Late Cretaceous Adakite in Sinongduo Area, Tibet: Implications for Petrogenesis and Mineralization
-
摘要: 西藏冈底斯带广泛分布晚白垩世埃达克质岩,其岩石成因一直存在争论,并且对于成矿潜力的研究也十分有限.为此对谢通门县斯弄多-加多捕地区具铜矿化的黑云母二长花岗岩开展了锆石U-Pb定年、全岩地球化学以及锆石微量元素地球化学特征的研究,以探明岩石成因及成矿潜力.结果表明黑云母二长花岗岩侵位时间为晚白垩世(83.1±1.6 Ma).岩石具有相对高的SiO2含量(60.21%~62.54%)、MgO(2.19%~3.02%)、Mg#(41.25~50.73)值.较低含量的Y(15.9×10-6~17.8×10-6)、Yb(1.46×10-6~1.73×10-6)及较高的Sr/Y(35.0~47.6)、La/Yb(29.6~38.6)比值,表现出高硅型埃达克质岩亲和性.岩石属高钾钙碱性、准铝质系列(A/CNK值为0.84~0.92),富集LREE、大离子亲石元素(LILE)、亏损高场强元素(HFSE),如Nb、Ta等.锆石微量元素具较高的V/Sc、Ce/Ce*、10 000×(Eu/Eu*)和Eu/Eu*比值.通过对比冈底斯带晚白垩世典型的埃达克岩,认为斯弄多黑云母二长花岗岩是新特提斯洋俯冲洋壳部分熔融的产物,岩浆氧逸度较高,显示出斯弄多黑云母二长花岗岩具有良好的Cu-Au成矿潜力.Abstract: The genesis of the Late Cretaceous adakite in the Gangdese belt, Tibet, has been debated for decades, and research on the productivity of these intrusions is limited. To provide a further understanding of this issue, it presents zircon U-Pb data, geochemical and zircon trace element data of the biotite monzogranite from Sinongduo-Jiaduobu area, Xietongmen County, Tibet. New age data indicate that the biotite monzogranite emplaced in the Late Cretaceous (83.1±1.6 Ma). These rocks are characterized by relatively high contents of SiO2 (60.21%-62.54%), MgO (2.19%-3.02%), Mg# (41.25-50.73), low contents of Y (15.9×10-6-17.8×10-6), Yb (1.46×10-6-1.73×10-6) and high Sr/Y (35.0-47.6), La/Yb (29.6-38.6) ratios, showing high-SiO2 adakitic rock affinity. These rocks belong to high-K calc-alkaline and metaluminous series (A/CNK=0.84-0.92), and enriched in LREE, LILE (large ion lithophile element) and depleted in HREE, HFSE (high field strength element), such as Nb and Ta. The zircon trace element data show high V/Sc, Ce/Ce*, 10 000×(Eu/Eu*), and moderate Eu/Eu* ratios. By comparing with typical adakitic rocks from the Gangdese belt, it is proposed that these rocks with high oxygen fugacity were derived from the partial melting of subducted Neo-Tethyan slab, and have good potential for Cu-Au mineralization.
-
Key words:
- Gangdese belt /
- Sinongduo /
- adakite /
- Late Cretaceous /
- Cu mineralization /
- mineral deposit
-
图 4 斯弄多黑云母二长花岗岩锆石球粒陨石标准化稀土元素配分图
Fig. 4. Chondrite-normalized REE patterns of zircons for biotite monzogranite in the Sinongduo area
图 6 斯弄多黑云母二长花岗岩SiO2-K2O图解(a), A/NC-A/CNK图解(b), Th-Th/Nd图解(c), La-La/Sm图解(d)
图c, d据Schiano et al.(2010)
Fig. 6. Diagrams of SiO2-K2O (a), A/NC-A/CNK (b), Th-Th/Nd (c) and La-La/Sm (d) for biotite monzogranite in the Sinongduo area
图 7 斯弄多黑云母二长花岗岩La/Yb-Yb(a)和Sr/Y-Y判别图(b)
Fig. 7. Discrimination diagrams of La/Yb versus Yb (a) and Sr/Y versus Y (b) for biotite monzogranite in the Sinongduo area
图 8 高硅型埃达克岩和低硅型埃达克岩判别图
a. Sr-(CaO+Na2O); b.Sr/Y-Y; c.Nb-SiO2; d.Cr/Ni-TiO2;图a~d据Martin et al.(2005)
Fig. 8. Discrimination diagrams of high-SiO2 (HAS) and low-SiO2 (LAS) adakites
图 10 斯弄多黑云母二长花岗岩锆石Ce/Ce*-Eu/Eu*图解(a),10 000×(Eu/Eu*)/Y-(Ce/Nd)/Y图解(b),全岩Sr/Y-SiO2图解(c)和V/Sc-SiO2图解(d)
图a, b据Lu et al.(2016);图c, d据Loucks(2014)
Fig. 10. Diagrams showing variations in zircon Ce/Ce*-Eu/Eu* (a) and 10 000×(Eu/Eu*)/Y-(Ce/Nd)/Y (b), Sr/Y-SiO2 (c) and V/Sc-SiO2 (d) for biotite monzogranite in the Sinongduo area
图 9 斯弄多黑云母二长花岗岩埃达克岩哈克图解
据Wang et al.(2005);图a, b数据引自Wen et al. (2008); Zhu et al. (2009); 管琪等(2010);Zhang et al.(2010);代作文等(2018)
Fig. 9. Harker diagrams for biotite monzogranite in the Sinongduo area
图 11 斯弄多黑云母二长花岗岩Ba-Nb/Y图解(a)和Th/Yb-Sr/Nd图解(b)
图a, b据曲晓明等(2010);无矿化花岗岩类数据引自Zhang et al.(2010); Ma et al.(2013); 代作文等(2018)
Fig. 11. Diagrams of Ba-Nb/Y (a) and Th/Yb-Sr/Nd (b) for biotite monzogranite in the Sinongduo area
表 1 斯弄多黑云母二长花岗岩LA-ICP-MS U-Pb定年结果
Table 1. Zircon LA-ICP-MS U-Pb dating results of biotite monzogranite in the Sinongduo area
测点 Pb(10-6) Th(10-6) U(10-6) Th/U 同位素比值 年龄(Ma) 谐和度(%) 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ 207Pb/235U 1σ 206Pb/238U 1σ YD02-1 32.74 674.81 646.01 1.04 0.049 5 0.013 3 0.082 8 0.013 4 0.013 1 0.001 2 0.003 7 0.000 4 80.8 12.6 84.0 7.3 96 YD02-2 28.97 790.82 513.43 1.54 0.055 8 0.016 4 0.092 6 0.020 5 0.013 1 0.001 2 0.003 1 0.000 4 89.9 19.0 84.2 7.6 93 YD02-3 46.13 936.43 568.56 1.65 0.051 1 0.011 1 0.096 6 0.022 1 0.013 9 0.000 8 0.004 5 0.000 6 93.6 20.5 89.1 5.3 95 YD02-4 31.11 574.36 480.80 1.19 0.045 1 0.013 9 0.082 6 0.023 7 0.013 4 0.000 8 0.004 7 0.000 6 80.6 22.2 85.5 5.3 94 YD02-5 35.02 774.12 526.08 1.47 0.049 6 0.007 5 0.084 8 0.012 5 0.013 0 0.000 5 0.003 9 0.000 3 82.6 11.7 83.2 3.1 99 YD02-6 45.63 881.62 737.87 1.19 0.045 1 0.014 3 0.084 4 0.028 9 0.013 2 0.000 5 0.004 4 0.000 4 82.3 27.1 84.4 3.2 97 YD02-7 27.77 570.56 401.39 1.42 0.049 7 0.025 9 0.096 0 0.045 1 0.014 5 0.001 0 0.004 1 0.000 7 93.1 41.8 93.0 6.5 99 YD02-8 33.78 962.83 592.86 1.62 0.042 6 0.003 7 0.075 2 0.008 4 0.012 7 0.000 5 0.002 9 0.000 4 73.7 8.0 81.0 3.3 90 YD02-9 51.76 1 266.61 835.92 1.52 0.047 7 0.025 9 0.083 9 0.044 7 0.012 8 0.000 2 0.003 5 0.000 3 81.8 41.9 82.1 1.3 99 YD02-10 31.31 648.47 539.08 1.20 0.048 7 0.008 6 0.088 3 0.015 2 0.013 2 0.000 5 0.004 0 0.000 3 85.9 14.2 84.4 3.2 98 YD02-11 31.95 637.88 753.62 0.85 0.053 4 0.006 3 0.096 4 0.010 5 0.013 5 0.000 4 0.003 6 0.000 2 93.4 9.7 86.7 2.6 92 YD02-12 39.01 765.90 800.65 0.96 0.054 0 0.006 0 0.094 5 0.009 6 0.013 0 0.000 4 0.004 1 0.000 2 91.7 8.9 83.1 2.6 90 表 2 斯弄多黑云母二长花岗岩锆石微量元素分析结果(10-6)
Table 2. Zircon trace elements (10-6) results of biotite monzogranite in the Sinongduo area
测点号 YD2-1 YD2-2 YD2-3 YD2-4 YD2-5 YD2-6 YD2-7 YD2-8 YD2-9 YD2-10 La 49.04 5.71 4.15 2.88 3.17 3.62 7.19 3.62 4.80 4.46 Ce 145.29 81.82 93.43 84.05 74.67 83.48 87.69 74.24 101.30 83.44 Pr 12.92 0.33 1.90 2.22 1.10 1.10 0.73 1.12 1.52 1.42 Nd 43.97 7.24 4.24 4.64 8.03 4.56 2.13 6.06 5.83 4.28 Sm 24.58 9.54 8.39 13.73 1.99 5.44 10.30 9.01 12.76 11.06 Eu 6.43 1.75 3.39 4.51 1.81 1.51 4.47 3.24 4.55 5.70 Gd 95.23 29.46 53.92 72.60 35.28 39.78 56.98 50.39 76.12 53.13 Tb 33.36 11.14 20.04 24.17 8.64 12.73 16.20 17.92 22.12 24.14 Dy 334.75 128.70 211.05 224.05 99.38 140.93 199.99 188.08 236.66 217.32 Ho 156.48 64.53 109.63 108.49 60.54 68.60 104.12 94.20 116.18 104.23 Er 551.64 264.25 382.98 382.03 227.22 246.18 378.77 353.30 410.45 376.68 Tm 141.44 77.86 107.65 109.39 54.02 65.09 108.44 93.17 108.39 100.32 Yb 1 146.93 673.50 815.36 894.26 564.05 599.81 898.02 783.35 869.75 853.38 Lu 572.18 463.75 461.56 510.47 427.33 438.03 512.06 494.34 509.41 513.48 Y 3 078.64 1 683.23 2 083.17 2 355.03 1 279.18 1 514.73 1 987.39 2 011.25 2 461.12 2 245.11 REE 3 314.22 1 819.57 2 277.68 2 437.49 1 567.22 1 710.86 2 387.09 2 172.05 2 479.85 2 353.04 Ti 41.56 11.01 22.81 6.75 12.22 16.91 0.00 8.29 26.71 26.98 Hf 26 562.75 23 555.72 23 083.69 25 145.26 22 036.95 24 566.78 24 101.39 25 337.79 24 839.94 24 813.71 Th 611.36 674.81 790.82 936.43 574.36 774.12 881.62 715.17 1 106.41 962.83 U 892.62 646.01 513.43 568.56 480.80 526.08 737.87 615.10 660.60 592.86 Eu/Eu* 0.36 0.29 0.37 0.35 0.34 0.23 0.45 0.37 0.35 0.59 Ce/Ce* 7.63 61.52 180.20 221.64 9.50 89.94 821.52 75.09 157.14 208.43 测点号 YD2-11 YD2-12 YD2-13 YD2-14 YD2-15 YD2-16 YD2-17 YD2-18 YD2-19 YD2-20 La 2.90 4.83 5.61 2.58 7.92 170.52 16.43 3.90 3.88 4.77 Ce 104.72 79.85 66.33 73.81 156.43 707.32 104.96 75.19 86.93 103.56 Pr 1.18 0.88 1.47 1.12 2.46 66.86 4.85 1.60 0.78 1.31 Nd 8.53 5.43 5.03 9.66 11.52 238.51 18.43 12.05 2.74 8.18 Sm 25.51 11.19 3.53 14.61 22.74 69.19 11.88 15.83 4.08 11.42 Eu 5.18 3.18 1.79 3.45 9.19 17.62 5.23 5.43 3.14 4.32 Gd 67.33 43.88 23.22 41.39 87.39 209.80 50.13 59.18 35.53 50.13 Tb 30.84 15.57 9.06 11.77 29.06 69.88 18.43 19.96 15.03 19.29 Dy 256.36 162.71 98.47 133.91 290.65 611.77 185.18 199.80 157.13 206.50 Ho 108.09 80.92 57.37 73.25 149.70 296.34 93.08 102.68 95.39 107.48 Er 523.15 293.51 213.78 280.66 520.04 962.50 341.81 371.53 373.03 390.50 Tm 124.66 81.19 63.30 74.79 135.75 232.88 94.48 91.41 106.17 104.81 Yb 1 052.58 703.14 593.48 728.61 1 115.06 1 708.04 803.94 761.56 994.26 949.79 Lu 606.84 459.72 451.71 486.43 553.46 687.66 490.66 449.87 569.42 545.79 Y 2 669.90 1 846.50 1 252.86 1 730.17 2 977.68 5 271.44 2 047.29 1 988.65 2 198.37 2 153.55 REE 2 917.86 1 946.00 1 594.15 1 936.05 3 091.37 6 048.88 2 239.50 2 169.98 2 447.51 2 507.86 Ti 24.23 75.42 237.53 0.00 38.58 0.00 67.27 21.73 8.32 7.68 Hf 25 753.81 23 892.19 24 032.61 24 512.05 23 096.54 21 893.58 23 200.09 21 853.69 25 890.10 24 803.75 Th 1 266.61 648.47 687.61 697.80 1 716.09 6 693.03 883.38 832.93 637.88 1 101.26 U 835.92 539.08 552.52 518.04 928.79 2 147.81 611.96 524.52 753.62 819.97 Eu/Eu* 0.36 0.38 0.45 0.40 0.55 0.41 0.56 0.48 0.54 0.47 Ce/Ce* 151.50 125.26 38.28 47.69 110.64 3.55 15.15 33.83 195.74 72.98 测点号 YD2-21 YD2-21 YD2-21 YD2-21 YD2-21 La 3.65 23.74 43.54 75.68 9.83 Ce 90.83 125.59 153.26 238.43 119.21 Pr 1.18 5.37 11.77 19.29 2.23 Nd 4.46 18.72 47.65 70.46 9.11 Sm 9.10 11.57 21.06 21.18 16.92 Eu 2.97 4.54 5.62 5.05 6.19 Gd 46.48 49.11 64.54 47.34 72.82 Tb 19.48 18.32 21.77 17.28 24.08 Dy 211.01 190.42 217.12 174.48 229.94 Ho 113.28 96.05 101.17 85.71 118.73 Er 411.77 346.98 358.62 315.68 445.06 Tm 115.41 95.04 95.82 85.00 116.32 Yb 983.41 799.41 787.65 755.39 1 056.54 Lu 561.60 504.06 500.37 467.12 540.34 Y 2 310.57 2 052.72 2 117.75 1 866.26 2 641.04 REE 2 574.60 2 288.90 2 429.96 2 378.09 2 767.32 Ti 13.18 13.69 29.75 19.75 29.85 Hf 24 936.50 25 193.20 24 855.76 22 498.93 22 515.12 Th 765.90 977.56 887.70 1 220.70 1 535.36 U 800.65 617.49 498.63 829.01 923.79 Eu/Eu* 0.36 0.50 0.43 0.47 0.46 Ce/Ce* 171.73 17.11 5.87 4.20 100.40 注:Ce*=(NdN)2/SmN( Loadera et al., 2017 ).表 3 斯弄多黑云母二长花岗岩主量元素(%)和微量元素(10-6)分析结果
Table 3. Major elements (%) and trace elements (10-6) results of biotite monzogranite in the Sinongduo area
原样编号 YD02-1 YD02-2 YD02-3 YD02-4 YD02-5 YD02-6 YD02-7 YD02-8 YD02-9 SiO2 60.39 62.65 60.48 61.79 62.21 61.99 62.53 60.95 62.54 Al2O3 15.02 15.12 15.18 15.12 14.70 14.99 15.02 15.14 14.87 Fe2O3 1.88 1.88 1.99 2.53 2.24 2.06 1.97 1.88 2.20 FeO 3.86 3.28 3.86 2.87 3.64 3.25 3.25 3.54 3.06 MgO 2.98 2.52 3.02 2.79 2.23 2.87 2.39 3.02 2.19 CaO 4.12 4.16 4.22 4.07 3.85 3.76 3.99 4.30 4.24 Na2O 3.48 3.34 3.40 3.72 3.68 3.79 3.71 3.69 3.75 K2O 3.00 3.34 3.07 3.32 3.62 3.40 3.54 3.22 3.61 TiO2 0.78 0.75 0.79 0.74 0.69 0.74 0.70 0.76 0.70 MnO 0.13 0.12 0.14 0.11 0.10 0.11 0.10 0.12 0.10 P2O5 0.25 0.23 0.25 0.27 0.24 0.27 0.24 0.27 0.23 LOI 3.51 2.08 2.95 1.99 2.15 2.06 1.86 2.52 1.94 Total 99.40 99.47 99.35 99.32 99.33 99.31 99.30 99.41 99.42 Na2O+K2O 6.48 6.67 6.48 7.03 7.30 7.20 7.25 6.91 7.36 FeOT 5.55 4.97 5.65 5.15 5.65 5.10 5.02 5.23 5.03 Mg# 48.91 47.44 48.77 49.12 41.25 50.10 45.89 50.73 43.75 A/CNK 0.91 0.91 0.92 0.88 0.87 0.90 0.87 0.87 0.84 A/NK 1.68 1.67 1.71 1.56 1.48 1.52 1.52 1.59 1.48 La 48.6 47.5 48.4 57.0 63.4 59.8 62.6 63.9 61.0 Ce 88.3 88.0 87.8 97.3 108 98.5 106 106 104 Pr 11.6 11.6 11.8 11.5 12.7 11.6 12.5 12.6 12.4 Nd 39.1 39.2 39.5 40.0 42.6 39.5 43.8 43.4 42.7 Sm 6.19 6.17 6.10 6.86 7.21 6.56 7.41 7.24 7.27 Eu 1.64 1.47 1.59 1.75 1.74 1.61 1.83 1.88 1.74 Gd 4.66 4.64 4.68 5.16 5.37 4.95 5.51 5.55 5.41 Tb 0.692 0.730 0.711 0.686 0.702 0.654 0.731 0.737 0.728 Dy 3.00 3.06 2.98 3.40 3.44 3.20 3.60 3.64 3.64 Ho 0.614 0.642 0.635 0.640 0.653 0.589 0.675 0.675 0.671 Er 1.63 1.68 1.64 1.74 1.83 1.67 1.94 1.87 1.87 Tm 0.262 0.268 0.258 0.241 0.266 0.236 0.269 0.265 0.275 Yb 1.58 1.61 1.54 1.53 1.68 1.55 1.78 1.67 1.73 Lu 0.240 0.265 0.236 0.234 0.260 0.234 0.265 0.260 0.260 Y 15.9 16.6 16.1 16.7 17.5 16.0 18.4 17.8 17.7 Ba 609 613 676 682 576 607 601 649 603 Th 14.5 20.6 15.6 20.4 24.0 19.8 24.1 20.6 25.5 U 2.85 3.46 3.18 3.74 4.40 3.83 4.02 3.80 4.61 Nb 10.8 15.0 11.1 8.05 8.41 8.94 8.22 8.44 8.34 Ta 1.82 2.43 1.43 1.25 1.38 1.16 1.27 1.34 1.45 Pb 47.2 47.6 43.3 46.2 60.0 48.4 37.4 45.2 42.0 Sr 7 544 686 758 764 611 699 698 758 640 Zr 176 182 179 181 182 174 178 182 194 Hf 4.42 4.85 4.48 5.05 5.46 4.89 5.05 5.03 5.64 Be 1.79 1.94 1.80 1.85 2.01 1.65 1.91 1.72 2.07 Bi 0.310 0.581 0.307 0.494 0.768 1.09 1.03 0.490 0.558 Co 18.3 14.3 18.7 17.7 16.7 17.2 20.6 17.3 14.8 Cr 55.4 56.8 55.3 62.0 49.1 56.0 60.1 58.6 54.7 Cs 12.0 7.05 9.46 11.8 7.44 13.6 11.8 11.5 6.63 Cu 31.8 37.0 23.2 34.6 156.4 87.3 71.5 37.7 87.9 Ga 18.9 19.7 19.7 23.9 22.7 22.5 24.8 22.7 23.8 Hf 4.42 4.85 4.48 5.05 5.46 4.89 5.03 5.05 5.64 Li 33.0 29.8 29.0 22.8 17.7 29.1 27.5 28.3 15.9 Ni 32.9 26.2 32.7 34.4 29.7 32.6 38.0 34.3 30.5 Rb 128 134 120 121 140 137 120 127 140 Sc 9.58 9.59 10.0 10.8 9.83 10.6 11.8 10.5 10.0 Sr 754 686 758 764 611 699 758 724 640 V 99.8 89.2 98.0 95.0 96.2 95.7 105.7 98.1 91.6 Zn 86.3 77.3 88.1 66.9 90.0 69.1 74.1 70.9 72.0 K 24 894 27 687 25 516 27 525 30 021 28 254 29 369 26 717 29 970 Ti 4 649 4 512 4 761 4 461 4 137 4 460 4 203 4 540 4 177 P 1 086 1 003 1 095 1 189 1 042 1 175 1 052 1 187 1 024 ΣREE 208.10 206.74 207.88 228.05 249.96 230.69 248.60 250.61 243.44 LREE 195.43 193.84 195.19 214.42 235.76 217.61 233.82 235.93 228.85 HREE 12.67 12.90 12.69 13.63 14.20 13.08 14.78 14.68 14.59 LREE/HREE 15.42 15.03 15.38 15.73 16.60 16.64 15.82 16.07 15.69 LaN/YbN 22.06 21.16 22.54 26.72 27.09 27.69 25.23 27.44 25.31 δEu 0.90 0.81 0.88 0.86 0.82 0.83 0.84 0.87 0.81 δCe 0.88 0.89 0.87 0.88 0.88 0.86 0.87 0.87 0.87 注:LOI为烧失量;A/NK=Al2O3/(Na2O+K2O), A/CNK=Al2O3/(CaO+Na2O+K2O); Mg#=100×Mg(Mg+Fe); δEu=2EuN/(SmN+GdN); FeOT=FeO+0.899 8×Fe2O3. -
[1] Castillo, P.R., Janney, P.E., Solidum, R.U., 1999. Petrology and Geochemistry of Camiguin Island, Southern Philippines: Insights to the Source of Adakites and Other Lavas in a Complex Arc Setting. Contributions to Mineralogy & Petrology, 134(1): 33-51. https://doi.org/10.1007/s004100050467 [2] Chen, L., Zheng, Y.F., 2019. Neoproterozoic Oceanic Slab-Mantle Interaction: Geochemical Evidence from Mesozoic Andesitic Rocks in the Middle and Lower Yangtze Valley. Earth Science, 44(12): 4144-4151 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201912024.htm [3] Copeland, P., Harrison, T. M., Pan, Y., et al., 1995. Thermal Evolution of the Gangdese Batholith, Southern Tibet: A History of Episodic Unroofing. Tectonics, 14: 223-236. https://doi.org/10.1029/94tc01676 [4] Dai, Z.W., Li, G.M., Ding, J., et al., 2018. Late Cretaceous Adakite in Nuri Area, Tibet: Products of Ridge Subduction. Earth Science, 43(8): 2727-2741(in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201808015.htm [5] Davidson, J., MacPherson, C., Turner, S., 2007. Amphibole Control in the Differentiation of Arc Magmas. Geochimica et Cosmochimica Acta, 71: A204-A204. [6] Guan, Q., Zhu, D.C., Zhao, Z.D., et al., 2010. Late Cretaceous Adakites in the Eastern Segment of the Gangdese Belt, Southern Tibet: Products of Neo-Tethyan Ridge Subduction?. Acta Petrologica Sinica, 26(7): 2165-2179 (in Chinese with English abstract). [7] Guo, F., Nakamuru, E., Fan, W. M., et al., 2007. Generation of Palaeocene Adakitic Andesites by Magma Mixing, Yanji Area, NE China. Journal of Petrology, 48(4): 661-692. https://doi.org/10.1093/petrology/egl077 [8] Hou, Z.Q., Gao, Y.F., Meng, X.J., et al., 2004. Genesis of Adakitic Porphyry and Tectonic Controls on the Gangdese Miocene Porphyry Copper Belt in the Tibetan Orogen. Acta Petrologica Sinica, 20(2): 239-248 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200402005.htm [9] Huang, W.T., Liang, H. Y., Zhang, J., et al., 2020. Formation of the Cretaceous Skarn Cu-Au Deposits of the Southern Gangdese Belt, Tibet: Case Studies of the Kelu and Sangbujiala Deposits. Ore Geology Reviews, 122: 103481. https://doi.org/10.1016/j.oregeorev.2020.103481 [10] Jiang, Z.Q., Wang, Q., Wyman, D. A., et al., 2011. Origin of about 30 Ma Chongmuda Adakitic Intrusive Rocks in the Southern Gangdese Region, Southern Tibet: Partial Melting of the Northward Subducted Indian Continent Crust?. Geochimica, 40(2): 126-146 (in Chinese with English abstract). [11] Kay, R.W., Kay, S.M., 1993. Delamination and Delamination Magmatism. Tectonophysics, 219(219): 177-189. https://doi.org/10.1016/0040-1951(93)90295-U [12] Lang, X.H., Tang, J.X., Li, Z.J., et al., 2014. U-Pb and Re-Os Geochronological Evidence for the Jurassic Porphyry Metallogenic Event of the Xiongcun District in the Gangdese Porphyry Copper Belt, Southern Tibet, PRC. Journal of Asian Earth Sciences, 79: 608-622. https://doi.org/10.1016/j.jseaes.2013.08.009 [13] Loadera, A.M., Wilkinsonb, J.J., Armstrongb, R.N., 2017. The Effect of Titanite Crystallisation on Eu and Ce Anomalies in Zircon and Its Implications for the Assessment of Porphyry Cu Deposit Fertility. Earth and Planetary Science Letters, 472: 107-119. https://doi.org/10.1016/j.epsl.2017.05.010 [14] Loucks, R.R., 2014. Distinctive Composition of Copper-Ore-Forming Arcmagmas. Australian Journal of Earth Sciences, 61(1): 5-16. https://doi.org/10.1080/08120099.2013.865676 [15] Lu, Y.J., Loucks, R.R., Fiorentini, M., et al., 2016. Zircon Compositions as a Pathfinder for Porphyry Cu±Mo±Au Deposits. In: Richards, J., ed., Society of Economic Geologists Special Publication No. 19 on Tethyan Tectonics and Metallogeny. Society of Economic Geologists, Littleton, 329-347. [16] Ma, L., Wang, Q., Wyman, D.A., et al., 2013. Late Cretaceous (100-89 Ma) Magnesian Charnockites with Adakitic Affinities in the Milin Area, Eastern Gangdese: Partial Melting of Subducted Oceanic Crust and Implications for Crustal Growth in Southern Tibet. Lithos, 175-176: 315-332. https://doi.org/10.1016/j.lithos.04.006 [17] Martin, H., Smithies, R., Rapp, R., et al., 2005. An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite(TTG), and Sanukitoid: Relationships and Some Implications for Crustal Evolution. Lithos, 79: 1-24. https://doi.org/10.1016/j.lithos.2004.04.048 [18] Mo, X.X., Zhao, Z.D., Deng, J.F., et al., 2003. Response of Volcanism to the India-Asia Collision. Earth Science Frontiers, 10(3): 135-148 (in Chinese with English abstract). [19] Mungall, J.E., 2002. Roasting the Mantle: Slab Melting and the Genesis of Major Au and Au-Rich Cu Deposits. Geology, 30(10): 915-918. https://doi.org/10.1130/0091-7613(2002)030<0915:RTMSMA>2.0.CO;2 doi: 10.1130/0091-7613(2002)030<0915:RTMSMA>2.0.CO;2 [20] Qu, X.M., Jiang, J.H., Xin, H.B., et al., 2010. A Study of Two Groups of Adakite almost Simulteneously Formed in Gangdese Collisional Orogen, Tibet: Why does One Group Contain Copper Mineralization and the Other Not?. Mineral Deposits, 29(3): 381-394 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201003000.htm [21] Rapp, R.P., Shimizu, N., Norman, M.D., et al., 1999. Reaction between Slab Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chemical Geology, 160: 335-356. https://doi.org/10.1016/s0009-2541(99)00106-0 [22] Reich, M., Parada, M. A., Palacios, C., et al., 2003. Adakite-Like Signature of Late Miocene Intrusions at the Los Pelambres Giant Porphyry Copper Deposit in the Andes of Central Chile: Metallogenic Implications. Mineralium Deposita, 38(7): 876-885. https://doi.org/10.1007/s00126-003-0369-9 [23] Richards, J.P., 2011. Magmatic to Hydrothermal Metal Fluxes in Convergent and Collided Margins. Ore Geology Reviews, 40(1): 1-26. https://doi.org/10.1016/j.oregeorev.2011.05.006 [24] Schiano, P., Monzier, M., Eissen, J.P., et al., 2010. Simple Mixing as the Major Control of the Evolution of Volcanic Suites in the Ecuadorian Andes. Contributions to Mineralogy and Petrology, 160: 297-312. https://doi.org/10.1007/s00410-009-0478-2 [25] Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, Londou, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19. [26] Tang, J.X., Ding, S., Meng, Z., et al., 2016. The First Discovery of the Low Sulfidation Epithermal Deposit in Linzizong Volcanics, Tibet: A Case Study of the Sinongduo Ag Polymetallic Deposit. Acta Geoscientia Sinica, 37(4): 461-470 (in Chinese with English abstract). [27] Tang, J.X., Wang, D.H., Wang, X.W., et al., 2010. Geological Features and Metallogenic Model of the Jiama Copper-Polymetallic Deposit in Tibet. Acta Geoscientica Sinica, 31(4): 495-506(in Chinese with English abstract). [28] Tang, J.X., Wang, Q., Yang, H.H., et al., 2017. Mineralization, Exploration and Resource Potential of Porphyry-Skarn-Epithermal Copper Polymetallic Deposits in Tibet. Acta Geoscientia Sinica, 38(5): 571-613 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB201705002.htm [29] Wang, Q., McDermott, F., Xu, J.F., et al., 2005. Cenozoic K-Rich Adakitic Volcanic Rocks in the Hohxil Area, Northern Tibet: Lower-Crustal Melting in an Intracontinental Setting. Geology, 33(6): 465-468. https://doi.org/10.1130/G21522.1 [30] Wang, T., 2000. Origin of Hybrid Granitoids and the Implications for Continental Dynamics. Acta Petrologica Sinica, 16(2): 161-168(in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=4156161 [31] Wen, D.R., Chung, S.L., Song, B., et al., 2008. Late Cretaceous Gangdese Intrusions of Adakitic Geochemical Characteristics, SE Tibet: Petrogenesis and Tectonic Implications. Lithos, 105(1-2): 1-11. https://doi.org/10.1016/j.lithos.02.005 [32] Xie, F.W., Tang, J.X., Chen, Y.C., et al., 2018. Apatite and Zircon Geochemistry of Jurassic Porphyries in the Xiongcun District, Southern Gangdese Porphyry Copper Belt: Implications for Petrogenesis and Mineralization. Ore Geology Reviews, 96: 98-114. https://doi.org/10.1016/j.oregeorev.2018.04.013 [33] Xu, J.F., Shinjo, R., Defant, M.J., et al., 2002. Origin of Mesozoic Adakitic Intrusive Rocks in the Ningzhen Area of East China: Partial Melting of Delaminated Lower Continental Crust?. Geology, 30(12): 1111-1114. https://doi.org/10.1130/0091-7613(2002)030<1111:OOMAIR>2.0.CO;2 doi: 10.1130/0091-7613(2002)030<1111:OOMAIR>2.0.CO;2 [34] Yang, Z.M., Hou, Z.Q., Song, Y.C., et al., 2008. Qulong Superlarge Porphyry Cu Deposit in Tibet: Geology, Alteration and Mineralization. Mineral Deposits, 27(3): 279-318 (in Chinese with English abstract). [35] Yang, Z.Y., Tang, J.X., Zhang, L.J., et al., 2020. Geological and Geochemical Characteristics of Lithocaps in Sinongduo Area, Tibet: Implications for the Mineralization in Linzizong Group Volcanic Rocks. Earth Science, 45(3): 789-803 (in Chinese with English abstract). [36] Yin, A., Harrison, T.M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28: 211-280. https://doi.org/10.1146/annurev.earth.28.1.211 [37] Zhang, Z.M., Zhao, G.C., Santosh, M., et al., 2010. Late Cretaceous Charnockite with Adakitic Affinities from the Gangdese Batholith, Southeastern Tibet: Evidence for Neo-Tethyan Mid-Ocean Ridge Subduction?. Gondwana Research, 17: 615-631. https://doi.org/10.1016/j.gr.2009.10.007 [38] Zheng, Y.F., Chen, Y.X., 2016. Continental versus Oceanic Subduction Zone. National Science Review, 3(4): 495-519. https://doi.org/10.1093/nsr/nww049 [39] Zhu, D. C., Zhao, Z.D., Niu, Y.L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23: 1429-1454. https://doi.org/10.1016/j.gr.2012.02.002 [40] Zhu, D. C., Zhao, Z. D., Pan, G. T., et al., 2009. Early Cretaceous Subduction-Related Adakite-Like Rocks of the Gangdese Belt, Southern Tibet: Products of Slab Melting and Subsequent Melt-Peridotite Interaction?. Journal of Asian Earth Sciences, 34(3): 298-309. doi: 10.1016/j.jseaes.2008.05.003 [41] 陈龙, 郑永飞, 2019. 长江中下游中生代安山质火山岩记录的新元古代大洋板片-地幔相互作用. 地球科学, 44(12): 4144-4151. doi: 10.3799/dqkx.2019.243 [42] 代作文, 李光明, 丁俊, 等, 2018. 西藏努日晚白垩世埃达克岩: 洋脊俯冲的产物. 地球科学, 43(8): 2727-2741. doi: 10.3799/dqkx.2018.230 [43] 管琪, 朱弟成, 赵志丹, 等, 2010. 西藏南部冈底斯带东段晚白垩世埃克岩: 新特提斯洋脊俯冲的产物?. 岩石学报, 26(7): 2165-2179. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201007019.htm [44] 侯增谦, 高永丰, 孟祥金, 等, 2004. 西藏冈底斯中新世斑岩铜矿带: 埃达克质斑岩成因与构造控制. 岩石学报, 20(2): 239-248. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200402005.htm [45] 姜子琦, 王强, Wyman, D.A., 等, 2011. 西藏冈底斯南缘冲木达约30 Ma埃达克质侵入岩的成因: 向北俯冲的印度陆壳的熔融?. 地球化学, 40(2): 126-146. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201102002.htm [46] 莫宣学, 赵志丹, 邓晋福, 等, 2003. 印度-亚洲大陆主碰撞过程的火山作用响应. 地学前缘, 10(3): 135-148. doi: 10.3321/j.issn:1005-2321.2003.03.013 [47] 曲晓明, 江军华, 辛洪波, 等, 2010. 西藏冈底斯造山带几乎同时形成的两套埃达克岩为什么一套含矿一套不含矿?. 矿床地质, 29(3): 381-394. doi: 10.3969/j.issn.0258-7106.2010.03.001 [48] 唐菊兴, 丁帅, 孟展, 等, 2016. 西藏林子宗群火山岩中首次发现低硫化型浅成低温热液型矿床: 以斯弄多银多金属矿为例. 地球学报, 37(4): 461-470. doi: 10.3975/cagsb.2016.04.08 [49] 唐菊兴, 王登红, 汪雄武, 等, 2010. 西藏甲玛铜多金属矿矿床地质特征及其矿床模型. 地球学报, 31(4): 495-506. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201004002.htm [50] 唐菊兴, 王勤, 杨欢欢, 等, 2017. 西藏斑岩-矽卡岩-浅成低温热液铜多金属矿成矿作用、勘查方向与资源潜力. 地球学报, 38(5): 571-613. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201705002.htm [51] 王涛, 2000. 花岗岩混合成因研究及大陆动力学意义. 岩石学报, 16(2): 161-168. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200002002.htm [52] 杨志明, 侯增谦, 宋玉财, 等, 2008. 西藏驱龙超大型斑岩铜矿床: 地质、蚀变与成矿. 矿床地质, 27(3): 279-318. doi: 10.3969/j.issn.0258-7106.2008.03.002 [53] 杨宗耀, 唐菊兴, 张乐骏, 等, 2020. 西藏斯弄多地区岩帽地质地球化学特征: 林子宗群火山岩中成矿的指示. 地球科学, 45(3): 789-803. doi: 10.3799/dqkx.2019.044