Wall Rock Alteration and Its Metallogenic Relationship with Gold of Baiyun Gold Deposit in Liaodong Peninsula, North China Craton
-
摘要: 为了理清白云矿床硅钾蚀变与金沉淀的成因关系,对硅钾蚀变岩石和未蚀变的矽线石云母片岩进行主微量元素测试分析,同时选取蚀变岩型和石英脉型矿石中黄铁矿进行电子探针分析.以Al2O3作为不活动组分,通过质量平衡计算,发现明显带入的组分为CaO、K2O、Na2O、SiO2、Ag、As、Co、Cu、Ni,迁出组分为FeO、Cr、Zn.蚀变岩型和石英脉型矿石中黄铁矿均表现出亏S和富Fe的特征,二者的Au/Ag值都大于0.5,Fe/(S+As)值变化范围为0.857~0.896.两种矿石中黄铁矿均为热液型,形成于中浅成的中温环境.在硅钾蚀变过程中,热液中的含硫组分损失,还原硫活度降低破坏了金-硫络合物的稳定性,导致Au的沉淀.Abstract: In order to clarify the genetic relationship between gold precipitation and silicic,K-feldspar alterations,silicic-potassic-altered and unaltered sillimanite/mica schist were selected for major and trace element analyses,while pyrites from quartz vein type and altered-rock type ore were selected for electron microprobe analyses. With Al2O3 chosen as inactive components,the mass balance calculations show that CaO,K2O,Na2O,SiO2,Ag,As,Co,Cu and Ni are brought in,contrary to FeO,Cr and Zn. Pyrites from altered-rock type ore and quartz vein type ore show the characteristics of depleted S and enriched Fe. The value of Au/Ag of pyrites is greater than 0.5,and the value of Fe/(S+As) ranges from 0.857 to 0.896. Pyrites are of hydrothermal origin and have formed in the medium-shallow depth and medium temperature environment. During the process of silicic and K-feldspar alterations,sulfur components are lost from hydrotherm. The decrease of sulfur activity destroys the stability of the gold-sulfur complex and leads to gold precipitation.
-
图 1 青城子矿集区地质简图
据王玉往等(2017);Zhang et al.(2019)修编
Fig. 1. Simplified geological map of Qingchengzi orefield, showing the distribution of deposits
表 1 白云金矿床岩石主量元素(%)和微量元素(10-6)组成
Table 1. The compositions of major elements (%) and trace elements (10-6) of the rock from the Baiyun Au deposit
样品号 829-5 829-9 830-7 830-11 830-12 901-14 829-7 830-10 901-7 901-9 901-12 岩石类型 云母片岩 云母片岩 云母片岩 云母片岩 云母片岩 云母片岩 硅钾蚀变岩 硅钾蚀变岩 硅钾蚀变岩 硅钾蚀变岩 硅钾蚀变岩 Al2O3 18.87 17.48 16.15 14.10 13.51 23.59 15.78 16.18 15.21 20.09 10.88 BaO 0.08 0.06 0.04 0.14 0.03 0.06 0.05 0.04 0.07 0.09 0.02 CaO 0.31 0.39 0.75 3.27 2.62 0.11 1.37 3.07 2.69 0.48 1.88 Fe2O3 5.60 6.22 4.70 4.56 6.57 7.06 5.88 5.46 4.89 5.66 3.92 K2O 5.82 3.97 8.54 6.95 7.79 6.53 4.35 12.80 12.52 6.18 3.03 MgO 1.59 1.35 0.84 1.65 1.55 2.35 1.51 1.42 1.42 0.82 1.21 MnO 0.03 0.04 0.02 0.07 0.04 0.02 0.04 0.04 0.05 0.01 0.07 Na2O 0.65 0.34 1.54 0.84 0.23 0.20 1.40 0.46 0.28 0.24 2.16 P2O5 0.07 0.07 0.04 0.08 0.03 0.03 0.05 0.02 0.07 0.04 0.02 SiO2 60.71 63.09 62.71 60.96 59.61 54.89 63.49 53.28 56.34 59.52 73.01 TiO2 0.57 0.44 0.52 0.26 0.55 0.79 0.47 0.59 0.54 0.62 0.27 LOI 5.76 6.70 3.79 6.44 6.97 4.74 5.27 5.71 4.86 6.35 3.11 FeO 3.64 3.50 1.98 3.15 2.87 4.60 3.34 1.67 1.81 0.79 2.23 Ag 0.01 0.17 0.13 0.03 0.14 0.02 0.06 2.03 0.59 1.47 0.11 As 6.70 10.00 5.40 4.70 3.90 5.10 3.70 4.90 5.80 179.00 3.90 Ce 121.30 109.00 92.20 63.70 120.50 67.20 88.70 127.00 112.50 119.50 49.40 Co 9.70 17.40 14.40 5.40 18.00 5.50 15.20 16.30 20.40 14.30 9.50 Cr 66.00 53.00 44.00 24.00 52.00 84.00 52.00 48.00 39.00 62.00 17.00 Cs 3.67 5.54 1.52 2.85 1.83 4.49 3.40 1.19 1.59 4.30 2.61 Cu 18.60 94.20 16.00 9.60 29.30 9.50 39.00 24.20 19.40 25.20 28.00 Dy 6.73 5.28 3.99 4.21 5.01 1.77 4.44 4.23 5.10 4.71 2.96 Er 3.98 3.00 1.88 2.56 2.27 0.72 2.52 2.23 2.64 2.34 2.71 Eu 1.48 1.37 1.21 1.77 0.94 1.13 1.46 1.61 1.41 1.12 1.02 Gd 7.82 6.53 4.91 4.11 6.40 2.75 5.23 6.13 6.47 6.15 3.14 Ho 1.43 1.03 0.73 0.91 0.91 0.29 0.92 0.82 1.01 0.88 0.72 La 60.70 55.10 46.40 31.30 59.90 33.30 44.10 63.60 56.60 58.20 24.20 Lu 0.61 0.45 0.28 0.42 0.34 0.16 0.45 0.39 0.44 0.33 0.69 Nd 49.70 45.20 38.20 27.20 48.90 27.30 35.20 51.80 47.50 48.90 20.00 Ni 27.30 32.90 20.20 11.80 34.40 7.60 34.30 21.50 30.10 28.00 18.20 Pb 4.60 23.50 4.10 39.90 4.50 17.90 19.30 6.90 11.10 12.00 10.80 Pr 14.10 12.48 10.35 7.32 13.95 7.50 10.05 14.43 13.03 13.85 5.61 Sm 8.60 8.32 6.72 4.93 8.60 4.35 6.52 8.94 8.47 8.75 3.82 Tb 1.13 0.93 0.69 0.66 0.92 0.37 0.77 0.79 0.97 0.83 0.47 Tm 0.58 0.44 0.29 0.40 0.32 0.11 0.40 0.35 0.38 0.33 0.53 Yb 3.74 2.83 1.77 2.70 2.10 0.81 2.65 2.30 2.61 2.21 4.24 Zn 65.00 178.00 34.00 55.00 42.00 58.00 75.00 26.00 14.00 13.00 58.00 表 2 白云金矿床矿石中黄铁矿电子探针测试结果(%)
Table 2. Results of electron probe tests (%) of pyrite from the ore in the Baiyun Au deposit
矿石类型 样品号 As S Fe Pb Ni Ag Cu Zn Te Au Total 硅钾蚀变岩型 82907-1 0.03 53.21 46.06 0.19 0.03 - 0.04 0.05 0.02 - 99.63 硅钾蚀变岩型 82911-1 0.03 51.93 46.52 0.18 0.00 - 0.03 - 0.01 - 98.68 硅钾蚀变岩型 82912-1 - 54.74 45.96 0.16 0.27 0.02 - 0.02 0.03 - 101.19 硅钾蚀变岩型 83006-1 - 52.59 46.67 0.00 0.05 - - - 0.01 - 99.32 硅钾蚀变岩型 83006-2 - 54.07 46.41 0.15 - - - 0.00 0.02 0.10 100.95 硅钾蚀变岩型 83006-4 0.03 53.25 46.73 0.16 - 0.04 0.00 - 0.05 - 100.26 硅钾蚀变岩型 90103-1 0.04 53.31 46.94 0.17 - - - - 0.01 - 100.47 硅钾蚀变岩型 90109-1 - 54.30 46.68 0.16 0.00 0.00 0.07 - 0.03 - 101.24 硅钾蚀变岩型 90201-5 0.03 52.43 46.55 0.20 0.07 - - - - - 99.28 硅钾蚀变岩型 90112-1 0.03 52.41 45.84 0.15 0.12 0.02 - 0.06 - - 98.63 硅钾蚀变岩型 90112-3 - 52.52 46.12 0.18 0.03 0.01 - - 0.03 - 98.88 硅钾蚀变岩型 90205-6 - 53.33 46.89 0.22 - 0.01 - - 0.01 - 100.47 硅钾蚀变岩型 90205-7 - 53.00 46.72 0.26 0.03 0.03 0.05 - 0.03 - 100.10 硅钾蚀变岩型 90205-8 0.03 53.36 46.74 0.14 0.08 - - 0.03 0.01 - 100.38 硅钾蚀变岩型 90737-2 0.02 52.83 47.36 0.10 0.02 0.01 - - 0.02 - 100.35 硅钾蚀变岩型 90737-4 - 52.42 46.83 0.08 - - - 0.01 0.01 - 99.35 硅钾蚀变岩型 90737-5 - 52.64 46.82 0.20 0.05 0.02 - - - 0.02 99.54 硅钾蚀变岩型 90824-1 0.01 53.27 46.78 0.15 - 0.01 - - - 0.06 100.27 硅钾蚀变岩型 90824-2 - 53.07 46.07 0.15 0.05 - - - 0.02 - 99.36 硅钾蚀变岩型 90824-3 0.01 53.57 45.89 0.12 0.06 0.02 0.01 0.02 0.06 - 99.77 硅钾蚀变岩型 90826-1 - 53.41 46.89 0.17 0.04 0.00 - 0.06 0.02 0.08 100.68 硅钾蚀变岩型 90826-2 0.01 53.33 46.57 0.12 - 0.02 0.01 0.07 0.01 0.28 100.42 硅钾蚀变岩型 90826-3 - 53.84 46.22 0.18 - - 0.03 0.01 0.02 0.07 100.35 硅钾蚀变岩型 90927-1 0.04 53.77 46.42 0.13 - - 0.02 - 0.02 0.05 100.45 硅钾蚀变岩型 90927-2 - 53.69 46.13 0.18 0.02 0.03 - 0.00 0.01 0.04 100.11 硅钾蚀变岩型 90927-3 0.04 54.11 46.78 0.13 0.05 - 0.03 0.03 0.05 0.07 101.29 石英脉型 82906-1 0.03 54.61 45.74 0.18 - 0.01 - 0.01 - 0.06 100.62 石英脉型 82906-2 0.06 52.38 46.36 0.26 0.05 0.04 - 0.03 0.08 - 99.26 石英脉型 82906-3 0.00 52.78 45.72 0.20 0.51 0.01 0.01 - 0.02 - 99.26 石英脉型 90203-5 - 52.98 46.59 0.15 - 0.03 0.06 - - - 99.80 石英脉型 90203-6 - 52.33 47.01 0.13 - - 0.02 0.04 - - 99.53 石英脉型 90203-8 - 53.21 46.40 0.20 - - - - 0.07 - 99.89 石英脉型 90208-6 - 53.57 46.30 0.11 0.03 0.01 0.05 0.06 0.05 - 100.17 石英脉型 90210-1 - 53.11 46.88 0.16 0.12 - - 0.06 0.03 - 100.36 石英脉型 90210-2 - 53.47 46.42 0.18 - - 0.00 - 0.01 - 100.08 石英脉型 90212-1 - 54.26 46.38 0.25 - - 0.03 0.07 0.04 0.26 101.28 石英脉型 90212-2 0.01 52.00 47.24 0.23 0.01 - 0.00 - 0.02 - 99.50 -
[1] Brimhall, G. H., Dietrich, W. E., 1987. Constitutive Mass Balance Relations between Chemical Composition, Volume, Density, Porosity, and Strain in Metasomatic Hydrochemical Systems:Results on Weathering and Pedogenesis. Geochimica et Cosmochimica Acta, 51(3):567-587. https://doi.org/10.1016/0016-7037(87)90070-6 [2] Brimhall, G. H., Lewis, C. J., Ague, J. J., et al., 1988. Metal Enrichment in Bauxites by Deposition of Chemically Mature Aeolian Dust. Nature, 333(6176):819-824. https://doi.org/10.1038/333819a0 [3] Chen, Y.F., Wang, Y.W., Wang, J.B., et al., 2018. Greisenized Alteration-Mineralization Geochemistry of the Tin Deposit Related to A-Type Granite:Case Study on the Kamusite and Ganliangzi Deposits, Xinjiang. Earth Science, 43(9):3154-3168 (in Chinese with English abstract). [4] Craw, D., 2002. Geochemistry of Late Metamorphic Hydrothermal Alteration and Graphitisation of Host Rock, Macraes Gold Mine, Otago Schist, New Zealand. Chemical Geology, 191(4):257-275. https://doi.org/10.1016/S0009-2541(02)00139-0 [5] Deditius, A. P., Utsunomiya, S., Renock, D., et al., 2008. A Proposed New Type of Arsenian Pyrite:Composition, Nanostructure and Geological Significance. Geochimica et Cosmochimica Acta, 72(12):2919-2933. https://doi.org/10.1016/j.gca.2008.03.014 [6] Deng, H.L., Tu, G.C., Li, C.Y., et al., 1999. Mass Balance of Open Geochemical Systems:1. Theory. Acta Mineralogica Sinica, 19(2):121-131 (in Chinese with English abstract). [7] Duan, T.X., Wen, S.Q., Zhou, P., et al., 2018. Wall Rock Alteration Characteristics and Mass Balance Calculation of Dongjun Pb-Zn-Ag Deposit in Inner Mongolia. Journal of Central South University (Science and Technology), 49(8):1991-2002 (in Chinese with English abstract). [8] Dugdale, A. L., Wilson, C. J. L., Squire, R. J., 2006. Hydrothermal Alteration at the Magdala Gold Deposit, Stawell, Western Victoria. Australian Journal of Earth Sciences, 53(5):733-757. https://doi.org/10.1080/08120090600827421 [9] Gao, Z. L., Kwak, T. A. P., 1997. The Geochemistry of Wall Rock Alteration in Turbidite-Hosted Gold Vein Deposits, Central Victoria, Australia. Journal of Geochemical Exploration, 59(3):259-274. https://doi.org/10.1016/s0375-6742(96)00079-9 [10] Hao, L.B., Zhao, X., Zhao, Y.Y., 2017. Stable Isotope Characteristics and Ore Genesis of the Baiyun Gold Deposit, Liaoning Province. Journal of Jilin University (Earth Science Edition), 47(2):442-451 (in Chinese with English abstract). [11] Helba, H. A., Khalil, K. I., Abou, N. M. F., 2001. Alteration Patterns Related to Hydrothermal Gold Mineralization in Meta-Andesites at Dungash Area, Eastern Desert, Egypt. Resource Geology, 51(1):19-30. https://doi.org/10.1111/j.1751-3928.2001.tb00078.x [12] Kishida, A., Kerrich, R., 1987. Hydrothermal Alteration Zoning and Gold Concentration at the Kerr-Addison Archean Lode Gold Deposit, Kirkland Lake, Ontario. Economic Geology, 82(3):649-690. https://doi.org/10.2113/gsecongeo.82.3.649 [13] Klammer, D., 1997. Mass Change during Extreme Acid-Sulphate Hydrothermal Alteration of a Tertiary Latite, Styria, Austria. Chemical Geology, 141(1):33-48. https://doi.org/10.1016/S0009-2541(97)00056-9. [14] Klemm, D. D., Kräutner, H. G., 2000. Hydrothermal Alteration and Associated Mineralization in the Freda-Rebecca Gold Deposit-Bindura District, Zimbabwe. Mineralium Deposita, 35(2-3):90-108. https://doi.org/10.1007/s001260050009 [15] Lecumberri-Sanchez, P., Newton, M. C. Ⅲ., Westman, E. C., et al., 2013. Temporal and Spatial Distribution of Alteration, Mineralization and Fluid Inclusions in the Transitional High-Sulfidation Epithermal-Porphyry Copper System at Red Mountain, Arizona. Journal of Geochemical Exploration, 125:80-93. https://doi.org/10.1016/j.gexplo.2012.11.017 [16] Li, C. P., Shen, J. F., Li, S. R., et al., 2019. In-Situ LA-ICP-MS Trace Elements Analysis of Pyrite and the Physicochemical Conditions of Telluride Formation at the Baiyun Gold Deposit, North East China:Implications for Gold Distribution and Deposition. Minerals, 9(2):129. https://doi.org/10.3390/min9020129 [17] Li, J.H., 2005. Study on Ore-Forming Conditions and Mineral Resource Assessment of Lead-Zinc-Silver-Gold Metallogenic Belt in Qingchengzi, Liaoning Province (Dissertation). Jilin University, Changchun (in Chinese with English abstract). [18] Li, S.S., Li, S.R., Li, C.L., et al., 2018. Characteristics of the Gold-Silver Minerals and Auriferous Sulfides in the Yongxin Gold Deposit of Heilongjiang Province and Their Genetic Significance. Acta Petrologica et Mineralogica, 37(1):115-127 (in Chinese with English abstract). [19] Li, W.Z., Yuan, G.L., Song, S.C., et al., 2019. Geological Characteristics and Electron Probe Analysis of Sulfides in the Xialiugou Cu-Pb-Zn Deposit of Qinghai Province. Geology and Prospecting, 55(2):447-460 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZKT201902001.htm [20] Ling, Q.C., Liu, C.Q., 2002.Geochemical Behavior of Trace Element during Hydrothermal Alteration in Low-Metamorphic Rock:A Case Study for Shuangqiaoshan Group in Yinshan Area, Northwestern Jiangxi Province, China. Acta Petrologica Sinica, 18(1):100-108 (in Chinese with English abstract). [21] Liu, G.P., Ai, Y.F., 1999. A Discussion on Some Major Problems of the Baiyun Gold Deposit, Eastern Liaoning. Mineral Deposits, 18(3):219-225, 290 (in Chinese with English abstract). [22] Liu, H.N., Liu, J.J., Li, X.W., et al., 2018. Thermoelectric Characteristics of Pyrite from the Xindigou Gold Deposit in Inner Mongolia and Its Significance on Deep Prospecting. Geology in China, 45(4):819-838(in Chinese with English abstract). [23] Liu, Y.J., Han, X.T., Liu, Z.H., et al., 2020. Zircon U-Pb Ages, Geochemical Characteristics and Geological Significance of Early Cretaceous Granites in Fengcheng Area, Eastern Liaoning Province. Earth Science, 45(1):145-155 (in Chinese with English abstract). [24] Mikhlin, Y., Romanchenko, A., Likhatski, M., et al., 2011. Understanding the Initial Stages of Precious Metals Precipitation:Nanoscale Metallic and Sulfidic Species of Gold and Silver on Pyrite Surfaces. Ore Geology Reviews, 42(1):47-54. https://doi.org/10.1016/j.oregeorev.2011.03.005 [25] Simon, G., Huang, H., Penner-Hahn, J. E., et al., 1999. Oxidation State of Gold and Arsenic in Gold-Bearing Arsenian Pyrite. American Mineralogist, 84(7-8):1071-1079. https://doi.org/10.2138/am-1999-7-809 [26] Suo, A. N., Zhao, D. Z., Zhang, F. S., et al., 2010. Driving Forces and Management Strategies for Estuaries in Northern China. Frontiers of Earth Science in China, 4(1):51-58. https://doi.org/10.1007/s11707-010-0004-x [27] Tang, H.F., Liu, C.Q. Xie, G.G., 2000. Mass Transfer and Element Mobility of Rocks during Regional Metamorphism-A Case Study of Metamorphosed Pelites from the Shuangqiaoshan Group in Lushan. Geological Review, 46(3):245-254 (in Chinese with English abstract). [28] Wang, Y.W., Xie, H.J., Li, D.D., et al., 2017. Prospecting Prediction of Ore Concentration Area Exemplified by Qingchengzi Pb-Zn-Au-Ag Ore Concentration Area, Eastern Liaoning Province. Mineral Deposits, 36(1):1-24 (in Chinese with English abstract). [29] Wei, Q., Fan, H.R., Lan, T.G., et al., 2018. Hydrothermal Alteration and Element Migration in the Sizhuang Gold Deposit, Jiaodong Province, China. Bulletin of Mineralogy, Petrology and Geochemistry, 37(2):283-293 (in Chinese with English abstract). [30] Yang, F.C., Song, Y.H., Chai, P., et al., 2017. Characteristics of Ore-Forming Fluid and Provenance of Ore-Forming Material of Baiyun Gold Deposit in Liaoning. J. Mineral Petrol., 37(1):30-39 (in Chinese with English abstract). [31] Yu, G., Chen, J. F., Xue, C. J., et al., 2009. Geochronological Framework and Pb, Sr Isotope Geochemistry of the Qingchengzi Pb-Zn-Ag-Au Orefield, Northeastern China. Ore Geology Reviews, 35(3-4):367-382. https://doi.org/10.1016/j.oregeorev.2008.11.009 [32] Zeng, Q.D., Chen, R.Y., Yang, J.H., et al., 2019. The Metallogenic Characteristics and Exploring Ore Potential of the Gold Deposits in Eastern Liaoning Province. Acta Petrologica Sinica, 35(7):1939-1963 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.07.01 [33] Zhang, P., Kou, L. L., Zhao, Y., et al., 2019. Fluid Inclusions, H-O, S, Pb, and Noble Gas Isotope Studies of the Baiyun Gold Deposit in the Qingchengzi Orefield, NE China. Journal of Geochemical Exploration, 200:37-53. https://doi.org/10.1016/j.gexplo.2019.01.016 [34] Zhang, P., Zhao, Y., Kou, L.L., et al., 2019. Zircon U-Pb Ages, Hf Isotopes and Geological Significance of Mesozoic Granites in Dandong Area, Liaodong Peninsula. Earth Science, 44(10):3297-3313 (in Chinese with English abstract). [35] Zhang, Z.C., Li, N., Ji, X.Z., et al., 2015. Hydrothermal Alteration of the Anba Deposit, Yangshan Gold Belt, Western Qinling. Acta Petrologica Sinica, 31(11):3405-3419 (in Chinese with English abstract). [36] Zhao, R.Y., Chen, Y.C., Chen, Y.J., et al., 2020. The Characteristics of Geochemistry and Alteration of the Jiling Uranium Deposit in the Longshou Mountains, Gausu Province:A Case Study from Drill ZKJ29-3. Earth Science, 45(2):434-450 (in Chinese with English abstract). [37] Zhou, G.C., 2017. Study on the Genesis of the Baiyun Gold Deposit in Liaodong, Liaoning Province (Dissertation). Kunming University of Science and Technology, Kunming (in Chinese with English abstract). [38] 陈言飞, 王玉往, 王京彬, 等, 2018.与A型花岗岩有关锡矿的云英岩化蚀变矿化地球化学:以新疆卡姆斯特和干梁子矿床为例.地球科学, 43(9):3154-3168. doi: 10.3799/dqkx.2018.321 [39] 邓海琳, 涂光炽, 李朝阳, 等, 1999.地球化学开放系统的质量平衡:1.理论.矿物学报, 19(2):121-131. http://d.wanfangdata.com.cn/Periodical/kwxb199902001 [40] 段天绪, 温守钦, 周鹏, 等, 2018.内蒙古东珺铅锌银矿床质量平衡计算与围岩蚀变特征.中南大学学报(自然科学版), 49(8):1991-2002. [41] 郝立波, 赵昕, 赵玉岩, 2017.辽宁白云金矿床稳定同位素地球化学特征及矿床成因.吉林大学学报(地球科学版), 47(2):442-451. [42] 李基宏, 2005.辽宁青城子铅锌银金矿集区成矿条件与成矿预测(博士学位论文).长春: 吉林大学. [43] 李士胜, 李胜荣, 李成禄, 等, 2018.黑龙江永新金矿床金-银系列矿物与载金硫化物特征及成因分析.岩石矿物学杂志, 37(1):115-127. [44] 李文忠, 袁桂林, 宋生春, 等, 2019.青海下柳沟铜铅锌矿床地质特征与硫化物电子探针分析.地质与勘探, 55(2):447-460. [45] 凌其聪, 刘丛强, 2002.低级变质岩在热液蚀变过程中的微量元素地球化学行为——以赣东北银山地区双桥山群为例.岩石学报, 18(1):100-108. [46] 刘国平, 艾永富, 1999.辽宁白云金矿床某些基本问题探讨.矿床地质, 18(3):219-225, 290. [47] 刘华南, 刘家军, 李小伟, 等, 2018.内蒙古新地沟金矿床黄铁矿热电性特征及深部找矿意义.中国地质, 45(4):819-838. [48] 刘永俊, 韩晓涛, 刘正宏, 等, 2020.辽东凤城地区早白垩世花岗岩的锆石U-Pb年龄、地球化学特征及地质意义.地球科学, 45(1):145-155. doi: 10.3799/dqkx.2018.278 [49] 唐红峰, 刘丛强, 谢国刚, 2000.区域变质作用中岩石的质量迁移和元素活动——以庐山双桥山群变泥质岩系为例.地质论评, 46(3):245-254. [50] 王玉往, 解洪晶, 李德东, 等, 2017.矿集区找矿预测研究:以辽东青城子铅锌-金-银矿集区为例.矿床地质, 36(1):1-24. [51] 卫清, 范宏瑞, 蓝廷广, 等, 2018.胶东寺庄金矿热液蚀变作用与元素迁移规律.矿物岩石地球化学通报, 37(2):283-293. [52] 杨凤超, 宋运红, 柴鹏, 等, 2017.辽宁白云金矿床成矿流体特征、成矿物质源及成因研究.矿物岩石, 37(1):30-39. [53] 曾庆栋, 陈仁义, 杨进辉, 等, 2019.辽东地区金矿床类型、成矿特征及找矿潜力.岩石学报, 35(7):1939-1963. [54] 张朋, 赵岩, 寇林林, 等, 2019.辽东半岛丹东地区中生代花岗岩锆石U-Pb年龄、Hf同位素特征及其地质意义.地球科学, 44(10):3297-3313. doi: 10.3799/dqkx.2019.129 [55] 张志超, 李楠, 戢兴忠, 等, 2015.西秦岭阳山金矿带安坝矿床热液蚀变作用.岩石学报, 31(11):3405-3419. [56] 赵如意, 陈毓川, 陈云杰, 等, 2020.甘肃省龙首山芨岭铀矿床蚀变和地球化学分带性特征:以钻孔ZKJ29-3为例.地球科学, 45(2):434-450. doi: 10.3799/dqkx.2018.348 [57] 周国超, 2017.辽东白云金矿床成因研究(硕士学位论文).昆明: 昆明理工大学.