• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    珠江口盆地番禺A油田珠江组“顶钙”发育特征、成因与分布模式

    张青青 刘可禹 衡立群 刘太勋 路研 孙润平 王健

    张青青, 刘可禹, 衡立群, 刘太勋, 路研, 孙润平, 王健, 2021. 珠江口盆地番禺A油田珠江组“顶钙”发育特征、成因与分布模式. 地球科学, 46(5): 1783-1796. doi: 10.3799/dqkx.2020.139
    引用本文: 张青青, 刘可禹, 衡立群, 刘太勋, 路研, 孙润平, 王健, 2021. 珠江口盆地番禺A油田珠江组“顶钙”发育特征、成因与分布模式. 地球科学, 46(5): 1783-1796. doi: 10.3799/dqkx.2020.139
    Zhang Qingqing, Liu Keyu, Heng Liqun, Liu Taixun, Lu Yan, Sun Runping, Wang Jian, 2021. Characteristics and Genetic Distribution Model of Top Calcareous Cementation Layers within Zhujiang Formation in Panyu A Oilfield, Pearl River Mouth Basin. Earth Science, 46(5): 1783-1796. doi: 10.3799/dqkx.2020.139
    Citation: Zhang Qingqing, Liu Keyu, Heng Liqun, Liu Taixun, Lu Yan, Sun Runping, Wang Jian, 2021. Characteristics and Genetic Distribution Model of Top Calcareous Cementation Layers within Zhujiang Formation in Panyu A Oilfield, Pearl River Mouth Basin. Earth Science, 46(5): 1783-1796. doi: 10.3799/dqkx.2020.139

    珠江口盆地番禺A油田珠江组“顶钙”发育特征、成因与分布模式

    doi: 10.3799/dqkx.2020.139
    基金项目: 

    国家科技重大专项课题 2017ZX05009001

    国家自然科学基金项目 41772138

    中国海洋石油集团有限公司“十三五”科技重大项目“双特高海相砂岩油藏精细描述及剩余油定量预测技术” CNOOC-KJ 135ZDXM22 LTD02 SZ2016

    详细信息
      作者简介:

      张青青(1991-),女,博士研究生,主要从事沉积学和储层地质学的研究工作. ORCID: 0000-0002-6344-4085. E-mail:qqzhupc108@163.com

      通讯作者:

      刘可禹, E-mail: liukeyu@upc.edu.cn

    • 中图分类号: P618

    Characteristics and Genetic Distribution Model of Top Calcareous Cementation Layers within Zhujiang Formation in Panyu A Oilfield, Pearl River Mouth Basin

    • 摘要: “顶钙”是砂岩储层中常见的一种碳酸盐胶结类型,其形成机理存在分歧,阻碍了对其分布预测,进而制约油田勘探开发.综合利用常规测井、岩心、XRF扫描、铸体薄片、扫描电镜、阴极发光、电子探针、碳氧稳定同位素等资料,对珠江口盆地番禺A油田珠江组“顶钙”的测井响应、岩矿学特征、物质来源及成因、分布规律、成因分布模式进行系统研究.研究区顶钙岩性主要为含砾砂岩和中粗砂岩,钙质成分主要为铁方解石,呈基底-孔隙式胶结,常与生物碎屑伴生,计算其沉淀温度在55.9~72 ℃;顶钙厚度主要集中在0.4~1.2 m,但不同油层其厚度及顶钙发育率差异较大.研究区顶钙形成于早成岩阶段,主要来自于内源的生物碎屑,其分布主要受到沉积微相和高频层序界面的控制,河口坝为其提供了重要物质来源,其相互叠置可促使顶钙连片和增厚;而高频海泛面可通过延长沉积物保留时间进一步促进顶钙的发育.研究区顶钙成因与分布主要受高能粗粒生物碎屑富集程度和分布的控制,因此通过对层序和沉积作用的分析,可对其分布进行预测.

       

    • 图  1  珠江口盆地构造分区(a)和西江凹陷构造分区及研究区位置(b)

      彭光荣等(2013)吴智平等(2015)修改.1.韩江凹陷;2.陆丰凹陷;3.惠州凹陷;4.西江凹陷;5.恩平凹陷;6.阳江凹陷;7.琼海凹陷;8.文昌凹陷;9.顺德凹陷;10.开平凹陷;11.白云凹陷;Ⅰ.海丰隆起;Ⅱ.惠陆低凸起;Ⅲ.阳江低凸起;Ⅳ.琼海凸起;Ⅴ.神狐‒暗沙隆起;Ⅵ.番禺低隆起;Ⅶ.东沙隆起;Ⅷ.云开低凸起

      Fig.  1.  Tectonic subdivision of Pearl River Mouth basin (a) and the Xijiang sag, South China Sea showing the location of study area (b)

      图  2  P-2井珠江组层序地层划分

      Fig.  2.  Sequence stratigraphic subdivision of the Zhujiang Formation in Well P-2

      图  3  顶钙岩心特征

      Fig.  3.  Characteristics of top calcareous cementation layers at core scales

      图  4  顶钙镜下特征及主量元素特征

      a.碎屑组分及胶结物XRF扫描元素特征,胶结物普遍表现含铁的特征,但含量分布不均,P⁃2井,1 987.60 m;b.铁方解石胶结物呈基底-孔隙式胶结充填在粒间,和生物碎屑伴生,P⁃2井,1 987.30 m;c.铁方解石胶结物和生物碎屑伴生,可见少量粉晶状白云石,AP⁃5井,2 325.05 m;d.铁方解石和生物碎屑背散射特征,AP⁃5井,2 325.05 m;e.铁方解石、生物碎屑和黄铁矿背散射特征,黄铁矿对生物碎屑进行交代,P⁃2井,1 987.65 m;f.铁方解石和生物碎屑阴极发光特征,铁方解石发暗橙色光,生物碎屑发亮橙色-暗橙色光,P⁃2井,1 987.50 m;g.铁方解石和生物碎屑阴极发光特征,铁方解石发暗橙色光,生物碎屑发亮橙色光,P⁃2井,1 987.65 m;h和i分别为胶结物和生物碎屑主量元素特征

      Fig.  4.  Microscopic characteristics and major elements of top calcareous cementation layers

      图  5  顶钙典型测井响应

      Fig.  5.  Typical wireline log responses of top calcareous cementation layers

      图  6  研究区及类似背景顶钙碳氧同位素特征及对比

      Fig.  6.  Characteristics and comparison of δ13C and δ18O values of top calcareous cementation layers between the study area and published work from similar geologic settings

      图  7  顶钙碳酸盐胶结物沉淀温度计算图版

      Friedman and O’Neal(1977)计算公式

      Fig.  7.  Plot of calculated precipitation temperature of carbonate cements of top calcareous cementation layers

      图  8  研究区珠江组SW方向部分油层顶钙分布

      Fig.  8.  Distribution of top calcareous cementation layers of some oil layers along the SW direction of the Zhujiang Formation in the study area

      图  9  顶钙整体厚度(a)及各油层顶钙厚度(b)分布直方图

      Fig.  9.  Histograms of bulk thickness (a) and top calcareous cementation layer thickness of each oil layer (b)

      图  10  顶钙宽厚比(a)及各油层顶钙发育率(b)分布直方图

      Fig.  10.  Histograms of width-to-thickness ratio (a) and percentages of top calcareous cementation layers associated with individual oil layers (b)

      图  11  R16油层顶钙厚度分布等值线与沉积微相叠加平面图

      Fig.  11.  Overlay planar map of thickness contours of top calcareous cementation layer and sedimentary microfacies distribution of the R16 oil layer

      图  12  河口坝叠加对顶钙发育的影响

      Fig.  12.  Effect of superimposition of estuary bars on top calcareous cementation layer

      图  13  各油层顶钙发育率与油层优势沉积微相(a)和顶钙所在砂体沉积微相(b)关系

      Fig.  13.  Relationships between percentages and preferred microfacies of oil-bearing units (a) and microfacies of top calcareous cementation layers (b)

      图  14  各油层顶钙发育率与高频层序地层界面关系

      Fig.  14.  Relationship between the percentages of top calcareous cementation layers and high-frequency sequence interfaces

      图  15  研究区珠江组顶钙成因分布模式

      Fig.  15.  Genetic distribution model for top calcareous cementation layers in the Zhujiang Formation

      表  1  研究区珠江组顶钙组分含量统计

      Table  1.   Component percentage statistics of top calcareous cementation layers in the Zhujiang Formation

      组分 最大含量(%) 最小含量(%) 平均含量(%)
      石英 58.5 42.5 54.2
      钾长石 11.2 6.5 7.8
      斜长石 3.1 0 0.7
      岩屑 7.5 2.5 3.9
      生物碎屑 13.6 1.05 5.4
      铁方解石 29.3 22.5 26.9
      白云石 3.5 0 0.6
      黄铁矿 3.8 0 0.5
      下载: 导出CSV
    • [1] Bjørkum, P. A., Walderhaug, O., 1990. Geometrical Arrangement of Calcite Cementation within Shallow Marine Sandstones. Earth-Science Reviews, 29(1/2/3/4): 145-161. https://doi.org/10.1016/0012-8252(0)90033-r
      [2] Bjørkum, P. A., Walderhaug, O., 1993. Isotopic Composition of a Calcite-Cemented Layer in the Lower Jurassic Birdport Sands, Southern England: Implications for Formation of Laterally Extensive Calcite-Cemented Layers. Journal of Sedimentary Research, 63(4): 678-682. https://doi.org/10.1306/d4267bb3-2b26-11d7-8648000102c1865d
      [3] Carvalho, M. V. F., de Ros, L. F., Gomes, N. S., 1995. Carbonate Cementation Patterns and Diagenetic Reservoir Facies in the Campos Basin Cretaceous Turbidites, Offshore Eastern Brazil. Marine and Petroleum Geology, 12(7): 741-758. https://doi.org/10.1016/0264-8172(95)93599-y
      [4] Chen, C.M., Huang, L.F., Li, Z.W., 1999. Accumulation Conditions of PY4-2 Oil Pool and Implication for Exploration. China Offshore Oil and Gas (Geology), 13(3): 145-151 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZHSD199903000.htm
      [5] Chen, R. K., 1994. Application of Stable Oxygen and Carbon Isotope in the Study of Carbonate Diagenetic Environment. Acta Sedimentologica Sinica, 12(4): 11-21 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB404.001.htm
      [6] dos Anjos, S. M., de Ros, L. F., de Souza, R. S., et al., 2000. Depositional and Diagenetic Controls on the Reservoir Quality of Lower Cretaceous Pendencia Sandstones, Potiguar Rift Basin, Brazil. AAPG Bulletin, 84(11): 1719-1742. https://doi.org/10.1306/8626c375-173b-11d7-8645000102c1865d
      [7] Dutton, S. P., 2008. Calcite Cement in Permian Deep-Water Sandstones, Delaware Basin, West Texas: Origin, Distribution, and Effect on Reservoir Properties. AAPG Bulletin, 92(6): 765-787. https://doi.org/10.1306/01280807107
      [8] El-Ghali, M. A. K., Morad, S., Mansurbeg, H., et al., 2009. Diagenetic Alterations Related to Marine Transgression and Regression in Fluvial and Shallow Marine Sandstones of the Triassic Buntsandstein and Keuper Sequence, the Paris Basin, France. Marine and Petroleum Geology, 26(3): 289-309. https://doi.org/10.1016/j.marpetgeo.2008.02.001
      [9] Friedman, I., O'Neil, J. R., 1977. Compilation of Stable Isotope Fractionation Factors of Geochemical Interest. US Government Printing Office, Washington, 440. https://doi.org/10.3133/pp440kk
      [10] Irwin, H., Curtis, C., Coleman, M., 1977. Isotopic Evidence for Source of Diagenetic Carbonates Formed during Burial of Organic-Rich Sediments. Nature, 269(5625): 209-213. https://doi.org/10.1038/269209a0
      [11] Kantorowicz, J. D., Bryant, I. D., Dawans, J. M., 1987. Controls on the Geometry and Distribution of Carbonate Cements in Jurassic Sandstones: Bridport Sands, Southern England and Viking Group, Troll Field, Norway. Geological Society, London, Special Publications, 36(1): 103-118. https://doi.org/10.1144/gsl.sp.1987.036.01.09
      [12] Keith, M. L., Weber, J. N., 1964. Carbon and Oxygen Isotopic Composition of Selected Limestones and Fossils. Geochimica et Cosmochimica Acta, 28(10/11): 1787-1816. https://doi.org/10.1016/0016-7037(64)90022-5
      [13] Ketzer, J. M., Morad, S., Evans, R., et al., 2002. Distribution of Diagenetic Alterations in Fluvial, Deltaic, and Shallow Marine Sandstones within a Sequence Stratigraphic Framework: Evidence from the Mullaghmore Formation (Carboniferous), NW Ireland. Journal of Sedimentary Research, 72(6): 760-774. https://doi.org/10.1306/042202720760
      [14] Li, Q., Jiang, Z. X., Liu, K. Y., et al., 2014. Factors Controlling Reservoir Properties and Hydrocarbon Accumulation of Lacustrine Deep-Water Turbidites in the Huimin Depression, Bohai Bay Basin, East China. Marine and Petroleum Geology, 57: 327-344. https://doi.org/10.1016/j.marpetgeo.2014.06.007
      [15] Lin, C. S., Liu, J. Y., Liu, L. J., et al., 2002. High- Precision Sequence Stratigraphic Analysis: Establishing Isochronous Stratigraphic Framework of Sedimentary Facies and Reservoir Scale. Geoscience, 16(3): 276-281(in Chinese with English abstract).
      [16] Lin, C. S., Shi, H. S., Li, H., et al., 2018. Sequence Architecture, Depositional Evolution and Controlling Processes of Continental Slope in Pearl River Mouth Basin, Northern South China Sea. Earth Science, 43(10): 3407-3422 (in Chinese with English abstract).
      [17] Liu, C. Y., Zheng, H. R., Hu, Z. Q., et al., 2012. Characteristics of Carbonate Cementation in Clastic Rocks from the Chang 6 Sandbody of Yanchang Formation, Southern Ordos Basin. Science in China (Series D: Earth Sciences), 42(11): 1681-1689 (in Chinese with English abstract). http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=JDXG201201007
      [18] Liu, S. B., Huang, S. J., Shen, Z. M., et al., 2014. Water-Rock Interaction Model of Carbonate Cements in Sandstone: An Example from the Reservoir Sandstone of the Fourth Member of the Xujiahe Formation of the Xiaoquan-Fenggu Area, Sichuan Province, China. Science in China (Series D: Earth Sciences), 44(7): 1403-1417 (in Chinese).
      [19] Luo, X. R., Hu, C. Z., Xiao, Z. Y., et al., 2015. Effects of Carrier Bed Heterogeneity on Hydrocarbon Migration. Marine and Petroleum Geology, 68: 120-131. https://doi.org/10.1016/j.marpetgeo.2015.08.015
      [20] Ma, B. B., Cao, Y. C., Wang, Y. Z., et al., 2016. Origin of Carbonate Cements with Implications for Petroleum Reservoir in Eocene Sandstones, Northern Dongying Depression, Bohai Bay Basin, China. Energy Exploration & Exploitation, 34(2): 199-216. https://doi.org/10.1177/0144598716629871
      [21] Moraes, M. A., Surdam, R. C., 1993. Diagenetic Heterogeneity and Reservoir Quality: Fluvial, Deltaic, and Turbiditic Sandstone Reservoirs, Potiguar and Reconcavo Rift Basins, Brazil. AAPG Bulletin, 77(7): 1142-1158. https://doi.org/10.1306/bdff8e20-1718-11d7-8645000102c1865d
      [22] Peng, G. R., Wen, H. H., Liu, C. Y., et al., 2013. Exploration Practice and Potential of Shallow Oil and Gas in Zhuyi Depression of the Pearl River Mouth Basin: A Case Study of the Panyu 4 Subsag. Marine Geology Frontiers, 29(3): 22-28 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDT201303006.htm
      [23] Qi, B. W., Lin, C. M., Qiu, G. Q., et al., 2006. Formation Mechanism of Calcareous Incrustation in Lenticular Sandbody of the Shahejie Formation of Paleogene and Its Influence on Hydrocarbon Accumulation in Dongying Sag. Journal of Palaeogeography, 8(4): 519-530 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDLX200604013.htm
      [24] Schultz, J. L., Boles, J. R., Tilton, G. R., 1989. Tracking Calcium in the San Joaquin Basin, California: A Strontium Isotopic Study of Carbonate Cements at North Coles Levee. Geochimica et Cosmochimica Acta, 53(8): 1991-1999. https://doi.org/10.1016/0016-7037(89)90319-0
      [25] Sun, H. T., Zhong, D. K., Liu, L. F., et al., 2010. Carbonate Cementation Difference and Its Origin between Exterior and Interior Surfaces of Lenticular Sandbody in Shahejie Formation of Zhanhua Depression. Acta Petrolei Sinica, 31(2): 246-252 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201002012.htm
      [26] Taylor, K. G., Gawthorpe, R. L., Curtis, C. D., et al., 2000. Carbonate Cementation in a Sequence-Stratigraphic Framework: Upper Cretaceous Sandstones, Book Cliffs, Utah-Colorado. Journal of Sedimentary Research, 70(2): 360-372. https://doi.org/10.1306/2dc40916-0e47-11d7-8643000102c1865d
      [27] Veizer, J., Ala, D., Azmy, K., et al., 1999. 87Sr/86Sr, δ13C and δ18O Evolution of Phanerozoic Seawater. Chemical Geology, 161(1/2/3): 59-88. https://doi.org/10.1016/s0009-2541(99)00081-9
      [28] Walderhaug, O., Bjørkum, P. A., 1998. Calcite Cement in Shallow Marine Sandstones: Growth Mechanisms and Geometry. Carbonate Cementation in Sandstones. Blackwell Publishing Ltd., Oxford, 179-192. https://doi.org/10.1002/9781444304893.ch8
      [29] Wang, D. F., Luo, J. L., Chen, S. H., et al., 2017. Carbonate Cementation and Origin Analysis of Deep Sandstone Reservoirs in the Baiyun Sag, Pearl River Mouth Basin. Acta Geologica Sinica, 91(9): 2079-2090 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DZXE201709011&dbcode=CJFD&year=2017&dflag=pdfdown
      [30] Wang, J., Cao, Y. C., Liu, K. Y., et al., 2016. Pore Fluid Evolution, Distribution and Water-Rock Interactions of Carbonate Cements in Red-Bed Sandstone Reservoirs in the Dongying Depression, China. Marine and Petroleum Geology, 72: 279-294. https://doi.org/10.1016/j.marpetgeo.2016.02.018
      [31] Wang, Q., Hao, L.W., Chen, G.J., et al., 2010. Forming Mechanism of Carbonate Cements in Siliciclastic Sandstone of Zhuhai Formation in Baiyun Sag. Acta Petrolei Sinica, 31(4): 553-558, 565 (in Chinese with English abstract). http://www.cqvip.com/QK/95667X/201004/34634193.html
      [32] Wang, X. X., Zhou, S. X., 1992. The Effect of Diagenesis of Mudstone on the Cementation of a Sandstone Reservoir. Acta Petrolei Sinica, 13(4): 20-30 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB199204003.htm
      [33] Wang, Y., Liu, J., Wang, J. G., et al., 2015. Major Controlling Factors for the Formation of Interlayer of Donghe Sandstone of Donghe 1 Reservoir in Tarim Basin and Its Fluid Source. Acta Petrolei Sinica, 36(2): 174-181 (in Chinese with English abstract).
      [34] Wu, Z. P., Hu, Y., Zhong, Z. H., 2015. Cenozoic Fault Characteristics and Regional Dynamic Background of Panyu 4 Subsag in Zhuyi Depression. Journal of China University of Petroleum, 39(4): 1-9 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYDX201504001.htm
      [35] Xi, K. L., Cao, Y. C., Jahren, J., et al., 2015. Diagenesis and Reservoir Quality of the Lower Cretaceous Quantou Formation Tight Sandstones in the Southern Songliao Basin, China. Sedimentary Geology, 330: 90-107. https://doi.org/10.1016/j.sedgeo.2015.10.007
      [36] Yang, T., Cao, Y. C., Friis, H., et al., 2018. Genesis and Distribution Pattern of Carbonate Cements in Lacustrine Deep-Water Gravity-Flow Sandstone Reservoirs in the Third Member of the Shahejie Formation in the Dongying Sag, Jiyang Depression, Eastern China. Marine and Petroleum Geology, 92: 547-564. https://doi.org/10.1016/j.marpetgeo.2017.11.020
      [37] Yao, G. Q., Li, H. S., 1991. A Preliminary Investigation on Carbonate Cements and Their Origin in Sandstones of Hetaoyuan Fomation. Earth Science, 16(5): 549-556(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX199105009.htm
      [38] You, L., Li, C., Zhang, Y.Z., et al., 2012. Distribution and Genetic Mechanism of Carbonate Cements in the Zhuhai Formation Reservoirs in Wenchang-A Sag, Pearl River Mouth Basin. Oil & Gas Geology, 33(6): 883-889, 899 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT201206009.htm
      [39] Zhong, D. K., Zhu, X. M., Zhang, Q., 2004. Variation Characteristics of Sandstone Reservoirs When Sandstone and Mudstone are Interbedded at Different Buried Depths. Acta Geologica Sinica, 78(6): 863-871 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200406018.htm
      [40] Zhu, H. T., Liu, K. Y., Zhu, X. M., et al., 2018. Varieties of Sequence Stratigraphic Configurations in Continental Basins. Earth Science, 43(3): 770-785(in Chinese with English abstract).
      [41] 陈长民, 黄丽芬, 李昭伟, 1999. 番禺4-2油藏的形成条件及勘探意义. 中国海上油气(地质), 13(3): 145-151. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199903000.htm
      [42] 陈荣坤, 1994. 稳定氧碳同位素在碳酸盐岩成岩环境研究中的应用. 沉积学报, 12(4): 11-21. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB404.001.htm
      [43] 林畅松, 刘景彦, 刘丽军, 等, 2002. 高精度层序地层分析: 建立沉积相和储层规模的等时地层格架. 现代地质, 16(3): 276-281. doi: 10.3969/j.issn.1000-8527.2002.03.010
      [44] 林畅松, 施和生, 李浩, 等, 2018. 南海北部珠江口盆地陆架边缘斜坡带层序结构和沉积演化及控制作用. 地球科学, 43 (10): 3407-3422. doi: 10.3799/dqkx.2018.311
      [45] 刘春燕, 郑和荣, 胡宗全, 等, 2012. 碎屑岩中的碳酸盐胶结特征——以鄂尔多斯盆地南部富县地区延长组长6砂体为例. 中国科学(D辑: 地球科学), 42(11): 1681-1689. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201211007.htm
      [46] 刘四兵, 黄思静, 沈忠民, 等, 2014. 砂岩中碳酸盐胶结物成岩流体演化和水岩作用模式——以川西孝泉-丰谷地区上三叠统须四段致密砂岩为例. 中国科学(D辑: 地球科学), 44(7): 1403-1417. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201407005.htm
      [47] 彭光荣, 温华华, 刘从印, 等, 2013. 珠江口盆地珠一坳陷浅层油气勘探实践及潜力探讨——以番禺4洼为例. 海洋地质前沿, 29(3): 22-28. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201303006.htm
      [48] 漆滨汶, 林春明, 邱桂强, 等, 2006. 东营凹陷古近系沙河街组砂岩透镜体钙质结壳形成机理及其对油气成藏的影响. 古地理学报, 8(4): 519-530. doi: 10.3969/j.issn.1671-1505.2006.04.009
      [49] 孙海涛, 钟大康, 刘洛夫, 等, 2010. 沾化凹陷沙河街组砂岩透镜体表面与内部碳酸盐胶结作用的差异及其成因. 石油学报, 31(2): 246-252. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201002012.htm
      [50] 王代富, 罗静兰, 陈淑慧, 等, 2017. 珠江口盆地白云凹陷深层砂岩储层中碳酸盐胶结作用及成因探讨. 地质学报, 91(9): 2079-2090. doi: 10.3969/j.issn.0001-5717.2017.09.011
      [51] 王琪, 郝乐伟, 陈国俊, 等, 2010. 白云凹陷珠海组砂岩中碳酸盐胶结物的形成机理. 石油学报, 31(4): 553-558, 565. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201004005.htm
      [52] 王行信, 周书欣, 1992. 泥岩成岩作用对砂岩储层胶结作用的影响. 石油学报, 13(4): 20-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB199204003.htm
      [53] 王洋, 刘婧, 汪建国, 等, 2015. 塔里木盆地东河1油藏东河砂岩隔夹层形成的主控因素及流体来源. 石油学报, 36(2): 174-181. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201502005.htm
      [54] 吴智平, 胡阳, 钟志洪, 2015. 珠一坳陷番禺4洼新生代断裂特征及其区域动力背景. 中国石油大学学报(自然科学版), 39(4): 1-9. doi: 10.3969/j.issn.1673-5005.2015.04.001
      [55] 姚光庆, 李蕙生, 1991. 南阳凹陷下第三系核桃园组砂岩中碳酸盐胶结物及其成因的初步探讨. 地球科学, 16(5): 549-556. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199105009.htm
      [56] 尤丽, 李才, 张迎朝, 等, 2012. 珠江口盆地文昌A凹陷珠海组储层碳酸盐胶结物分布规律及成因机制. 石油与天然气地质, 33(6): 883-889, 899. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201206009.htm
      [57] 钟大康, 朱筱敏, 张琴, 2004. 不同埋深条件下砂泥岩互层中砂岩储层物性变化规律. 地质学报, 78(6): 863-871. doi: 10.3321/j.issn:0001-5717.2004.06.018
      [58] 朱红涛, 刘可禹, 朱筱敏, 等, 2018. 陆相盆地层序构型多元化体系. 地球科学, 43(3): 770-785. doi: 10.3799/dqkx.2018.906
    • 加载中
    图(15) / 表(1)
    计量
    • 文章访问数:  695
    • HTML全文浏览量:  205
    • PDF下载量:  40
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-06-21
    • 刊出日期:  2021-05-15

    目录

      /

      返回文章
      返回