Clay Mineralogical Record and Its Paleoenvironmental Significance during Marine Isotope Stage 3 on the Sunda Shelf, Southern South China Sea
-
摘要: 南海南部低海平面时期巽他陆架陆源碎屑的物源区变化,对于研究海陆变迁过程古环境演化具有重要意义.选择巽他陆架外缘对海平面变化影响非常敏感的氧同位素3期岩心记录(18282-2孔),开展高分辨率陆源碎屑粘土矿物分析,以期获得海平面变化影响下的物源区演化历史.研究结果显示,在氧同位素3期44.5~36.0 cal ka BP期间,巽他陆架外缘含有较高的蒙脱石(29%~44%)与中等含量的高岭石(21%~27%)、伊利石(19%~27%)和绿泥石(14%~20%).物源区分析表明,这个时期的蒙脱石主要由苏门答腊岛和泰国中部河流提供,高岭石主要由马来半岛、苏门答腊岛和婆罗洲西部河流提供,而伊利石和绿泥石主要由湄公河提供.在此期间,海平面长时间位于-80 m以下,巽他出露陆架上发育的大型古河流(北巽他河、古昭披耶河及古湄公河)可将来自周边物源区的陆源碎屑物质直接输送到陆架外缘.研究岩心的蒙脱石/(伊利石+绿泥石)比值与海平面变化具有良好的对应关系:当海平面下降时,蒙脱石/(伊利石+绿泥石)比值增大;反之亦然.这一现象表明海平面变化是影响巽他陆架外缘氧同位素3期沉积环境演化的最重要因素,即海平面升降引起的海陆格局变化,特别是古岸线的迁移可显著影响古河流与研究站位间的搬运距离,从而导致周边物源区对陆架外缘的陆源碎屑物质相对贡献量发生变化.Abstract: Variation in source of terrigenous sediments on the Sunda Shelf in the southern South China Sea during the sea-level lowstand is of great significance to reconstruct the evolution of the land-sea configuration. Varying provenances response to sea-level fluctuations within Marine Isotope Stage 3 (MIS 3) was investigated by high-resolution clay mineralogy of Core 18282-2 recovered from the outer Sunda Shelf. The results indicate that clay mineral compositions on the outer shelf show relatively high contents of smectite (29%-44%), moderate contents of kaolinite (21%-27%), illite (19%-27%), and chlorite (14%-20%). The provenance analysis based on clay mineralogy suggests a mixture of individual clay mineral from various sources surrounding the southern South China Sea. Smectite originated mainly from Sumatra and middle Thailand. Kaolinite derived mainly from the Malay Peninsula, Sumatra, and western Borneo. Illite and chlorite were mainly contributed by the Mekong River. During 44.5-36.0 cal ka BP, the sea-level was below -80 m for most of the time, the vast paleo-river systems developed on the emerged shelf, namely the North Sunda River, the paleo-Chao Phraya River, and the paleo-Mekong River. Terrigenous sediments from the surrounding provenances were transported through these major ancient drainage systems directly to the outer shelf at that time. Variations in the smectite/(illite + chlorite) ratios correspond well to the sea-level fluctuations with relatively higher ratios developed during the sea-level lowering periods, implying that the sedimentary environmental evolution during the MIS 3 on the outer Sunda Shelf was dominantly controlled by the sea-level change. Modification of the land-sea configuration resulted from sea-level fluctuations, especially the migration of paleo-coastlines, could significantly affect the transport distance between the paleo-river mouths and the study area, resulting in variations in relative contributions of the surrounding provenances to the outer Sunda Shelf.
-
Key words:
- clay minerals /
- Marine Isotope Stage 3 /
- sea-level change /
- terrigenous sediment /
- sedimentology /
- Sunda Shelf /
- South China Sea
-
图 1 南海南部巽他陆架地形及18282-2孔的位置
白色实线(200 m等深线)为陆架范围,不同的颜色显示巽他陆架水深地形变化;蓝色实线为现代陆地上的河流,蓝色虚线为冰期低海平面巽他陆架出露时发育的古河流系统(Molengraaff,1921;Molengraaff and Weber, 1921;Voris,2000);图中黄色实心三角形显示文中讨论涉及的巽他陆架周边地区主要流域表层沉积物样品的位置(Liu et al., 2007a, 2007b, 2012, 2016)
Fig. 1. Topography of the Sunda Shelf in the southern South China Sea showing the location of Core 18282-2 on the outer shlef
图 5 巽他陆架18282-2孔MIS 3期粘土矿物组合与周边潜在物源区河流表层沉积物对比的三角端元图
湄公河粘土矿物数据源自Liu et al.(2007a),马来半岛、苏门答腊岛、婆罗洲西部河流的粘土矿物数据源自Liu et al.(2012),婆罗洲北部河流的粘土矿物数据源自Liu et al.(2007b, 2012),泰国中部河流的粘土矿物数据源自Liu et al.(2016)
Fig. 5. Ternary diagram of clay mineral assemblages of MIS 3 sediments of Core 18282-2 and its comparison with surface sediments from the surrounding potential provenances
图 6 巽他陆架18282-2孔MIS 3期伊利石化学指数和结晶度与周边潜在物源区河流表层沉积物对比
湄公河粘土矿物数据源自Liu et al.(2007a),马来半岛、苏门答腊岛、婆罗洲西部河流的粘土矿物数据源自Liu et al.(2012),婆罗洲北部河流的粘土矿物数据源自Liu et al.(2007b, 2012),泰国中部河流的粘土矿物数据源自Liu et al.(2016)
Fig. 6. Correlations of illite chemistry index with illite crystallinity of MIS 3 sediments of Core 18282-2 and surface sediments from the surrounding potential provenances
图 7 巽他陆架18282-2孔MIS 3期粘土矿物的物源分析
饼状图代表18282-2孔及巽他陆架周边地区主要流域表层沉积物样品的平均粘土矿物组合(Liu et al., 2007a, 2007b, 2012, 2016)
Fig. 7. Provenance analysis of Core 18282-2 on the Sunda Shelf
图 8 巽他陆架18282-2孔MIS 3期蒙脱石/(伊利石+绿泥石)比值时间序列变化及其与海平面变化对比
18282-2孔蒙脱石/(伊利石+绿泥石)比值变化趋势(红色)由原始数据(灰色)经过3点移动平均后得到;海平面数据源自Grant et al.(2014)
Fig. 8. Temporal variations of smectite/(illite+chlorite) ratio of Core 18282-2 and its comparison with relative sea-level
图 9 巽他陆架18282-2孔在MIS 3期不同海平面时期的陆源碎屑输入示意图
a. 相对高海平面时期(-70 m);b. 相对低海平面时期(-90 m);陆架的绿色部分表示在该时期位于海平面之上,已经出露为陆地;黑色实线代表现代陆地边界;古岸线分别依据现代70 m和90 m等深线绘制(Sathiamurthy and Voris, 2006);蓝色实线为现代陆地上的河流,蓝色虚线为该时期在出露的陆架上发育的古河流系统(Molengraaff,1921;Molengraaff and Weber, 1921;Voris,2000);橙色箭头的大小代表不同物源区对研究站位陆源碎屑物质输入量的多少
Fig. 9. Terrigenous sediment input to Core 18282-2 on the Sunda Shelf at different sea level periods during MIS 3
表 1 18282-2孔有孔虫AMS 14C测年数据
Table 1. AMS 14C and calendar ages of Core 18282-2
样品深度(cm) 测年材料 14C年龄(a BP) 标准偏差 校正年龄(cal a BP) 2σ区间 30 G. ruber 4 330 +40/-40 4 430 4 400~4 500 50 A. pulchella 32 640 +660/-610 37 440 36 770~38 260 139~141 A. pulchella 31 400 +560/-520 36 080 35 500~36 690 260 A. pulchella 31 680 +580/-540 36 390 35 790~37 020 377~379 A. pulchella 34 020 +780/-710 38 950 38 170~39 790 注:据 Steinke et al.(2003) . -
[1] Biscaye, P.E., 1965. Mineralogy and Sedimentation of Recent Deep-Sea Clay in the Atlantic Ocean and Adjacent Seas and Oceans. Geological Society of America Bulletin, 76(7): 803-832. https://doi.org/10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2 [2] Boulay, S., Colin, C., Trentesaux, A., et al., 2005. Sediment Sources and East Asian Monsoon Intensity over the Last 450 kyr: Mineralogical and Geochemical Investigations on South China Sea Sediment. Palaeogeography, Palaeoclimatology, Palaeoecology, 228(3-4): 260-277. https://doi.org/10.1016/j.palaeo.2005.06.005 [3] Chamley, H., 1989. Clay Sedimentology. Springer, Berlin. [4] Dansgaard, W., Johnsen, S.J., Clausen, H.B., et al., 1993. Evidence for General Instability of the Past Climate from a 250-kyr Ice-Core Record. Nature, 364: 218-220. https://doi.org/10.1038/364218a0 [5] Dash, B.P., Shepstone, C.M., Dayal, S., et al., 1972. Seismic Investigation on the Northern Part of the Sunda Shelf South and East of Great Natuna Island. United Nations Economic Commission for Asia and the Far East, Committee for Coordination of Joint Prospecting for Mineral Sources in Asian Offshore Areas, Technical Bulletin, 6 (9): 179-196. [6] Esquevin, J., 1969. Influence de la Composition Chimique des Illites sur Leur Cristallinité. Bulletin du Centre de Recherches de Pau-SNPA, 3(1): 147-153. [7] Gibbs, U.R.J., 1977. Clay Mineral Segregation in the Marine Environment. Journal of Sedimentary Research, 47(1): 237-243. https://doi.org/10.1306/212F713A-2B24-11D7-8648000102C1865D [8] Gingele, F.X., Deckker, P.D., Hillenbrand, C.D., 2001. Clay Mineral Distribution in Surface Sediments between Indonesia and NW Australia-Source and Transport by Ocean Currents. Marine Geology, 179(3-4): 135-146. https://doi.org/10.1016/S0025-3227(01)00194-3 [9] Grant, K. M., Rohling, E. J., Bronk Ramsey, C., et al., 2014. Sea-Level Variability over Five Glacial Cycles. Nature Communications, 5: 5076. https://doi.org/10.1038/ncomms6076 [10] Hanebuth, T.J.J., Stattegger, K., 2004. Depositional Sequences on a Late Pleistocene-Holocene Tropical Siliciclastic Shelf (Sunda Shelf, Southeast Asia). Journal of Asian Earth Sciences, 23: 113-126. https://doi.org/10.1016/S1367-9120(03)00100-7 [11] Hanebuth, T.J.J., Stattegger, K., Grootes, P.M., 2000. Rapid Flooding of the Sunda Shelf: A Late-Glacial Sea-Level Record. Science, 288(5468): 1033-1035. https://doi.org/10.1126/science.288.5468.1033 [12] Hanebuth, T.J.J., Stattegger, K., Saito, Y., 2002. The Stratigraphic Architecture of the Central Sunda Shelf (SE Asia) Recorded by Shallow-Seismic Surveying. Geo-Marine Letters, 22(2): 86-94. https://doi.org/10.1007/s00367-002-0102-1 [13] Hanebuth, T.J.J., Stattegger, K., Schimanski, A., et al., 2003. Late Pleistocene Forced Regressive Deposits on the Sunda Shelf (SE Asia). Marine Geology, 199(1-2): 139-157. https://doi.org/10.1016/S0025-3227(03)00129-4 [14] Hanebuth, T.J.J., Stattegger, K., 2003. The Stratigraphic Evolution of the Sunda Shelf during the Past Fifty Thousand Years. In: Sidi, F.H., Nummedal, D., Imbert, P., et al., eds., Tropical Deltas of Southeast Asia-Sedimentology, Stratigraphy, and Petroleum Geology. Society Economical Palaeontologists Mineralogists Special Publication, 76: 189-200. https://doi.org/10.2110/pec.03.76.0189 [15] Hanebuth, T.J.J., Voris, H.K., Yokoyama, Y., et al., 2011. Formation and Fate of Sedimentary Depocentres on Southeast Asia's Sunda Shelf over the Past Sea-Level Cycle and Biogeographic Implications. Earth-Science Reviews, 104(1-3): 92-110. https://doi.org/10.1016/j.earscirev.2010.09.006 [16] Holtzapffel, T., 1985. Les Minéraux Argileux: Préparation, Analyse Diffractométrique et Détermination. Société Géologique du Nord Publication, 12. [17] Huang, J., Jiang, F.Q., Wan, S.M., et al., 2016. Terrigenous Supplies Variability over the Past 22, 000 yr in the Southern South China Sea Slope: Relation to Sea Level and Monsoon Rainfall Changes. Journal of Asian Earth Sciences, 117: 317-327. https://doi.org/10.1016/j.jseaes.2015.12.019 [18] Jiwarungrueangkul, T., Liu, Z.F., Zhao, Y. L., 2019. Terrigenous Sediment Input Responding to Sea Level Change and East Asian Monsoon Evolution since the Last Deglaciation in the Southern South China Sea. Global and Planetary Change, 174: 127-137. https://doi.org/10.1016/j.gloplacha.2019.01.011 [19] Johnson, A.G., Kelley, J.T., 1984. Temporal, Spatial, and Textural Variation in the Mineralogy of Mississippi River Suspended Sediment. Journal of Sedimentary Petrology, 54(1): 67-72. https://doi.org/10.1306/212F83A5-2B24-11D7-8648000102C1865D [20] Liu, J.G., Steinke, S., Vogt, C., et al., 2017. Spatial Patterns of Sediment Deposition in the Northern South China Sea over the Last 50, 000 Years. Palaeogeography, Palaeoclimatology, Palaeoecology, 465: 212-224. https://doi.org/10.1016/j.palaeo.2016.10.033 [21] Liu, Z. F., Li, X. J., Colin, C., et al., 2010. A High-Resolution Clay Mineralogical Record in the Northern South China Sea since the Last Glacial Maximum, and Its Time Series Provenance Analysis. Chinese Science Bulletin, 55(35): 4058-4068. https://doi.org/10.1007/s11434-010-4149-5 [22] Liu, Z.F., Colin, C., Huang, W., et al., 2007a. Climatic and Tectonic Controls on Weathering in South China and Indochina Peninsula: Clay Mineralogical and Geochemical Investigations from the Pearl, Red, and Mekong Drainage Basins. Geochemistry, Geophysics, Geosystems, 8(5): Q05005. https://doi.org/10.1029/2006GC001490 [23] Liu, Z. F., Zhao, Y. L., Li, J. R., et al., 2007b. Late Quaternary Clay Minerals off Middle Vietnam in the Western South China Sea: Implications for Source Analysis and East Asian Monsoon Evolution. Science in China Series D: Earth Sciences, 50(11): 1674-1684. https://doi.org/10.1007/s11430-007-0115-8 [24] Liu, Z.F., Colin, C., Trentesaux, A., et al., 2004. Erosional History of the Eastern Tibetan Plateau over the Past 190 kyr: Clay Mineralogical and Geochemical Investigations from the Southwestern South China Sea. Marine Geology, 209(1-4): 1-18. https://doi.org/10.1016/j.margeo.2004.06.004 [25] Liu, Z.F., Li, X.J., 2011. Discussion on Smectite Formation in South China Sea Sediments. Quaternary Sciences, 31(2): 199-206(in Chinese with English abstract). [26] Liu, Z.F., Trentesaux, A., Clemens, S., et al., 2003. Clay Mineral Assemblages in the Northern South China Sea: Implications for East Asian Monsoon Evolution over the Past 2 Million Years. Marine Geology, 201(1-3): 133-146. https://doi.org/10.1016/S0025-3227(03)00213-5 [27] Liu, Z.F., Tuo, S.T., Colin, C., et al., 2008. Detrital Fine-Grained Sediment Contribution from Taiwan to the Northern South China Sea and Its Relation to Regional Ocean Circulation. Marine Geology, 255(3-4): 149-155. https://doi.org/10.1016/j.margeo.2008.08.003 [28] Liu, Z.F., Wang, H., Hantoro, W.S., et al., 2012. Climatic and Tectonic Controls on Chemical Weathering in Tropical Southeast Asia (Malay Peninsula, Borneo, and Sumatra). Chemical Geology, 291(1): 1-12. https://doi.org/10.1016/j.chemgeo.2011.11.015 [29] Liu, Z.F., Zhao, Y.L., Colin, C., et al., 2016. Source-to-Sink Transport Processes of Fluvial Sediments in the South China Sea. Earth-Science Reviews, 153: 238-273. https://doi.org/10.1016/j.earscirev.2015.08.005 [30] Milliman, J.D., Farnsworth, K.L., 2011. River Discharge to the Coastal Ocean: A Global Synthesis. Cambridge University Press, Cambridge. [31] Milliman, J.D., Farnsworth, K.L., Albertin, C.S., 1999. Flux and Fate of Fluvial Sediments Leaving Large Islands in the East Indies. Journal of Sea Research, 41(1-2): 97-107. https://doi.org/10.1016/S1385-1101(98)00040-9 [32] Milliman, J.D., Syvitski, J.P.M., 1992. Geomorphic/Tectonic Control of Sediment Discharge to the Ocean: The Importance of Small Mountainous Rivers. Journal of Geology, 100(5): 525-544. https://doi.org/10.1086/629606 [33] Molengraaff, G.A.F., 1921. Modern Deep-Sea Research in the East Indian Archipelago. The Geographical Journal, 57: 95-121. doi: 10.2307/1781559 [34] Molengraaff, G.A.F., Weber, M., 1921. On the Relation between the Pleistocene Glacial Period and the Origin of the Sunda Sea (Java- and South China Sea), and Its Influence on the Distribution of Coral Reefs and on the Land- and Freshwater Fauna. Koninklijke Nederlandse Akademie Van Wetenschappen, Proceedings Series B Physical Sciences, 23: 395-439. [35] Patchineelam, S. M., de Figueiredo, A. G., 2000. Preferential Settling of Smectite on the Amazon Continental Shelf. Geo-Marine Letters, 20(1): 37-42. https://doi.org/10.1007/s003670000035 [36] Petschick, R., Kuhn, G., Gingele, F., 1996. Clay Mineral Distribution in Surface Sediments of the South Atlantic: Sources, Transport, and Relation to Oceanography. Marine Geology, 130(3-4): 203-229. https://doi.org/10.1016/0025-3227(95)00148-4 [37] Sathiamurthy, E., Voris, H.K., 2006. Maps of Holocene Sea Level Transgression and Submerged Lakes on the Sunda Shelf. The Natural History Journal of Chulalongkorn University, (Suppl. 2): 1-44. [38] Siddall, M., Rohling, E.J., Thompson, W.G., et al., 2008. Marine Isotope Stage 3 Sea Level Fluctuations: Data Synthesis and New Outlook. Reviews of Geophysics, 46: RG4003. https://doi.org/10.1029/2007RG000226 [39] Stattegger, K., Kuhnt, W., Wong, H.K., et al., 1997. Cruise Report SONNE 115 Sundaflut. Sequence Stratigraphy, Late Pleistocene-Holocene Sea Level Fluctuations and High Resolution Record of the Post-Pleistocene Transgression on the Sunda Shelf. Berichte-Reports. Geologisch-Palaeontologisches Institut und Museum, Universitaet Kiel, Kiel, Germany, 86: 1-211. https://doi.org/10.2312/reports-gpi.1997.86 [40] Steinke, S., Kienast, M., Hanebuth, T.J.J., 2003. On the Significance of Sea-Level Variations and Shelf Paleo-Morphology in Governing Sedimentation in the Southern South China Sea during the Last Deglaciation. Marine Geology, 201(1-3): 179-206. https://doi.org/10.1016/S0025-3227(03)00216-0 [41] Steinke, S., Hanebuth, T.J.J., Vogt, C., et al., 2008. Sea Level Induced Variations in Clay Mineral Composition in the Southwestern South China Sea over the Past 17, 000 Years. Marine Geology, 250 (3-4): 199-210. https://doi.org/10.1016/j.margeo.2008.01.005 [42] Tjia, H.D., 1980. The Sunda Shelf, Southeast Asia. Zeitschrift für Geomorphologie, 24(4): 405-427. doi: 10.1127/zfg/24/1884/405 [43] Tjia, H.D., Liew, K.K., 1996. Changes in Tectonic Stress Field in Northern Sunda Shelf Basin. In: Hall, R., Blundell, D., eds., Tectonic Evolution of Southeast Asia. Geological Society, London, Special Publications, 106: 291-306. https://doi.org/10.1144/GSL.SP.1996.106.01.19 [44] Voris, H.K., 2000. Maps of Pleistocene Sea Levels in Southeast Asia: Shorelines, River Systems and Time Durations. Journal of Biogeography, 27(5): 1153-1167. https://doi.org/10.1046/j.1365-2699.2000.00489.x [45] Wan, S.M., Tian, J., Steinke, S., et al., 2010. Evolution and Variability of the East Asian Summer Monsoon during the Pliocene: Evidence from Clay Mineral Records of the South China Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 293(1-4): 237-247. https://doi.org/10.1016/j.palaeo.2010.05.025 [46] Wong, H.K., Ludmann, T., Haft, C., et al., 2003. Quaternary Sedimentation in the Molengraaff Paleo-Delta, Northern Sunda Shelf (Southern South China Sea). In: Sidi, F.H., Nummedal, D., Imbert, P., et al., eds., Tropical Deltas of Southeast Asia-Sedimentology, Stratigraphy, and Petroleum Geology. Society Economical Palaeontologists Mineralogists Special Publication, 76: 201-216. https://doi.org/10.2110/pec.03.76.0201 [47] Wu, J. W., Liu, Z. F., Zhou, C., 2012. Late Quaternary Glacial Cycle and Precessional Period of Clay Mineral Assemblages in the Western Pacific Warm Pool. Chinese Science Bulletin, 57(28-29): 3748-3760. https://doi.org/10.1007/s11434-012-5277-x [48] 刘志飞, 李夏晶, 2011. 南海沉积物中蒙脱石的成因探讨. 第四纪研究, 31(2): 199-206. doi: 10.3969/j.issn.1001-7410.2011.02.01