Experimental Analysis on Influence of Plastic Formation on Characteristics of Fault Development under Extensional Stress
-
摘要: 为了探讨塑性层在伸展型构造反转过程中对构造格局及断裂特征的影响规律,设计了两组具有不同岩石性质的伸展砂箱模型进行物理模拟.实验结果表明:在相同的伸展应力作用下,相对纯石英砂岩区,塑性地层的存在导致断层发育的时间更早,并且断层的断距及延伸长度更大;塑性地层的存在也可以影响断裂的发育格局,更容易形成滑脱型断层.在伸展型构造反转过程中,塑性地层主要起2个方面的作用:(1)塑性层上部形成断层的规模相对较大,而脆性地层上部趋向于形成多条断层,规模相对小;(2)塑性层上部与边界拆离断层倾向相反的断层数量和规模明显大于倾向相同的断层,揭示了塑性层对与边界拆离断层相同倾向断层的抑制作用.将模拟结果与北部湾盆地乌石凹陷东洼的类似构造进行对比,表明塑性地层的存在对伸展型反转构造断裂发育具有很大的影响,这将对该地区构造的深入认识及下一步油气勘探提供新的依据.Abstract: In order to discuss the influence of plastic layer on the structural pattern and fault characteristics in the process of extensional structural inversion, Two sets of extensional sandbox models with different physical properties are designed. Experiment results indicate that the existence of plastic formation in relatively pure quartz sandstone areas leads to the earlier occurrence time of fault, and larger fault distance and extension length under the action of the same extension stress. In the process of extension and inversion, the existence of plastic strata can change the structural pattern of faults, and it is easier to form plastic detachment faults, which plays two main roles. (1) The scale of faults in the upper part of the plastic layer is relatively large, while that in the upper part of the brittle layer tends to form multiple faults with relatively small scale. (2) The number and scale of the faults in the upper part of the plastic layer with opposite tendency to the boundary detachment faults are obviously larger than those with the same tendency, which shows that the plastic layer can restrain the faults with the same tendency as the boundary detachment faults. Therefore, compared with the eastern area of Wushi depression, the existence of plastic strata has a great influence on the characteristics of the development of extensional reverse structural faults, which can provide the necessary theoretical basis for the later oil and gas exploration.
-
Key words:
- plastic formation /
- fault /
- inverted structure /
- physical simulation /
- sandbox experiment /
- petroleum geology
-
图 2 乌石凹陷典型地震剖面图
a.乌石凹陷东洼南北向剖面;b.乌石凹陷西洼北北西‒南南东剖面.比例尺见图 1
Fig. 2. Typical seismic profile of east-west sag in Wushi depression
-
[1] Braun, J., Att, G. E., Scott, D. L., 1995. A Simple Kinematic Model for Crustal Deformation along Two- and Three-Dimnssional Listric Normal Faults Derived from Scaled Laboratory Experiments. Journal of Structural Geology, 16(10): 1477-1490. http://www.sciencedirect.com/science/article/pii/0191814194900108 [2] Gong, Z.S., Li, S.T., 2003. Study on Hydrocarbon Accumulation Dynamics in the Northern Continental Margin Basin of the South China Sea. Science Press, Beijing (in Chinese). [3] He, J.K., Lu, H.F., 1999. The Tectonic Inversion and Its Geodynamic Processes in Northern Daba Mountains of Eastern Qinling Orogenic Belt. Chinese Journal of Geology, 34(2): 139-153 (in Chinese with English abstract). [4] He, W.Y., Li, J.H., Qian, X. L., et al., 2001. Mechanism of Negative Inversion-Structuring in North Tarim Uplift. Chinese Journal of Geology, 36(2): 234-240 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX200102013.htm [5] Li, C., Yang, X.B., Fan, C.W., et al., 2018. On the Evolution Process of the Beibu Gulf Basin and Forming Mechanism of Local Structures. Acta Geologica Sinica, 92(10): 2028-2039 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201810005.htm [6] McClay, K., Dooley, T., 1995. Analogue Models of Pull-Apart Basins. Geology, 23(8): 711-714. doi: 10.1130/0091-7613(1995)023<0711:AMOPAB>2.3.CO;2 [7] McClay, K. R., White, M. J., 1995. Analogue Modeling of Orthogonal and Oblique Rifting. Marine and Petroleum Geology, 12(2): 137-151. doi: 10.1016/0264-8172(95)92835-K [8] Ren, J.Y., 2018. Genetic Dynamics of China Offshore Cenozoic Basins. Earth Science, 43(10): 3337-3361 (in Chinese with English abstract). [9] Tang, D.Q., Chen, H.H., Jiang, T., et al., 2013. Neogene Differential Structural Inversion and Hydrocarbon Accumulation in the Yitong Basin, East China. Petroleum Exploration and Development, 40(6): 682-691 (in Chinese with English abstract). [10] Tong, D.J., Li, Y.Z., Ren, J.Y., et al., 2010. Style and Formation Mechanism and Its Control on Hydrocarbon Accumulation of Linnan Depression. Journal of Oil and Gas Technology, 32(4): 31-36 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JHSX201004008.htm [11] Wang, Y.T., Li, J.L., 1999. Fault-Related Tectonics of the Strike-Slip Faulting. Geological Science and Technology Information, 18(3): 30-34 (in Chinese with English abstract). [12] Xiao, Y., Wu, G.H., Lei, Y.L., et al., 2017. Analogue Modeling of Through-Going Process and Development Pattern of Strike-Slip Fault Zone. Petroleum Exploration and Development, 44(3): 340-348 (in Chinese with English abstract). [13] Xie, G.A., Zhang, Q.L., Wang, L.S., et al., 2009. Physical Simulating Model of Shiwu Faulted Depression Structure in Songliao Basin, China. Geological Bulletin of China, 28(4): 420-430 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200904005.htm [14] Yang, H.C., Liang, J.S., Hu, W.S., 2011. Structural Features and Impacts on Hydrocarbon Accumulation in Wushi Sag. Journal of Southwest Petroleum University (Science & Technology Edition), 33(3): 41-46 (in Chinese with English abstract). [15] Zhang, G.H., Zhang, J.P., 2015. A Discussion on the Tectonic Inversion and Its Genetic Mechanism in the East China Sea Shelf Basin. Earth Science Frontiers, 22(1): 260-270 (in Chinese with English abstract). [16] Zhang, G. W., Guo, A. L., 2019. Thoughts on Continental Tectonics. Earth Science, 44(5): 1464-1475 (in Chinese with English abstract). [17] Zhang, J.J., Huang, T.L., 2019. An Overview on Continental Extensional Tectonic. Earth Science, 44(5): 1705-1715 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201905022.htm [18] Zhou, J.X., 1999. New Interpretation on the Mechanism of Cenozoic Structures in the Huanghua Basin, North China: Insights from Plane Sand Box Experiments. Geotectonica et Metallogenia, 23(3): 281-287 (in Chinese with English abstract). [19] Zhou, Y.S., Li, J.G., Wang, S.Z., 2003. Physical Experiments on Strike-Slip Fault and Pull-apart Basin. Journal of Geomechanics, 9(1): 1-13 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX200301001.htm [20] Zhu, W.L., Zhong, K., Li, Y.C., et al., 2012. Characteristics of Hydrocarbon Accumulation and Exploration Potential of the Northern South China Sea Deepwater Basins. Chinese Science Bulletin, 57(20): 1833-1841 (in Chinese). doi: 10.1360/csb2012-57-20-1833 [21] 龚再升, 李思田, 2003. 南海北部大陆边缘盆地油气成藏动力学研究. 北京: 科学出版社. [22] 何建坤, 卢华复, 1999. 东秦岭造山带南缘北大巴山构造反转及其动力学. 地质科学, 34(2): 139-153. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX902.001.htm [23] 何文渊, 李江海, 钱祥麟, 等, 2001. 塔里木盆地北部隆起负反转构造成因机制探讨. 地质科学, 36(2): 234-240. doi: 10.3321/j.issn:0563-5020.2001.02.012 [24] 李才, 杨希冰, 范彩伟, 等, 2018. 北部湾盆地演化及局部构造成因机制研究. 地质学报, 92(10): 2028-2039. doi: 10.3969/j.issn.0001-5717.2018.10.005 [25] 任建业, 2018. 中国近海海域新生代成盆动力机制分析. 地球科学, 43(10): 3337-3361. doi: 10.3799/dqkx.2018.330 [26] 唐大卿, 陈红汉, 江涛, 等, 2013. 伊通盆地新近纪差异构造反转与油气成藏. 石油勘探与开发, 40(6): 682-691. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201306007.htm [27] 佟殿君, 李亚哲, 任建业, 等, 2010. 临南洼陷构造样式、发育机制及其对油气成藏的控制. 石油天然气学报, 32(4): 31-36. doi: 10.3969/j.issn.1000-9752.2010.04.006 [28] 王义天, 李继亮, 1999. 走滑断层作用的相关构造. 地质科技情报, 18(3): 30-34. doi: 10.3969/j.issn.1000-7849.1999.03.007 [29] 肖阳, 邬光辉, 雷永良, 等, 2017. 走滑断裂带贯穿过程与发育模式的物理模拟. 石油勘探与开发, 44(3): 340-348. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201703004.htm [30] 解国爱, 张庆龙, 王良书, 等, 2009. 松辽盆地南缘十屋断陷构造物理模拟研究. 地质通报, 28(4): 420-430. doi: 10.3969/j.issn.1671-2552.2009.04.003 [31] 杨海长, 梁建设, 胡望水, 2011. 乌石凹陷构造特征及其对油气成藏的影响. 西南石油大学学报, 33(3): 41-46. doi: 10.3863/j.issn.1674-5086.2011.03.006 [32] 张国华, 张建培, 2015. 东海陆架盆地构造反转特征及成因机制探讨. 地学前缘, 22(1): 260-270. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501025.htm [33] 张国伟, 郭安林, 2019. 关于大陆构造研究的一些思考与讨论. 地球科学, 44(5): 1464-1475. doi: 10.3799/dqkx.2019.971 [34] 张进江, 黄天立, 2019. 大陆伸展构造综述. 地球科学, 44(5): 1705-1715. doi: 10.3799/dqkx.2019.009 [35] 周建勋, 1999. 基于平面砂箱实验对黄骅盆地新生代构造成因的新解释. 大地构造与成矿学, 23(3): 281-287. doi: 10.3969/j.issn.1001-1552.1999.03.012 [36] 周永胜, 李建国, 王绳祖, 2003. 用物理模拟实验研究走滑断裂和拉分盆地. 地质力学学报, 9(1): 1-13. doi: 10.3969/j.issn.1006-6616.2003.01.001 [37] 朱伟林, 钟锴, 李友川, 等, 2012. 南海北部深水区油气成藏与勘探. 科学通报, 57(20): 1833-1841. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201220004.htm