• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    抚顺盆地中-晚始新世古植被与古气候

    韦一 杨兵 夏浩东 邓会娟

    韦一, 杨兵, 夏浩东, 邓会娟, 2021. 抚顺盆地中-晚始新世古植被与古气候. 地球科学, 46(5): 1848-1861. doi: 10.3799/dqkx.2020.142
    引用本文: 韦一, 杨兵, 夏浩东, 邓会娟, 2021. 抚顺盆地中-晚始新世古植被与古气候. 地球科学, 46(5): 1848-1861. doi: 10.3799/dqkx.2020.142
    Wei Yi, Yang Bing, Xia Haodong, Deng Huijuan, 2021. Paleovegetation and Paleoclimate during Mid-Late Eocene in Fushun Basin. Earth Science, 46(5): 1848-1861. doi: 10.3799/dqkx.2020.142
    Citation: Wei Yi, Yang Bing, Xia Haodong, Deng Huijuan, 2021. Paleovegetation and Paleoclimate during Mid-Late Eocene in Fushun Basin. Earth Science, 46(5): 1848-1861. doi: 10.3799/dqkx.2020.142

    抚顺盆地中-晚始新世古植被与古气候

    doi: 10.3799/dqkx.2020.142
    基金项目: 

    国家自然科学基金项目 41702366

    中央高校基本科研业务费项目 3142018004

    中央高校基本科研业务费项目 3142018025

    详细信息
      作者简介:

      韦一(1989-), 女,讲师,博士,主要从事新生代微体古生物研究. ORCID: 0000-0003-2568-2186. E-mail: ostracods@126.com

      通讯作者:

      杨兵, ORCID: 0000-0002-8088-2247.E-mail: yangbing0932@126.com

    • 中图分类号: P52

    Paleovegetation and Paleoclimate during Mid-Late Eocene in Fushun Basin

    • 摘要: 为重建东北地区中-晚始新世古气候,对抚顺盆地孢粉进行传统鉴定,利用有序聚类分析划分孢粉组合,结合共存分析法对孢粉组合定量化以建立研究区的古气候参数值.鉴定出孢粉67属,划分出(Ⅰ)Quercoidites- Tricolpopollenites- Betulaceoipollenites组合;(Ⅱ)Piceapollis-Tiliaepollenites-Chenopodipollis组合;(Ⅲ)Quercoidites-Betulaceoipollenites-Ulmipollenites组合;(Ⅳ)Pinuspollenites-Abietineaepollenites-Ephedripites组合;(Ⅴ)Betulaceoipollenites-Taxodiaceaepollenites-Quercoidites组合,其中组合Ⅰ、Ⅱ、Ⅲ时代为中始新世;组合Ⅳ、Ⅴ时代为晚始新世.植被类型也经历了:落叶阔叶林-草原型植被→针阔叶混交林-草原型植被→落叶阔叶林-草原型植被→针叶林→针阔叶混交林的转变.气候带经历了由亚热带、亚热带-温带湿润性气候向温带半湿润性气候的转变,年均温和年降雨量均呈降低的趋势,这些变化趋势与全球温度变化趋势相耦合.

       

    • 图  1  抚顺盆地地质简图

      Fig.  1.  Geological sketch of Fushun basin

      图  2  抚顺盆地东露天剖面中-晚始新世部分典型孢粉

      1.Rutaceoipollis; 2.Abietineaepollenites; 3.Tiliaepollenites; 4.Deltoidospora; 5.Ostryoipollenites; 6.Juglanspollenites; 7.Betulaceoipollenites; 8.Polypodiaceaesporites; 9.Taxodiaceaepollenites; 10. Labitricolpites; 11.Pinuspollenites; 12.Abiespollenites; 13.Carpinipites; 14.Ulmipollenites; 15.Tricolporopollenites; 16.Laricoidites; 17.Cupuliferoipollenites; 18.Momipites; 19.Quercoidites; 20.Piceapollis(图中比例尺=20 μm)

      Fig.  2.  Major representatives of spore and pollen of Donglutian section in Fushun basin through the Mid-Late Eocene

      图  3  抚顺盆地东露天剖面中-晚始新世重要孢粉垂向分布

      裸子植物:(1)Pinuspollenites;(2) Abietineaepollenites; (3) Podocarpidites;(4) Piceapollis;(5) Abiespollenites;(6) Keteleeris; (7) Taxodiaceaepollenites (8) Inaperturopollenites;(9) Ephedripites;被子植物:(木本)(10)Betulaceoipollenites; (11)Carpinipiter; (12)Ostryoipollenites;(13)Triporopollenites (14)Alnipollenites; (15) Juglanspollenites;(16) Momipites;(17)Caryapollenites;(18) Tiliaepollenites;(19)Ulmipollenites;(20) Quercoidites;(21) Cupuliferoipollenites;(22)Elaeangnacites;(23) Pokrovskaja;(24) Eaphorbiacties;(25) Rutaceoipollis;被子植物(草本):(26) Graminidites; (27)Artemisiaepollenites;(28) Chenopodipollis;(29)Labitricolpites;(30) Persicarioipollis; (31) Liliipollis;(32) Tricolpopollenites; (33) Tricolpites; (34) Tricolporopollenites; 蔗类植物:(35) Deltoidopora; (36)Polypodiaceaesporites;(37) Lygodiumsporites; (38)Toroisporis

      Fig.  3.  Vertical distribution of major representatives of spore and pollen of Donglutian section in Fushun basin through the Mid-Late Eocene

      图  4  抚顺盆地始新世中晚期孢粉母体植物生态组合与气候划分示意

      气候带中温带包括温带、亚热带‒温带

      Fig.  4.  Palynofloras in the Mid-Late Eocene in Fushun basin and climate division

      图  5  抚顺盆地各气候期植被变迁示意

      1.Pediastrum(藻); 2.Taxodiaceaepollenites; 3.Quercoidits; 4.Tricolpopollenites; 5.Betulaceoipollenites; 6.Juglanspollenites; 7.Carpinipites; 8.Piceapollis; 9.Pinuspollenites; 10.Abietineaepollenites; 11.蕨类; 12.Tiliaepollenites; 13.Ulmipollenites; 14.Ephedripites

      Fig.  5.  Vegetation evolution of each climate stage during the Mid-Late Eocene of Fushun basin

      图  6  共存分析法原理示意

      据Mosbrugger and Utescher(1997)修改

      Fig.  6.  Basic principle of the co-existence approach

      图  7  中晚始新世深海温度变化曲线与抚顺盆地气候期对比

      中晚始新世深海温度变化曲线据Zachos et al.(2001);该曲线与全球温度变化趋势大体一致

      Fig.  7.  Comparison of deep sea temperature curves with climate stages in Fushun basin during the Mid-Late Eocene

      表  1  抚顺盆地东露天剖面孢粉组合与黑龙江依兰达连河组、百色盆地、渤海湾盆地孢粉组合对比

      Table  1.   Comparison of spore and pollen assemble among Donglutian section in Fushun basin, Yilandalianhe Formation in Heilongjiang Province, Baise basin and Bohai bay basin

      时代 本文 黑龙江依兰盆地
      刘牧灵,1990
      海南省北部湾盆地
      谢金有等,2012
      渤海湾盆地
      姚益民等,1994
      晚始新世 Betulaceoipollenites-Taxodiaceaepollenites-Quercoidites组合 Quercoidites-Cupuliferoipollenites组合 Quercoidites-Leiotriletes-Granodiscus granulatus组合 Taxodiaceaepollenltes elongatus-Alnipollenites-Polypodiaceaesporites组合
      Pinuspollenites-Abietineaepollenites-Ephedripites组合 ?
      中始新世 Quercoidites-Betulaceoipollenites-Ulmipollenites组合 Quercoidites-Taxodiaceaepollenites组合 Quercoidites-Ulmipollenites-Pentapollenites组合 Quercoidites microhenrici-Ulmipollenites minor组合
      Piceapollis-Tiliaepollenites-Chenopodipollis组合 Ephedripites-Taxodioceaepollenites-Ulmoideipites tricostatus组合
      Quercoidites-Tricolpopollenites-Betulaceoipollenites组合
      下载: 导出CSV

      表  2  抚顺盆地中-晚始新世孢粉植物群和其现存最近亲缘类群以及其参数

      Table  2.   Palynofloras and their nearest living relatives in Fushun basin through the Mid-Late Eocene in Fushun basin and their climatic amplitudes

      孢粉类型 现存最近亲缘类群 年均温(℃) 年降雨量(mm)
      Min Max Min Max
      裸子植物
      Cycadopites Cycas# 11.3 24.7 613.8 1 942.5
      Ginkgoretectina Ginkgo# 10.2 19.8 658.7 1 785.2
      Pinuspollenites Pinus* -5.2 24.7 170.5 2 822.70
      Abietineaepollenites Pinus* -5.2 24.7 170.5 2 822.70
      Podocarpidites Podocarpus 8.5 24.7 797.5 1 653.5
      Cedripites Cedrus 10.2 20.9 33.4 1 663.9
      Piceapollis Picea -4.9 22.7 291.6 1 815.60
      Abiespollenites Abies 2.8 23 170.5 1 785.2
      Keteleeris Keteleeria# 14.3 24.7 613.8 1 815.60
      Taxodiaceaepollenites Taxodiaceae * 5.7 24.7 459.5 2 447.1
      Inaperturopollenites Taxodiaceae* 5.7 24.7 459.5 2 447.1
      Ephedripites Ephedra* -4.9 19.8 16.4 1 113.3
      被子植物
      Betulaceoipollenites Betula -4.9 23.2 291.6 1 815.6
      Carpinipites Carpinus 2.3 25.5 570.3 1 785.2
      Ostryoipollenites Betulaceae -4.9 23.2 291.6 1 815.6
      Triporopollenites Betulaceae -4.9 23.2 291.6 1 815.6
      Alnipollenites Alnus* -5.2 23.8 355.2 2 394.5
      Juglanspollenites Juglans* -1.6 23 257.5 2 074.4
      Pterocaryapollenites Pterocarya 5.7 23.8 257.5 1 540.2
      Momipites Corylus * -3.2 21.9 318.5 2 394.5
      Caryapollenites Carya* 14.2 22.6 601.1 1 942.5
      Tiliaepollenites Tilia* -5.2 22.6 209.1 2 394.5
      Ulmipollenites Ulmus * -5.2 25.5 16.4 1 900.3
      Quercoidites Quercus* -5.2 25.5 209.1 1 900.3
      Cupuliferoipollenites Castanopsis* 5.4 25.5 613.8 2 822.7
      Cyrillaceaepollenites Anacardiaceae* -1.2 25.5 61.5 2 822.7
      Faguspollenites Fagus* 5.7 22.6 554.9 2 394.5
      Talisiipites Sapindaceae 4.8 25.5 213.7 1 785.2
      Rhoipites Rhus* -0.4 23.8 277.6 2 394.5
      Moraceoipollenites Moraceae 3.97 27.17 - -
      Salixipollenites Salix* -5.2 23.8 16.4 1 942.5
      Lonicerapollis Caprifoliaceae -4.1 25.5 303.9 1 869.9
      Ilexpollenites Ilex* -1.2 25.5 201.6 2 822.7
      Euphorbiacites Euphorbiaceae* -5.2 25.5 33.4 2 822.7
      Rutaceoipollis Rutaceae -5.2 25.5 61.5 1 869.9
      Symplocoipollenites Symplocaceae* -0.4 25.5 318.5 2 822.9
      Graminidites Gramineae -4.9 25.5 303.9 2 447.1
      Artemisiaepollenites Artemisia -4.9 25.5 303.9 1 869.9
      Tubulifloridites Compositae -4.9 24.7 303.9 1 869.9
      Chenopodipollis Chenopodiaceae -5.2 26.5 303.9 1 869.9
      Labitricolpites Labiatae -4.9 24.7 16.4 1 942.5
      Stephanocolpites Labiatae -4.9 24.7 16.4 1 942.5
      Cruciferaeipites Cruciferae* -5.2 24.7 16.4 2 129.5
      Persicarioipollis Polygonaceae -4.9 24.7 16.4 1 785.2
      Cyperaceaepollis Cyperaceae -4.9 25.5 303.9 1 254.7
      Haloragacidites Myriophyllum -5 25.5 303.9 1 254.7
      Monocolpopollenites Palmae* 8.5 25.5 474.6 2 822.7
      Tricolpites Hamamelidaceae 8.5 25.5 531 1 293.7
      注:#史冀忠等(2008);*据姚轶锋(2006);其他据徐景先(2002).
      下载: 导出CSV

      表  3  抚顺盆地、长昌盆地以及珲春始新世气候参数对比

      Table  3.   Comparison of climatic amplitudes among Fushun basin, Changchang basin and Hunchun in Eocene

      抚顺盆地 长昌盆地
      姚轶锋,2006
      吉林珲春
      寇香玉,2005
      气候参数 气候期Ⅴ:MAT:8.5~19.8 ℃;MAP:613.8~1 113.3 mm MAT:
      14.2~19.4 ℃;
      MAP:797.5~1 113.3 mm
      MAT:
      14.2~14.9 ℃;
      MAP:797.5~1 344 mm
      气候期Ⅳ:MAT:5.7~19.8 ℃;MAP:459.5~1 113.3 mm
      气候期Ⅲ:MAT:14.2~20.9 ℃;MAP:570.3~1 254.7 mm
      气候期Ⅱ:MAT:8.5~22.6 ℃;MPT:797.5~1 293.7 mm
      气候期Ⅰ:MAT:14.3~19.8 ℃;MAP:797.5~1 293.7 mm
      下载: 导出CSV
    • [1] Che, Q. P., Fang, D. Q., Shao, K. Z., et al., 1994. New Development in the Study of the Xilutian Formation of the Eocene in Fushun Coal Field in Biostratigraphy. Journal of Daqing Petroleum Institute, 18 (1): 11-16 (in Chinese with English abstract). doi: 10.1074/jbc.M008467200
      [2] Chen, Z. L., Ding, Z. L., Tang, Z. H., et al., 2017. Paleoweathering and Paleoenvironmental Change Recorded in Lacustrine Sediments of the Early to Middle Eocene in Fushun Basin, Northeast China. Geochemistry, Geophysics, Geosystems, 18: 41-51. https://doi.org/10.1002/2016GC006573
      [3] Chinese Vegetation Editorial Committee, 1980. Vegetation of China. Science Press, Beijing (in Chinese).
      [4] Fluteau, F., Ramstein, G., Besse, J., 1999. Simulating the Evolution of the Asian and African Monsoons during the Past 30 Myr Using an Atmospheric General Circulation Model. Journal of Geophysical Resarch, 104: 11995-12018. https://doi.org/10.1029/1999JD900048
      [5] Hong, Y. C., Yang, Z. Q., Wang, S. T., et al., 1974. Stratigraphy and Palaeontology of Fushun Coal-Field, Liaoning Province. Acta Geologica Sinica, 48(2): . 113-149 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZXE197402006.htm
      [6] Kou, X. Y., 2005. Studies on Quantitative Reconstruction of Cenozoic Climates in China by Palynological Data (Dissertation). Institute of Botany, Chinese Academy of Sciences, Beijing (in Chinese with English abstract).
      [7] Liu, L. J., Li, C. A., Jie, D. M., et al., 2018. Paleoclimate Recorded by Phytolith in Anguli-Nuur Lake since Mid-Late Holocene. Earth Science, 43 (11): 4138-4148 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201811030.htm
      [8] Liu, M., Zhang, Y. J., Sun, S. L., et al., 2019. Palynological Assemblages of Beipiao Formation in Jinyang Basin of West Liaoning, and Their Age and Paleoclimatic Significances. Earth Science, 44(10): 3395-3408 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201910016.htm
      [9] Liu, M. L., 1990. Upper Cretaceous and Tertiary Palynoassemblage Sequences in Northeast China. Journal of Stratigraphy, 14(4): 277-285 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DCXZ199004002.htm
      [10] Miao, Y. F., Fang, X. M., Song, Z. C., et al., 2008. Eocene Sporopollen Records and Ancient Climate Change of Northern Tibetan Plateau. Science in China (Series D: Earth Sciences), 38(2): 187-196 (in Chinese).
      [11] Mosbrugger, V., Utescher, T., 1997. The Coexistence Approach: A Method for Quantitative Reconstruction of Tertiary Terrestrial Paleoclimate Data Using Plant Fossils. Palaeogeography, Palaeoclimatology, Palaeoecology, 134: 61-86. https://doi.org/10.1016/s0031-0182(96)00154-x doi: 10.1016/S0031-0182(96)00154-X
      [12] Qu, S. Q., 1993. Characteristic and Its Geological Significance of the Palynological Assemblage of the Lower Tertiary Gengjiajie Group in Fushun Basin. Journal of Changchun University of Earth Sciences, 23(4): 411-415 (in Chinese with English abstract).
      [13] Shi, J. Z., Liu, Z. J., Liu, R., et al, 2008. Quantitative Reconstruction of the Eocene Palaeoclimate in the Fushun Basin, Liaoning Province. Journal of Jilin University (Earth Science Edition), 38(1): 50-55 (in Chinese with English abstract).
      [14] Song, Z. C., Cao, L., 1976. The Paleocene Spores and Pollen Grains from the Fushun Coalfield, Northeast China. Acta Palaeontologica Sinica, 15(2): 147-162 (in Chinese with English abstract).
      [15] Song, Z. C., Liu, G. W., 1982. Early Tertiary Palynoflora and Its Significance of Palaeogeography from Northern and Eastern Xizang. In: Geological Expedition Team of Qinghai-Tibet Plateau, Chinese Academy of Sciences, ed., Palaeontology of Xizang Book 5. Science Press, Beijing, 165-190 (in Chinese).
      [16] Wang, W. M., Zhang, D. H., 1990. Tertiary Sporo-Pollen Assemblages from the Shangdou-Huade Basin, Inner Mogolia―With Discussion on the Formation of Steppe Vegetation in China. Acta Micropalaeontologica Sinica, 7(3): 239-253 (in Chinese with English abstract).
      [17] Wang, X. M., Wang, M. Z., Zhang, X. Q., 2005. Palynology Assemblages and Paleoclimatic Character of the Late Eocene to the Early Oligocene in China. Earth Science, 30(3): 309-316 (in Chinese with English abstract).
      [18] Wei, Y., Zhang, K. X., Garzione, C. N., et al., 2016. Low Palaeoelevation of the Northern Lhasa Terrane during Late Eocene: Fossil Foraminifera and Stable Isotope Evidence from the Gerze Basin. Scientific Reports, 6(1): 1-8. https://doi.org/10.1038/srep27508 doi: 10.1038/s41598-016-0001-8
      [19] Xia, X. F., Zhang, N., Yu, J. X., et al., 2015. Eocene-Oligocene Palynology and Biostratigraphic Correlation in the Nanpu Sag, Bohai Bay Basin, N. China. Acta Micropalaeontologica Sinica, 32(3): 269-284 (in Chinese with English abstract).
      [20] Xie, J. Y., Li, J., Mai, W., et al., 2012. Palynofloras and Age of the Liushagang and Weizhou Formations in the Beibuwan Basin, South China Sea. Acta Palaeontologica Sinica, 51(3): 385-394 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GSWX201203012.htm
      [21] Xu, J. X., 2002. Palynology, Paleovegetation and Paleoclimate of Neogene Central-Western Yunnan, China (Dissertation). Institute of Botany, Chinese Academy of Sciences, Beijing (in Chinese with English abstract).
      [22] Xu, J. X., Wang, Y. F., Li, C. S., 2000. A Method for Quantitative Reconstruction of Tertiary Palaeoclimate and Environment-The Coexistence Approach. In: Advances in Plant Sciences. Higher Education Press, Beijing, 195-203 (in Chinese).
      [23] Yao, Y. F., 2006. Eocene Palynoflora from Changchang Basin, Hainan Island and Its Bearing on the Implications of Palaeovegetation and Palaeoclimate (Dissertation). Institute of Botany. Chinese Academy of Sciences, Beijing (in Chinese with English abstract).
      [24] Yao, Y. M., Liang, H.D., Cai, Z.G., et al., 1994. Tertiary in Petroliferous Regions of China (Ⅳ): Bohai Gulf Basin. Petroleum Industry Press, Beijing, 1-76 (in Chinese).
      [25] Zachos, J, C., Pagani, M., Sloan, L., et al., 2001. Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. Science, 292: 686-693. https://doi.org/10.1126/science.1059412
      [26] Zhang, Z. S., Wang, H. J., Guo Z. T., et al., 2006. What Triggers the Transition of Palaeoenvironmental Patterns in China, the Tibetan Plateau Uplift or the Paratethys Sea Retreat?. Palaeogeography, Palaeoclimatology, Palaeoecology, 245: 317-331. https://doi.org/10.1016/j.palaeo.2006.08.003 http://old.med.wanfangdata.com.cn/viewHTMLEn/PeriodicalPaper_JJ025360320.aspx
      [27] 车启鹏, 方德庆, 邵奎政, 等, 1994. 抚顺煤田始新统西露天组生物地层学研究的新进展. 大庆石油学院学报, 18(1): 11-16. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY401.002.htm
      [28] 中国植被编辑委员会, 1980. 中国植被. 北京: 科学出版社.
      [29] 洪友崇, 阳自强, 王士涛, 等, 1974. 辽宁抚顺煤田地层及其生物群的初步研究(附昆虫、叶肢介化石属种描述). 地质学报, 48(2): 113-149. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE197402000.htm
      [30] 寇香玉, 2005. 新生代孢粉分析与古气候定量重建的研究(博士学位论文). 北京: 中国科学院植物研究所.
      [31] 刘林敬, 李长安, 介冬梅, 等, 2018. 中-晚全新世以来安固里淖气候演变的植硅体记录. 地球科学, 43(11): 4138-4148. doi: 10.3799/dqkx.2018.614
      [32] 刘淼, 张渝金, 孙守亮, 等, 2019. 辽西金羊盆地北票组孢粉组合及其时代和古气候意义. 地球科学, 44(10): 3395-3408. doi: 10.3799/dqkx.2019.152
      [33] 刘牧灵, 1990. 东北地区晚白垩世-第三纪孢粉组合序列. 地层学杂志, 14(4): 277-285. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ199004002.htm
      [34] 苗运法, 方小敏, 宋之琛, 等, 2008. 青藏高原北部始新世孢粉记录与古环境变化. 中国科学(D辑: 地球科学), 38(2): 187-196. doi: 10.3321/j.issn:1006-9267.2008.02.005
      [35] 曲淑琴, 1993. 抚顺盆地下第三系耿家街组孢粉组合及其地质意义. 长春地质学院学报, 23(4): 411-415. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ199304008.htm
      [36] 史冀忠, 刘招君, 柳蓉, 等, 2008. 辽宁抚顺盆地始新世古气候定量研究. 吉林大学学报(地球科学版), 38(1): 50-55. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200801007.htm
      [37] 宋之琛, 曹流, 1976. 抚顺煤田的古新世孢粉. 古生物学报, 15(2): 147-162. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX197602006.htm
      [38] 宋之琛, 刘耕武, 1982. 西藏东北部老第三纪孢粉组合及其古地理意义. 西藏古生物(第五分册). 北京: 科学出版社, 165-190.
      [39] 王伟铭, 张大华, 1990. 内蒙古商都-化德盆地第三纪孢粉组合——兼论中国草原植被的形成. 微体古生物学报, 7(3): 239-253. https://www.cnki.com.cn/Article/CJFDTOTAL-WSGT199003003.htm
      [40] 王晓梅, 王明镇, 张锡麒, 2005. 中国晚始新世-早渐新世地层孢粉组合及其古气候特征. 地球科学, 30(3): 309-316. doi: 10.3321/j.issn:1000-2383.2005.03.006
      [41] 夏雪飞, 张宁, 喻建新, 等, 2015. 渤海湾盆地南堡凹陷始新世-渐新世孢粉、藻类与地层对比. 微体古生物学报, 32(3): 269-284. https://www.cnki.com.cn/Article/CJFDTOTAL-WSGT201503005.htm
      [42] 谢金有, 李君, 麦文, 等, 2012. 北部湾盆地涠洲组和流沙港组孢粉组合及时代. 古生物学报, 51(3): 385-394. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX201203012.htm
      [43] 徐景先, 2002. 云南中西部地区晚第三纪孢粉植物群及其古植被和古气候研究(博士学位论文). 北京: 中国科学院植物研究所.
      [44] 徐景先, 王宇飞, 李承森, 2000. 定量分析第三纪气候与环境的新方法——共存类群生态因子分析法. 见: 植物科学进展: 第3卷. 北京: 高等教育出版社, 195-203.
      [45] 姚轶锋, 2006. 海南岛长昌盆地始新世孢粉植物群及其古植被和古气候研究(博士学位论文). 北京: 中国科学院植物研究所.
      [46] 姚益民, 梁鸿德, 蔡治国, 等, 1994. 中国油气区第三系(Ⅳ)渤海湾盆地油气区分册. 北京: 石油工业出版社, 1-76.
    • 加载中
    图(7) / 表(3)
    计量
    • 文章访问数:  782
    • HTML全文浏览量:  181
    • PDF下载量:  47
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-06-15
    • 刊出日期:  2021-05-15

    目录

      /

      返回文章
      返回