Detrital Zircon U-Pb Ages of Liangjiehe Formation in East Guizhou Province and Its Implications for Sturtian Glaciation
-
摘要: 扬子东南缘两界河组的岩性以岩屑砂岩和石英砂岩为主,代表了长安冰期和古城冰期之间的间冰期沉积,其沉积时限的厘定对认识华南Sturtian冰期地层的时空分布特征具有重要意义.对黔东地区两界河组碎屑锆石进行了系统的形态学和U-Pb年代学研究,大多数锆石为典型的岩浆锆石,锆石U-Pb年龄主要分布于740~900 Ma,另有少量古元古代和太古宙年龄,主要峰值为~760 Ma、~780 Ma、~800 Ma、~820 Ma和880~900 Ma.在两界河组底部获得最年轻的单颗粒锆石年龄为708±15 Ma,在上部获得最年轻的单颗粒锆石年龄为703±22 Ma,结合区域上相当地层渫水河组的顶部年龄(~690 Ma),认为黔东地区两界河组的沉积时代应在708~690 Ma之间.两界河组碎屑锆石U-Pb年龄谱记录了扬子陆块新元古代幕式岩浆事件及早期地壳演化的信息,结合锆石形态认为其物质来源可能包括下伏新元古代岩浆岩及沉积地层、扬子西北缘和西南缘的基底岩石.研究区两界河组底部碎屑锆石年龄约束了江口间冰期沉积晚于~708 Ma,考虑到南华纪早期地层分布在一定程度上受控于盆地构造活动,不排除长安冰期沉积物在黔东地区局部存在的可能性.Abstract: The Liangjiehe Formation is the interglacial stratum between Chang'an and Gucheng glaciations in the southeastern Yangtze Block, and the lithology is dominated by detrital sandstone and quartz sandstone. For a better understanding of the temporal and spatial distribution of the Sturtian glacigenic strata in South China, it is important to determine the depositional age of the Liangjiehe Formation. In this study, systematical morphology and zircon U-Pb dating were carried out on detrital zircons from the Liangjiehe Formation in the eastern Guizhou. Most of the detrital zircons are of magmatic origin, and have a main 206Pb/238U age range of 740-900 Ma and minor populations of Paleoproterozoic-Archean ages, with peaks at~760 Ma, ~780 Ma, ~800 Ma, ~820 Ma and 880-900 Ma. The youngest single-grain zircon obtained at the bottom of the Liangjiehe Formation gives the age of 708±15 Ma, and the youngest single-grain zircon from the upper part gives the age of 703±22 Ma. Taking into account the topmost age~690 Ma of the contemporary stratum (Xieshuihe Formation), it is suggested that the Liangjiehe Formation was most likely deposited at 708-690 Ma. The detrital zircon U-Pb age spectrum of the Liangjiehe Formation records the Neoproterozoic episodic tectonic-magmatic events and the information for the early crustal evolution of Yangtze Block. The zircon morphology indicates that the provenances of the Liangjiehe Formation may include the underlying Neoproterozoic magmatic and sedimentary strata, and the basement rocks from the northwestern and southwestern Yangtze Block. The detrital zircon U-Pb dating at the bottom of the Liangjiehe Formation constrained the interglacial deposition later than~708 Ma. Considering that the stratigraphic distribution in the early Nanhua period is partly controlled by basin tectonic activities, the Chang'an glacial deposit may exist locally in eastern Guizhou.
-
Key words:
- Yangtze Block /
- Liangjiehe Formation /
- detrital zircon /
- Jiangkou glaciation /
- interglaciation /
- geochronology
-
图 6 扬子东南缘Sturtian冰期地层对比简图
据Lan et al.(2014, 2015b)、Hu and Zhu (2020).图中地层厚度为相对厚度
Fig. 6. Schematic correlation of the Sturtian glacigenic strata in southeastern Yangtze Block
图 5 两界河组与下江群、板溪群碎屑锆石年龄谱对比图
下江群和板溪群年龄谱据Wang et al.(2010)和Song et al.(2017)
Fig. 5. Correlation of U-Pb age spectrum of detrital zircons from the Liangjiehe Formation, Banxi Group and Xiajiang Group
-
[1] Bai, D.Y., Jia, B.H., Liu, W., et al., 2010. Zircon SHRIMP U-Pb Dating of the Igneous Rocks from Chengbu, Hunan:Constraint on the Neoproterozoic Tectonic Evolution of the Jiangnan Orogenic Belt. Acta Geologica Sinica, 84(12):1715-1726 (in Chinese with English abstract). http://www.researchgate.net/publication/292588818_Zircon_SHRIMP_U-Pb_dating_of_the_igneous_rocks_from_Chengbu_Hunan_constraint_on_the_Neoproterozoic_tectonic_evolution_of_the_Jiangnan_Orogenic_Belt [2] Bao, X. J., Zhang, S. H., Jiang, G. Q., et al., 2018. Cyclostratigraphic Constraints on the Duration of the Datangpo Formation and the Onset Age of the Nantuo (Marinoan) Glaciation in South China. Earth and Planetary Science Letters, 483:52-63. https://doi.org/10.1016/j.epsl.2017.12.001 [3] Cai, J.J., Cui, X.Z., Lan, Z.W., et al., 2018. Onset Time and Global Correlation of the Cryogenian Glaciations in Yangtze Block, South China. Journal of Palaeogeography, 20(1):65-86 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb201801006 [4] Calver, C. R., Crowley, J. L., Wingate, M. T. D., et al., 2013. Globally Synchronous Marinoan Deglaciation Indicated by U-Pb Geochronology of the Cottons Breccia, Tasmania, Australia. Geology, 41(10):1127-1130. https://doi.org/10.1130/g34568.1 doi: 10.1130/G34568.1 [5] Chen, J.S., Dai, C.G., Peng, C.L., et al., 2014. The Neoproterozoic Jialu Formation in Eastern Guizhou and Adjacent Area:Rock Stratigraphic Correlation and Its Paleogeographic Significance. Acta Sedimentologica Sinica, 32(1):19-26 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-CJXB201401003.htm [6] Cui, X. Z., Wang, J., Ren, G. M., et al., 2020. Paleoproterozoic Tectonic Evolution of the Yangtze Block:New Evidence from ca. 2.36 to 2.22 Ga Magmatism and 1.96 Ga Metamorphism in the Cuoke Complex, SW China. Precambrian Research, 337:105525. https://doi.org/10.1016/j.precamres.2019.105525 [7] Cui, X. Z., Wang, J., Sun, Z. M., et al., 2019. Early Paleoproterozoic (ca. 2.36 Ga) Post-Collisional Granitoids in Yunnan, SW China:Implications for Linkage between Yangtze and Laurentia in the Columbia Supercontinent. Journal of Asian Earth Sciences, 169:308-322. https://doi.org/10.1016/j.jseaes.2018.10.026 [8] Gao, L.Z., Dai, C.G., Liu, Y.X., et al., 2010. Zircon SHRIMP U-Pb Dating of the Tuffaceous Bed of Xiajiang Group in Guizhou Province and Its Stratigraphic Implication. Geology in China, 37(4):1071-1080 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201004021 [9] Hu, C. L., Zhu, M. Y, 2020. Lithofacies and Glacio-tectonic Deformation Structures of the Tiesi'ao/Dongshanfeng Formation on the Yangtze Block, South China:Implications for Sturtian Glaciation Dynamics. Palaeogeography, Palaeoclimatology, Palaeoecology, 538:109481. https://doi.org/10.1016/j.palaeo.2019.109481 [10] Han, P. Y., Guo, J. L., Chen, K., et al., 2017. Widespread Neoarchean (~2.7-2.6 Ga) Magmatism of the Yangtze Craton, South China, as Revealed by Modern River Detrital Zircons. Gondwana Research, 42:1-12. https://doi.org/10.1016/j.gr.2016.09.006 [11] Huang, M. D., Cui, X. Z., Ren, G. M., et al., 2020. The 2.73 Ga I-Type Granites in the Lengshui Complex and Implications for the Neoarchean Tectonic Evolution of the Yangtze Craton. International Geology Review, 62(6):649-664. https://doi.org/10.1080/00206814.2019.1627591 [12] Lan, Z. W., Li, X. H., Zhu, M. Y., et al., 2014. A Rapid and Synchronous Initiation of the Wide Spread Cryogenian Glaciations. Precambrian Research, 255:401-411. https://doi.org/10.1016/j.precamres.2014.10.015 [13] Lan, Z. W., Li, X. H., Zhu, M. Y., et al., 2015a. Revisiting the Liantuo Formation in Yangtze Block, South China:SIMS U-Pb Zircon Age Constraints and Regional and Global Significance. Precambrian Research, 263:123-141. https://doi.org/10.1016/j.precamres.2015.03.012 [14] Lan, Z. W., Li, X. H., Zhang, Q. R., et al., 2015b. Global Synchronous Initiation of the 2nd Episode of Sturtian Glaciation:SIMS Zircon U-Pb and O Isotope Evidence from the Jiangkou Group, South China. Precambrian Research, 267:28-38. https://doi.org/10.1016/j.precamres.2015.06.002 [15] Liu, Y., Yang, K. G., Polat, A., et al., 2019. Reconstruction of the Cryogenian Palaeogeography in the Yangtze Domain:Constraints from Detrital Age Patterns. Geological Magazine, 156(7):1247-1264. https://doi.org/10.1017/s0016756818000535 doi: 10.1017/S0016756818000535 [16] Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15):1535-1546. https://doi.org/10.1007/s11434-010-3052-4 [17] Qin, Y.J., Du, Y.S., Mou, J., et al., 2015. Geochronology of Neoproterozoic Xiajiang Group in Southeast Guizhou, South China, and Its Geological Implications. Earth Science, 40(7):1107-1131 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201507001 [18] Rooney, A. D., Strauss, J. V., Brandon, A. D., et al., 2015. A Cryogenian Chronology:Two Long-Lasting Synchronous Neoproterozoic Glaciations. Geology, 43(5):459-462. https://doi.org/10.1130/g36511.1 doi: 10.1130/G36511.1 [19] Song, F., Niu, Z.J., He, Y.Y., et al., 2019. Sedimentary Sequence, Provenance and Stratigraphic Correlation of Nanhuan System in Middle Hunan Province. Earth Science, 44(9):3074-3087 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201909020 [20] Song, G. Y., Wang, X. Q., Shi, X. Y., et al., 2017. New U-Pb Age Constraints on the Upper Banxi Group and Synchrony of the Sturtian Glaciation in South China. Geoscience Frontiers, 8(5):1161-1173. https://doi.org/10.1016/j.gsf.2016.11.012 [21] Wang, D., Zhu, X. K., Zhao, N. N., et al., 2019. Timing of the Termination of Sturtian Glaciation:SIMS U-Pb Zircon Dating from South China. Journal of Asian Earth Sciences, 177:287-294. https://doi.org/10.1016/j.jseaes.2019.03.015 [22] Wang, K., Li, Z. X., Dong, S. W., et al., 2018. Early Crustal Evolution of the Yangtze Craton, South China:New Constraints from Zircon U-Pb-Hf Isotopes and Geochemistry of ca. 2.9-2.6 Ga Granitic Rocks in the Zhongxiang Complex. Precambrian Research, 314:325-352. https://doi.org/10.1016/j.precamres.2018.05.016 [23] Wang, J. Q., Shu, L. S., Santosh, M., 2017. U-Pb and Lu-Hf Isotopes of Detrital Zircon Grains from Neoproterozoic Sedimentary Rocks in the Central Jiangnan Orogen, South China:Implications for Precambrian Crustal Evolution. Precambrian Research, 294:175-188. https://doi.org/10.1016/j.precamres.2017.03.025 [24] Wang, L.J., Griffin, W. L., Yu, J., et al., 2010. Precambrian Crustal Evolution of the Yangtze Block Tracked by Detrital Zircons from Neoproterozoic Sedimentary Rocks. Precambrian Research, 177(1):131-144. https://doi.org/10.1016/j.precamres.2009.11.008 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b574b3ba0444da64fbfafa17c2bfab0b [25] Wang, M., Dai, C.G., Wang, X.H., et al., 2011. In-Situ Zircon Geochronology and Hf Isotope of Muscovite-Bearing Leucogranites from Fanjingshan, Guizhou Province, and Constraints on Continental Growth of the Southern China Block. Earth Science Frontiers, 18(5):213-223 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201105021 [26] Wang, X. C., Li, X. H., Li, Z. X., et al., 2012. Episodic Precambrian Crust Growth:Evidence from U-Pb Ages and Hf-O Isotopes of Zircon in the Nanhua Basin, Central South China. Precambrian Research, 222:386-403. https://doi.org/10.1016/j.precamres.2011.06.001 [27] Wang, X.L., Zhou, J.C., Qiu, J.S., et al., 2006. Petrogenesis of the Neoproterozoic Strongly Peraluminons Granitoids from Northern Guangxi:Constraints from Zircon Geochronology and Hf Isotopes. Acta Petrologica Sinica, 22(2):326-342 (in Chinese with English abstract). http://www.researchgate.net/publication/279707104_Petrogenesis_of_the_Neoproterozoic_strongly_peraluminous_granitoids_from_Northern_Guangxi_Constraints_from_zircon_geochronology_and_Hf_isotopes [28] Wang, Z.J., Wang, J., Jiang, X.S., et al., 2015. New Progress for the Stratigraphic Division and Correlation of Neoproterozoic in Yangtze Block, South China. Geological Review, 61(1):1-22 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201501001 [29] Wang, Z.J., Xu, X.S., Du, Q.D., et al., 2013. Discussion on the Bottom of Nanhua System:Evidences from Sedimentology and Isotopic Geochronology. Advances in Earth Science, 28(4):477-489 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_advances-earth-science_thesis/0201253010680.html [30] Yao, J. L., Shu, L. S., Santosh, M., et al., 2014. Neoproterozoic Arc-Related Mafic-Ultramafic Rocks and Syn-collision Granite from the Western Segment of the Jiangnan Orogen, South China:Constraints on the Neoproterozoic Assembly of the Yangtze and Cathaysia Blocks. Precambrian Research, 243:39-62. https://doi.org/10.1016/j.precamres.2013.12.027 [31] Yin, H.F., Yu, J.X., Luo, G.M., et al., 2018. Biotic Influence on the Formation of Icehouse Climates in Geologic History. Earth Science, 43(11):3809-3822 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201811002 [32] Zhang, S.H., Jiang, G.Q., Dong, J., et al., 2008. SHRIMP Zircon U-Pb Geochronology of Wuqiangxi Formation, Banxi Group, South China and Its Tectonic Significance. Scientia Sinica Terrae, 38(12):1496-1503 (in Chinese). [33] Zhang, Q.R., Lan, Z.W., 2016. An Update on the Chronostratigraphy of the Nanhuan System. Journal of Stratigraphy, 40(3):297-301 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcxzz201603008 [34] Zhang, Q. R., Li, X. H., Feng, L. J., et al., 2008. A New Age Constraint on the Onset of the Neoproterozoic Glaciations in the Yangtze Platform, South China. The Journal of Geology, 116(4):423-429. https://doi.org/10.1086/589312 [35] Zhou, C. M., Huyskens, M. H., Lang, X. G., et al., 2019. Calibrating the Terminations of Cryogenian Global Glaciations. Geology, 47(3):251-254. https://doi.org/10.1130/g45719.1 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5e0bd87558b75967dda59c68007aee2e [36] Zhou, J. L., Li, X. H., Tang, G. Q., et al., 2018. Ca. 890 Ma Magmatism in the Northwest Yangtze Block, South China:SIMS U-Pb Dating, In-Situ Hf-O Isotopes, and Tectonic Implications. Journal of Asian Earth Sciences, 151:101-111. https://doi.org/10.1016/j.jseaes.2017.10.029 [37] 柏道远, 贾宝华, 刘伟, 等, 2010.湖南城步火成岩锆石SHRIMP U-Pb年龄及其对江南造山带新元古代构造演化的约束.地质学报, 84(12):1715-1726. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201012001 [38] 蔡娟娟, 崔晓庄, 兰中伍, 等, 2018.华南扬子陆块成冰纪冰川作用的启动时限及其全球对比.古地理学报, 20(1):65-86. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb201801006 [39] 陈建书, 戴传固, 彭成龙, 等, 2014.黔东及邻区新元古代甲路组岩石地层对比及其古地理意义.沉积学报, 32(1):19-26. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201401003 [40] 高林志, 戴传固, 刘燕学, 等, 2010.黔东地区下江群凝灰岩锆石SHRIMP U-Pb年龄及其地层意义.中国地质, 37(4):1071-1080. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201004021 [41] 覃永军, 杜远生, 牟军, 等, 2015.黔东南地区新元古代下江群的地层年代及其地质意义.地球科学, 40(7):1107-1131. doi: 10.3799/dqkx.2015.093 [42] 宋芳, 牛志军, 何垚砚, 等, 2019.湘中地区南华系沉积序列、物源特征及区域对比.地球科学, 44(9):3074-3087. doi: 10.3799/dqkx.2019.065 [43] 王敏, 戴传固, 王雪华, 等, 2011.贵州梵净山白云母花岗岩锆石年代、铪同位素及对华南地壳生长的制约.地学前缘, 18(5):213-223. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201105021 [44] 王孝磊, 周金城, 邱检生, 等, 2006.桂北新元古代强过铝花岗岩的成因:锆石年代学和Hf同位素制约.岩石学报, 22(2):326-342. http://www.cqvip.com/Main/Detail.aspx?id=21474800 [45] 汪正江, 王剑, 江新胜, 等, 2015.华南扬子地区新元古代地层划分对比研究新进展.地质论评, 61(1):1-22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201501001 [46] 汪正江, 许效松, 杜秋定, 等, 2013.南华冰期的底界讨论:来自沉积学与同位素年代学证据.地球科学进展, 28(4):477-489. http://qikan.cqvip.com/Qikan/Article/Detail?id=45438364 [47] 殷鸿福, 喻建新, 罗根明, 等, 2018.地史时期生物对冰室气候形成的作用.地球科学, 43(11):3809-3822. doi: 10.3799/dqkx.2018.117 [48] 张世红, 蒋干清, 董进, 等, 2008.华南板溪群五强溪组SHRIMP锆石U-Pb年代学新结果及其构造地层学意义.中国科学:地球科学, 38(12):1496-1503. http://www.cnki.com.cn/Article/CJFDTotal-JDXK200812003.htm [49] 张启锐, 兰中伍, 2016.南华系、莲沱组年龄问题的讨论.地层学杂志, 40(3):297-301. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcxzz201603008