 10.3799/dqkx.2019.225 [52] 赵志丹, 莫宣学, Nomade, S., 等, 2006.青藏高原拉萨地块碰撞后超钾质岩石的时空分布及其意义.岩石学报, 22(4):787-794. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200604003 [53] 朱明田, 武广, 解洪晶, 等, 2011.新疆西天山科克赛岩体年代学、地球化学及地质意义.岩石学报, 27(10):3041-3054. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201110020 -
dqkx-45-8-2882-Table1.docx