Metamorphic Mafic Dykes from Tianzhen-Huai'an Area: Transformation Criteria of the Late Paleoproterozoic Collision to Extension in the North China Craton
-
摘要: 古元古代是华北克拉通形成过程中重要的造山构造演化阶段,该阶段形成的基性岩墙群,为深入理解裂解-俯冲-碰撞-抬升的造山构造-岩浆过程提供了重要信息.本文报道了天镇-怀安地区广泛分布于新太古代-古元古代变质基底中的变质基性岩墙(二辉麻粒岩),野外产状与区域主期构造面理协调一致,主要由单斜辉石、斜方辉石、斜长石和少量角闪石组成.LA-MC-ICPMS锆石U-Pb同位素定年获得变质基性岩墙的变质年龄为1 820~1 834 Ma,与区内麻粒岩相变质事件一致,结合区域基性岩墙年龄记录,推测其原岩形成年龄为1.95~1.91 Ga.根据岩石地球化学特征可将变质基性岩墙划分为高Mg低Ti型和低Mg高Ti型两类,两者经历了不同程度的橄榄石、单斜辉石和斜长石的分离结晶.两类基性岩墙均亏损高场强元素(如Nb、Ta、Ti、Zr和Hf),结合锆石Hf同位素分析,研究表明基性岩墙来源于俯冲流体交代的岩石圈地幔或者受到过地壳物质的混染.华北克拉通古元古代存在2.16~2.04 Ga和1.97~1.83 Ga两期基性岩墙侵位事件:早期代表在初始克拉通基础上发生的板内裂解过程,晚期记录了由俯冲碰撞到伸展的转换过程,即碰撞造山构造体制由水平挤压转变为垂向抬升,构造转换时限大致介于1.95~1.91 Ga.Abstract: Paleoproterozoic is an important orogenic tectonic evolution stage during the formation of the North China Craton. The mafic dyke swarms formed during this period provide important information to understanding the tectonic-magmatic process of rifting-subduction-collision-exhumation of the orogeny. This study reports the metamorphic mafic dykes (two-pyroxene granulite) widely distributed in the Neoarchean-Paleoproterozoic metamorphic base in the Tianzhen-Huai'an area. These dykes occur consistently with regional main tectonic foliation in the field and are mainly composed of clinopyroxene+orthopyroxene+plagioclase+amphibole. The metamorphic age of the mafic dyke is 1 820-1 834 Ma obtained by LA-MC-ICPMS zircon U-Pb isotope dating, which is consistent with the granulite facies metamorphic event in the study area. Based on the analyses of regional mafic dyke age data, we consider that the emplacement age is around 1.95-1.91 Ga. This study documents two types of metamorphic mafic dykes: high Mg low Ti type and low Mg high Ti type. They have experienced different degrees of fractional crystallization of olivine, clinopyroxene and plagioclase. Both types of mafic dykes show negative anomalies in high-field-strength elements (such as Nb, Ta, Ti, Zr, and Hf). According to the zircon Hf isotopic and the geochemical features, we suggest that the mafic dykes originated from a lithospheric mantle metasomatized by subduction fluids, or/and they were contaminated by the crust. Two episodes of metamorphosed mafic dykes are identified in the North China Craton: 2.16-2.04 Ga and 1.97-1.83 Ga. The early stage represents an intra-plate rifting process that occurred on the basis of the initial Craton; in contrast, the later period records transformation from subduction-collision to extensional setting, that is the collisional orogenic tectonic regime changed from horizontal compression to vertical uplift, and the tectonic transition time is roughly around 1.95-1.91 Ga.
-
Key words:
- mafic dyke /
- Paleoproterozoic /
- orogeny /
- geochemistry /
- North China Craton
-
图 1 华北克拉通构造单元划分图(a;据Zhao et al., 2005);晋冀蒙交界地区早前寒武纪地质简图(b);天镇-怀安地区地质简图(c;据张家辉等,2019b修改)
1.新太古代变质TTG片麻岩;2.新太古代二长花岗岩;3.新太古代条带状铁建造(BIF);4.新太古代榴云片麻岩岩组;5.古元古代高压基性麻粒岩-大理岩-富铝片麻岩组合;6.古元古代黄土窑岩组(孔兹岩系);7.中元古代沉积盖层;8.古元古代变质基性岩墙(二辉麻粒岩);9.中元古代基性岩墙;10.高压基性麻粒岩出露点;11.片麻理/层理产状(°);12.构造接触;13.断层;14.采样点
Fig. 1. Tectonic subdivision of the North China Craton (a; modified from Zhao et al., 2005); Precambrain geological sketch of the Shanxi-Hebei-Inner Mongolia border area (b); geological sketch of Tianzhen-Huai'an area (c; modified from Zhang et al., 2019b)
图 5 变质基性岩墙样品岩石分类Zr/TiO2×0.000 1-Nb/Y(a;Winchester and Floyd, 1977)和Al2O3-(TFeO+TiO2)-MgO图解(b;Jensen, 1976)
Fig. 5. Zr/TiO2×0.000 1-Nb/Y(a; Winchester and Floyd, 1977) and Al2O3-(TFeO+TiO2)-MgO diagram(b; Jensen, 1976) of the metamorphic mafic dykes
图 6 变质基性岩墙样品的稀土元素配分图(a)及微量元素蛛网图(b)
Fig. 6. Chondrite-normalized REE patterns (a) and primary mantle-normalized trace element spider diagram (b) of the metamorphic mafic dykes
图 11 变质基性岩墙微量元素Th/Yb-Nb/Yb(a;Pearce, 2008)和Th-Hf/3-Nb/16(b;Wood, 1980)图解
N-MORB.正常型洋中脊玄武岩;E-MORB.富集型洋中脊玄武岩;OIB.洋岛玄武岩;IAT.岛弧拉斑玄武岩;CAB.岛弧钙碱性玄武岩;WPT.板内拉斑玄武岩;WPAB.板内碱性玄武岩
Fig. 11. Th/Yb-Nb/Yb(a; Pearce, 2008) and Th-Hf/3-Nb/16(b; Wood, 1980) diagrams of metamorphic mafic dykes
表 1 华北克拉通古元古代(2.16~1.83 Ga)(变质)基性岩墙分布数据表
Table 1. Summary of Paleoproterozoic (2.16~1.83 Ga)(metamorphic) mafic dyke swarms in the North China Craton
期次 地区 位置 岩性 样品号 原岩年龄 变质年龄 定年方法 引用文献 早期基性岩墙群 大青山 哈达门沟 变质辉长岩 NM0906 2 162±10 1 827±7 SHRIMP Wan et al., 2013 冀东 石门 变质基性岩墙 JD20-2 2 162±27 1 820±7.8 SHRIMP 杨崇辉等, 2017 辽宁 海城-南芬 变质基性岩 DZ78-1 2 161±45 1 896±22 LA-ICP-MS Meng et al., 2014 辽宁 海城-南芬 变质基性岩 DZ91-1 2 161±12 LA-ICP-MS Meng et al., 2014 辽宁 海城-南芬 变质基性岩 DZ73-1 2 159±12 1 900±17 LA-ICP-MS Meng et al., 2014 辽宁 海城-南芬 变质基性岩 DZ85-1 2 157±17 1 899±26 LA-ICP-MS Meng et al., 2014 五台 横岭 变质玄武岩 2 147±5 SHRIMP Peng et al., 2005 辽宁 海城-南芬 变质基性岩 DZ74-1 2 144±16 LA-ICP-MS Meng et al., 2014 辽宁 海城 基性岩墙 YK12-1-4 2 125±6 CAMECA Yuan et al., 2015 吕梁 方山 变质基性岩墙(斜长角闪岩) 12FS-31 2 116±15 LA-ICP-MS Wang et al., 2014 吕梁 方山 变质基性岩墙(斜长角闪岩) 12FS-26 2 116±13 LA-ICP-MS Wang et al., 2014 辽宁 海城 基性岩岩基 598XLLZ2 2 115±3 CAMECA Wang et al., 2016a 辽宁 鞍山-弓长岭 变质辉长岩 A1102 2 110±31 SHRIMP 董春艳等, 2012 胶东 西留 变质辉长岩 QX2-2 2 102±3 1 907±16 LA-ICP-MS 刘平华等, 2013b 河北赞皇 北水峪 变质辉长岩 225BSY1 2 090±3 CAMECA Peng et al., 2017 山东蒙阴 孟良崮 变质基性岩墙 2 084±15 LA-ICP-MS Yang et al., 2019 恒山 义兴寨 辉长岩 07FS01 2 060±5 1 884±9 CAMECA Peng et al., 2014 恒山 义兴寨 基性岩墙 02SX109 2 060~2 035 ~1 869 SHRIMP Peng et al., 2012 晚期基性岩墙群 大青山 茅湖洞 变质辉长岩 NM0814-2 1 968±8 1 906±13 SHRIMP Wan et al., 2013 集宁 凉城红庙子 变质辉长岩 06LC17 1 964±9 1 907±37 SHRIMP Peng et al., 2010 集宁 1 954±6 1 925±8 CAMECA Peng et al., 2010 大青山 变质辉长岩 NM0915 1 951±9 1 884±11 SHRIMP Wan et al., 2013 吕梁 方山 变质基性岩墙(斜长角闪岩) 11FS-08 1 949.9±9.6 LA-ICP-MS Wang et al., 2014 吕梁 变质基性岩墙(斜长角闪岩) 11FS-02 1 944±17 LA-ICP-MS Wang et al., 2014 吕梁 方山 变质基性岩墙(斜长角闪岩) 11FS-12 1 939.6±8.2 LA-ICP-MS Wang et al., 2014 集宁 凉城郭林窑 辉长苏长岩 P09GLY1 1 936±4 1 913±6 CAMECA Peng et al., 2014 集宁 徐武家 变质闪长岩 02SX021 1 931±8 1 862±19 SHRIMP Peng et al., 2010 大青山 立甲子 变质基性岩墙 BT35-2 > 1 930 1 892±9 LA-ICP-MS 刘平华等, 2013a 大青山 哈达门沟 变质辉长岩 NM0811 1 924±17 1 853±13 SHRIMP Wan et al., 2013 大青山 石拐 变质辉长岩 NM0911 1 831±13 SHRIMP Wan et al., 2013 吕梁 庞泉沟 变质基性岩墙(斜长角闪岩) 12PQG-29 1 919±18 LA-ICP-MS Wang et al., 2014 天镇-怀安 西赵家窑北 变质基性岩墙 TW9001-2 ~1 918(?) 1 820±10 LA-ICP-MS 本文 朱家沟 变质基性岩墙 16ZJG-1 1 834±9 LA-ICP-MS 集宁 西沟 变质辉长岩 06JN05 1 857±4 SHRIMP Peng et al., 2010 中条山 变质基性岩墙 ZT03 1 847±14 LA-ICP-MS 张少华等, 2019 山东蒙阴 野店 变质基性岩墙 05SD-21 1 841±17 LA-ICP-MS Wang et al., 2007 大青山 东坡 辉长苏长岩 P09DP2 1 801±8 CAMECA Peng et al., 2014 中条山 陶家窑 基性岩墙 1 838±32 LA-ICP-MS 冯娟萍等, 2020 辽宁 国华 基性岩墙 FX12-25-1 1 826±7 CAMECA Yuan et al., 2015 注:原岩年龄和变质年龄单位为Ma. -
[1] Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb.Chemical Geology, 192(1-2): 59-79. https://doi.org/10.1016/S0009-2541(02)00195-X" target=="_blank"> https://doi.org/10.1016/S0009-2541(02)00195-X [2] Condie, K. C., 2016. The Supercontinent Cycle. Earth as an Evolving Planetary System. Elsevier, Amsterdam, 201-235. https://doi.org/10.1016/b978-0-12-803689-1.00007-9" target=="_blank"> https://doi.org/10.1016/b978-0-12-803689-1.00007-9 [3] Dong, C. Y., Ma, M. Z., Liu, S. J., et al., 2012. Middle Paleoproterozoic Crustal Extensional Regime in the North China Craton: New Evidence from SHRIMP Zircon U-Pb Dating and Whole-Rock Geochemistry of Meta-Gabbro in the Anshan-Gongchangling Area. Acta Petrologica Sinica, 28(9): 2785-2792 (in Chinese with English abstract). [4] Du, L. L., Yang, C. H., Ren, L. D., et al., 2012. The 2.2-2.1 Ga Magmatic Event and Its Tectonic Implication in the Lüliang Mountains, North China Craton. Acta Petrologica Sinica, 28(9): 2751-2769 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201209007 [5] Du, L. L., Yang, C. H., Wang, W., et al., 2013. Paleoproterozoic Rifting of the North China Craton: Geochemical and Zircon Hf Isotopic Evidence from the 2 137 Ma Huangjinshan A-Type Granite Porphyry in the Wutai Area. Journal of Asian Earth Sciences, 72: 190-202. https://doi.org/10.1016/j.jseaes.2012.11.040" target=="_blank"> https://doi.org/10.1016/j.jseaes.2012.11.040 [6] Duan, Z. Z., Wei, C. J., Li, Z., 2019. Metamorphic P-T Paths and Zircon U–Pb Ages of Paleoproterozoic Metabasic Dykes in Eastern Hebei and Northern Liaoning: Implications for the Tectonic Evolution of the North China Craton. Precambrian Research, 326: 124-141. https://doi.org/10.1016/j.precamres.2017.11.001" target=="_blank"> https://doi.org/10.1016/j.precamres.2017.11.001 [7] Ernst, R. E., Bleeker, W., Sö derlund, U., et al., 2013. Large Igneous Provinces and Supercontinents: Toward Completing the Plate Tectonic Revolution. Lithos, 174: 1-14. https://doi.org/10.1016/j.lithos.2013.02.017" target=="_blank"> https://doi.org/10.1016/j.lithos.2013.02.017 [8] Ernst, R. E., Grosfils, E. B., Mège, D., 2001. Giant Dike Swarms: Earth, Venus, and Mars.Annual Review of Earth and Planetary Sciences, 29(1): 489-534. https://doi.org/10.1146/annurev.earth.29.1.489" target=="_blank"> https://doi.org/10.1146/annurev.earth.29.1.489 [9] Feng, J. P., Ouyang, Z. J., Ma, H. Y., et al., 2020. U-Pb Chronology, Geochemical Characteristics and Significance of the Taojiayao Basic Dike Swarms in the Zhongtiao Mountain, Southeastern Margin of North China Craton. Acta Geologica Sinica, 94(2): 573-586 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb202002014 [10] Geng, J. Z., Li, H. K., Zhang, J., et al., 2011. Zircon Hf Isotope Analysis by Means of LA-MC-ICP-MS. Geological Bulletin of China, 30(10): 1508-1513 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201110004 [11] Grove, T. L., Elkins-Tanton, L. T., Parman, S. W., et al., 2003. Fractional Crystallization and Mantle-Melting Controls on Calc-Alkaline Differentiation Trends. Contributions to Mineralogy and Petrology, 145(5): 515-533. https://doi.org/10.1007/s00410-003-0448-z" target=="_blank"> https://doi.org/10.1007/s00410-003-0448-z [12] Guo, J. H., O'Brien, P. J., Zhai, M. G., 2002. High-Pressure Granulites in the Sanggan Area, North China Craton: Metamorphic Evolution, P-T Paths and Geotectonic Significance. Journal of Metamorphic Geology, 20(8): 741-756. https://doi.org/10.1046/j.1525-1314.2002.00401.x" target=="_blank"> https://doi.org/10.1046/j.1525-1314.2002.00401.x [13] Guo, J. H., Peng, P., Chen, Y., et al., 2012. UHT Sapphirine Granulite Metamorphism at 1.93-1.92 Ga Caused by Gabbronorite Intrusions: Implications for Tectonic Evolution of the Northern Margin of the North China Craton. Precambrian Research, 222-223: 124-142. https://doi.org/10.1016/j.precamres.2011.07.020" target=="_blank"> https://doi.org/10.1016/j.precamres.2011.07.020 [14] Guo, J. H., Sun, M., Chen, F. K., et al., 2005. Sm-Nd and SHRIMP U-Pb Zircon Geochronology of High-Pressure Granulites in the Sanggan Area, North China Craton: Timing of Paleoproterozoic Continental Collision. Journal of Asian Earth Sciences, 24(5): 629-642. https://doi.org/10.1016/j.jseaes.2004.01.017" target=="_blank"> https://doi.org/10.1016/j.jseaes.2004.01.017 [15] Heaman, L. M., 1997. Global Mafic Magmatism at 2.45 Ga: Remnants of an Ancient Large Igneous Province?. Geology, 25(4): 299. https://doi.org/10.1130/0091-7613(1997)0250299:gmmagr>2.3.co;2 doi: 10.1130/0091-7613(1997)0250299:gmmagr>2.3.co;2 [16] Hou, G. T., Santosh, M., Qian, X. L., et al., 2008. Configuration of the Late Paleoproterozoic Supercontinent Columbia: Insights from Radiating Mafic Dyke Swarms. Gondwana Research, 14(3): 395-409. https://doi.org/10.1016/j.gr.2008.01.010" target=="_blank"> https://doi.org/10.1016/j.gr.2008.01.010 [17] Jensen, L. S., 1976. A New Cation Plot for Classifying Subalkalic Volcanic Rocks. Ontario Geological Survey, Toronto. [18] Jiao, S. J., Fitzsimons, I. C. W., Guo, J. H, 2017. Paleoproterozoic UHT Metamorphism in the Daqingshan Terrane, North China Craton: New Constraints from Phase Equilibria Modeling and SIMS U-Pb Zircon Dating. Precambrian Research, 303: 208-227. https://doi.org/10.1016/j.precamres.2017.03.024" target=="_blank"> https://doi.org/10.1016/j.precamres.2017.03.024 [19] Kerrich, R., Polat, A., Wyman, D., et al., 1999. Trace Element Systematics of Mg-, to Fe-tholeiitic Basalt Suites of the Superior Province: Implications for Archean Mantle Reservoirs and Greenstone Belt Genesis. Lithos, 46(1): 163-187. https://doi.org/10.1016/S0024-4937(98)00059-0" target=="_blank"> https://doi.org/10.1016/S0024-4937(98)00059-0 [20] Kröner, A., Wilde, S. A., Zhao, G. C., et al., 2006. Zircon Geochronology and Metamorphic Evolution of Mafic Dykes in the Hengshan Complex of Northern China: Evidence for Late Palaeoproterozoic Extension and Subsequent High-Pressure Metamorphism in the North China Craton. Precambrian Research, 146(1-2): 45-67. https://doi.org/10.1016/j.precamres.2006.01.008" target=="_blank"> https://doi.org/10.1016/j.precamres.2006.01.008 [21] Li, X. W., Wei, C. J., 2018. Ultrahigh-Temperature Metamorphism in the Tuguiwula Area, Khondalite Belt, North China Craton. Journal of Metamorphic Geology, 36(4): 489-509. https://doi.org/10.1111/jmg.12301" target=="_blank"> https://doi.org/10.1111/jmg.12301 [22] Liao, Y., Wei, C. J., 2019. Ultrahigh-Temperature Mafic Granulite in the Huai'an Complex, North China Craton: Evidence from Phase Equilibria Modelling and Amphibole Thermometers. Gondwana Research, 76: 62-76. https://doi.org/10.1016/j.gr.2019.05.010" target=="_blank"> https://doi.org/10.1016/j.gr.2019.05.010 [23] Liu, F., Guo, J. H., Peng, P., et al., 2012. Zircon U-Pb Ages and Geochemistry of the Huai'an TTG Gneisses Terrane: Petrogenesis and Implications for ~2.5 Ga Crustal Growth in the North China Craton. Precambrian Research, 212-213: 225-244. https://doi.org/10.1016/j.precamres.2012.06.006" target=="_blank"> https://doi.org/10.1016/j.precamres.2012.06.006 [24] Liu, H., Li, X. P., Kong, F. M., et al., 2019. Ultra-High Temperature Overprinting of High Pressure Pelitic Granulites in the Huai'an Complex, North China Craton: Evidence from Thermodynamic Modeling and Isotope Geochronology. Gondwana Research, 72: 15-33. https://doi.org/10.1016/j.gr.2019.02.003" target=="_blank"> https://doi.org/10.1016/j.gr.2019.02.003 [25] Liu, J., Zhang, J., Liu, Z. H., et al., 2018. Geochemical and Geochronological Study on the Paleoproterozoic Rock Assemblage of the Xiuyan Region: New Constraints on an Integrated Rift-and-Collision Tectonic Process Involving the Evolution of the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research, 310: 179-197. https://doi.org/10.1016/j.precamres.2018.03.005" target=="_blank"> https://doi.org/10.1016/j.precamres.2018.03.005 [26] Liu, P. H., Liu, F. L., Cai, J., et al., 2013a. Geochronological and Geochemical Study of the Lijiazi Mafic Granulites from the Daqingshan-Wulashan Metamorphic Complex, the Central Khondalite Belt in the North China Craton. Acta Petrologica Sinica, 29(2): 462-484 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201302009 [27] Liu, P. H., Liu, F. L., Wang, F., et al., 2013b. Petrological and Geochronological Preliminary Study of the Xiliu ~2.1 Ga Meta-Gabbro from the Jiaobei Terrane, the Southern Segment of the Jiao-Liao-Ji Belt in the North China Craton. Acta Petrologica Sinica, 29(7): 2371-2390 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201307009.htm [28] Ma, M. Z., Wan, Y. S., Santosh, M., et al., 2012. Decoding Multiple Tectonothermal Events in Zircons from Single Rock Samples: SHRIMP Zircon U–Pb Data from the Late Neoarchean Rocks of Daqingshan, North China Craton. Gondwana Research, 22(3): 810-827. https://doi.org/10.1016/j.gr.2012.02.020" target=="_blank"> https://doi.org/10.1016/j.gr.2012.02.020 [29] Meng, E., Liu, F. L., Liu, P. H., et al., 2014. Petrogenesis and Tectonic Significance of Paleoproterozoic Meta-Mafic Rocks from Central Liaodong Peninsula, Northeast China: Evidence from Zircon U–Pb Dating and in Situ Lu–Hf Isotopes, and Whole-Rock Geochemistry. Precambrian Research, 247: 92-109. https://doi.org/10.1016/j.precamres.2014.03.017" target=="_blank"> https://doi.org/10.1016/j.precamres.2014.03.017 [30] Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1): 14-48. https://doi.org/10.1016/j.lithos.2007.06.016" target=="_blank"> https://doi.org/10.1016/j.lithos.2007.06.016 [31] Peng, P., 2015. Precambrian Mafic Dyke Swarms in the North China Craton and Their Geological Implications. Science China Earth Sciences, 58(5): 649-675. https://doi.org/10.1007/s11430-014-5026-x" target=="_blank"> https://doi.org/10.1007/s11430-014-5026-x [32] Peng, P., Guo, J. H., Zhai, M. G., et al., 2010. Paleoproterozoic Gabbronoritic and Granitic Magmatism in the Northern Margin of the North China Craton: Evidence of Crust-Mantle Interaction. Precambrian Research, 183(3): 635-659. https://doi.org/10.1016/j.precamres.2010.08.015" target=="_blank"> https://doi.org/10.1016/j.precamres.2010.08.015 [33] Peng, P., Guo, J. H., Zhai, M. G., et al., 2012. Genesis of the Hengling Magmatic Belt in the North China Craton: Implications for Paleoproterozoic Tectonics. Lithos, 148: 27-44. https://doi.org/10.1016/j.lithos.2012.05.021" target=="_blank"> https://doi.org/10.1016/j.lithos.2012.05.021 [34] Peng, P., Wang, X. P., Windley, B. F., et al., 2014. Spatial Distribution of ~1 950-1 800 Ma Metamorphic Events in the North China Craton: Implications for Tectonic Subdivision of the Craton. Lithos, 202-203: 250-266. https://doi.org/10.1016/j.lithos.2014.05.033" target=="_blank"> https://doi.org/10.1016/j.lithos.2014.05.033 [35] Peng, P., Yang, S. Y., Su, X. D., et al., 2017. Petrogenesis of the 2 090 Ma Zanhuang Ring and Sill Complexes in North China: A Bimodal Magmatism Related to Intra-Continental Process. Precambrian Research, 303: 153-170. https://doi.org/10.1016/j.precamres.2017.03.015" target=="_blank"> https://doi.org/10.1016/j.precamres.2017.03.015 [36] Peng, P., Zhai, M. G., Ernst, R. E., et al., 2008. A 1.78 Ga Large Igneous Province in the North China Craton: The Xiong'er Volcanic Province and the North China Dyke Swarm. Lithos, 101(3-4): 260-280. https://doi.org/10.1016/j.lithos.2007.07.006" target=="_blank"> https://doi.org/10.1016/j.lithos.2007.07.006 [37] Peng, P., Zhai, M. G., Zhang, H. F., et al., 2005. Geochronological Constraints on the Paleoproterozoic Evolution of the North China Craton: SHRIMP Zircon Ages of Different Types of Mafic Dikes. International Geology Review, 47(5): 492-508. https://doi.org/10.2747/0020-6814.47.5.492" target=="_blank"> https://doi.org/10.2747/0020-6814.47.5.492 [38] Polat, A., Hofmann, A. W., Rosing, M. T., 2002. Boninite-Like Volcanic Rocks in the 3.7-3.8 Ga Isua Greenstone Belt, West Greenland: Geochemical Evidence for Intra-Oceanic Subduction Zone Processes in the Early Earth. Chemical Geology, 184(3): 231-254. https://doi.org/10.1016/S0009-2541(01)00363-1" target=="_blank"> https://doi.org/10.1016/S0009-2541(01)00363-1 [39] Qian, J. H., Yin, C. Q., Wei, C. J., et al., 2019. Two Phases of Paleoproterozoic Metamorphism in the Zhujiafang Ductile Shear Zone of the Hengshan Complex: Insights into the Tectonic Evolution of the North China Craton. Lithos, 330-331: 35-54. https://doi.org/10.1016/j.lithos.2019.02.001" target=="_blank"> https://doi.org/10.1016/j.lithos.2019.02.001 [40] Rollinson, H. R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Group, London. [41] Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. In: Rudnick, R.L., ed., The Crust. Elsevier-Pergamon, Oxford. [42] Rudnick, R. L., McLennan, S. M., Taylor, S. R., 1985. Large Ion Lithophile Elements in Rocks from High-Pressure Granulite Facies Terrains. Geochimica et Cosmochimica Acta, 49(7): 1645-1655. https://doi.org/10.1016/0016-7037(85)90268-6" target=="_blank"> https://doi.org/10.1016/0016-7037(85)90268-6 [43] Santosh, M., Liu, S. W., Tsunogae, T., et al., 2012. Paleoproterozoic Ultrahigh-Temperature Granulites in the North China Craton: Implications for Tectonic Models on Extreme Crustal Metamorphism. Precambrian Research, 222: 77-106. https://doi.org/10.1016/j.precamres.2011.05.003" target=="_blank"> https://doi.org/10.1016/j.precamres.2011.05.003 [44] Santosh, M., Tsunogae, T., Li, J. H., et al., 2007. Discovery of Sapphirine-Bearing Mg-Al Granulites in the North China Craton: Implications for Paleoproterozoic Ultrahigh Temperature Metamorphism. Gondwana Research, 11(3): 263-285. https://doi.org/10.1016/j.gr.2006.10.009" target=="_blank"> https://doi.org/10.1016/j.gr.2006.10.009 [45] Shen, Q. H., Geng, Y. S., Song, H. X., 2018. Progress on Metamorphic Petrology and Metamorphic Geology of China in the Last nearly 70 Years. Earth Science, 43(1): 1-23 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201801001 [46] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19" target=="_blank"> https://doi.org/10.1144/gsl.sp.1989.042.01.19 [47] Tian, H., Zhang, J. H., Wang, H. C., et al., 2019. Formation Age and Tectonic Setting of Iron-Bearing Formation in Huai'an Complex, North China Craton. Earth Science, 44(1):37-55 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201901004 [48] Wan, Y. S., Xu, Z. Y., Dong, C. Y., et al., 2013. Episodic Paleoproterozoic (~2.45, ~1.95 and ~1.85 Ga) Mafic Magmatism and Associated High Temperature Metamorphism in the Daqingshan Area, North China Craton: SHRIMP Zircon U–Pb Dating and Whole-Rock Geochemistry. Precambrian Research, 224: 71-93. https://doi.org/10.1016/j.precamres.2012.09.014" target=="_blank"> https://doi.org/10.1016/j.precamres.2012.09.014 [49] Wang, B., Tian, W., Wei, C. J., et al., 2019. Ultrahigh Metamorphic Temperatures over 1 050 ℃ Recorded by Fe-Ti Oxides and Implications for Paleoproterozoic Magma-Induced Crustal Thermal Perturbation in Jining Area, North China Craton. Lithos, 348/349: 105180. https://doi.org/10.1016/j.lithos.2019.105180" target=="_blank"> https://doi.org/10.1016/j.lithos.2019.105180 [50] Wang, H. C., Yu, H. F., Miao, P. S., et al., 2011. Precambrian Research in China: New Advances and Perspectives. Geological Survey and Research, 34(4): 241-252, 312 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=QHWJ201104002&dbcode=CJFD&year=2011&dflag=pdfdown [51] Wang, X. C., Wilde, S. A., Xu, B., et al., 2016b. Origin of Arc-Like Continental Basalts: Implications for Deep-Earth Fluid Cycling and Tectonic Discrimination.Lithos, 261: 5-45. https://doi.org/10.1016/j.lithos.2015.12.014" target=="_blank"> https://doi.org/10.1016/j.lithos.2015.12.014 [52] Wang, X. P., Peng, P., Wang, C., et al., 2016a. Petrogenesis of the 2115 Ma Haicheng Mafic Sills from the Eastern North China Craton: Implications for an Intra-Continental Rifting. Gondwana Research, 39: 347-364. https://doi.org/10.1016/j.gr.2016.01.009" target=="_blank"> https://doi.org/10.1016/j.gr.2016.01.009 [53] Wang, X., Zhu, W. B., Ge, R. F., et al., 2014. Two Episodes of Paleoproterozoic Metamorphosed Mafic Dykes in the Lvliang Complex: Implications for the Evolution of the Trans-North China Orogen. Precambrian Research, 243: 133-148. https://doi.org/10.1016/j.precamres.2013.12.014" target=="_blank"> https://doi.org/10.1016/j.precamres.2013.12.014 [54] Wang, Y. J., Zhao, G. C., Fan, W. M., et al., 2007. LA-ICP-MS U-Pb Zircon Geochronology and Geochemistry of Paleoproterozoic Mafic Dykes from Western Shandong Province: Implications for Back-Arc Basin Magmatism in the Eastern Block, North China Craton. Precambrian Research, 154(1): 107-124. https://doi.org/10.1016/j.precamres.2006.12.010" target=="_blank"> https://doi.org/10.1016/j.precamres.2006.12.010 [55] Wei, C. J., 2018. Paleoproterozoic Metamorphism and Tectonic Evolution in Wutai-Hengshan Region, Trans-North China Orogen. Earth Science, 43(1): 24-43 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201801002 [56] Wei, C. J., Qian, J. H., Zhou, X. W., 2014. Paleoproterozoic Crustal Evolution of the Hengshan-Wutai-Fuping Region, North China Craton. Geoscience Frontiers, 5(4): 485-497. https://doi.org/10.1016/j.gsf.2014.02.008" target=="_blank"> https://doi.org/10.1016/j.gsf.2014.02.008 [57] Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. https://doi.org/10.1016/0009-2541(77)90057-2" target=="_blank"> https://doi.org/10.1016/0009-2541(77)90057-2 [58] Wood, D. A., 1980. The Application of a Th-Hf-Ta Diagram to Problems of Tectonomagmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50(1): 11-30. https://doi.org/10.1016/0012-821x(80)90116-8" target=="_blank"> https://doi.org/10.1016/0012-821x(80)90116-8 [59] Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200702001 [60] Wu, J. L., Zhang, H. F., Zhai, M. G., et al., 2016. Discovery of Pelitic High-Pressure Granulite from Manjinggou of the Huai'an Complex, North China Craton: Metamorphic P-T Evolution and Geological Implications. Precambrian Research, 278: 323-336. https://doi.org/10.1016/j.precamres.2016.03.001" target=="_blank"> https://doi.org/10.1016/j.precamres.2016.03.001 [61] Yang, C. H., Du, L. L., Geng, Y. S., et al., 2017. Paleoproterozoic Metamafic Dyke Swarms in the Eastern Hebei Massif, the Eastern North China Craton: ~2.1 Ga Extension and ~1.8 Ga Metamorphism. Acta Petrologica Sinica, 33(9): 2827-2849 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201709012.htm [62] Yang, L. H., Hou, G. T., Liu, S. W., et al., 2019. 2.09 Ga Mafic Dykes from Western Shandong, Eastern Block of North China Craton, and Their Tectonic Implications.Precambrian Research, 325: 39-54. https://doi.org/10.1016/j.precamres.2019.02.007" target=="_blank"> https://doi.org/10.1016/j.precamres.2019.02.007 [63] Yu, C., 2019. Geochronological and Geochemical Characteristics of the Tonalite and Its Geological Implication in the Qinyuan Area, Northern Liaoning Province. Geological Survey and Research, 42(1): 18-29 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhwjyjjz201901003 [64] Yuan, L. L., Zhang, X. H., Xue, F. H., et al., 2015. Two Episodes of Paleoproterozoic Mafic Intrusions from Liaoning Province, North China Craton: Petrogenesis and Tectonic Implications. Precambrian Research, 264: 119-139. https://doi.org/10.1016/j.precamres.2015.04.017" target=="_blank"> https://doi.org/10.1016/j.precamres.2015.04.017 [65] Zhai, M. G., 2009. Two Kinds of Granulites (HT-HP and HT-UHT) in North China Craton: Their Genetic Relation and Geotectonic Implications. Acta Petrologica Sinica, 25(8):1753-1771 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200908005.htm [66] Zhai, M. G., 2011. Cratonization and the Ancient North China Continent: A Summary and Review. Science China Earth Sciences, 54(8): 1110-1120. https://doi.org/10.1007/s11430-011-4250-x" target=="_blank"> https://doi.org/10.1007/s11430-011-4250-x [67] Zhai, M. G., Hu, B., Peng, P., et al., 2014. Meso-Neoproterozoic Magmatic Events and Multi-Stage Rifting in the NCC. Earth Science Frontiers, 21(1): 100-119 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201401010 [68] Zhai, M. G., Hu, B., Zhao, T. P., et al., 2015. Late Paleoproterozoic-Neoproterozoic Multi-Rifting Events in the North China Craton and Their Geological Significance: A Study Advance and Review. Tectonophysics, 662: 153-166. https://doi.org/10.1016/j.tecto.2015.01.019" target=="_blank"> https://doi.org/10.1016/j.tecto.2015.01.019 [69] Zhai, M. G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview. Gondwana Research, 20(1): 6-25. https://doi.org/10.1016/j.gr.2011.02.005" target=="_blank"> https://doi.org/10.1016/j.gr.2011.02.005 [70] Zhang, H. F., Wang, H. Z., Santosh, M., et al., 2016. Zircon U-Pb Ages of Paleoproterozoic Mafic Granulites from the Huai'an Terrane, North China Craton (NCC): Implications for Timing of Cratonization and Crustal Evolution History. Precambrian Research, 272: 244-263. https://doi.org/10.1016/j.precamres.2015.11.004" target=="_blank"> https://doi.org/10.1016/j.precamres.2015.11.004 [71] Zhang, J. H., Tian, H., Wang, H. C., et al., 2019a. Re-Definition of the Two-Stage Early-Precambrian Meta-Supracrustal Rocks in the Huai'an Complex, North China Craton: Evidences from Petrology and Zircon U-Pb Geochronology. Earth Science, 44(1): 1-22 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201901001.htm [72] Zhang, J. H., Wang, H. C., Tian, H., et al., 2019b. Geochemistry of the Neoarchean and Paleoproterozoic Al-Rich Metamorphic Supracrustal Rocks in the Huai'an Complex, North China Craton and Its Tectonic Significances. Acta Geologica Sinica, 93(7): 1618-1638 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201907006 [73] Zhang, J. H., Wang, H. C., Tian, H., et al., 2019c. Petrogenesis of the MORB Type High-Pressure Mafic Granulite from the Huai'an Complex in North China Craton and Its Tectonic Implications. Acta Petrologica Sinica, 35(11): 3506-3528 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.11.16 [74] Zhang, S. H., Zhang, R. Y., Zhou, J. Y., 2019. LA-ICP-MS Zircon U-Pb Age, Geochemical Characteristics of the Paleoproterozoic Metamorphosed Mafic Dykes in Zhongtiao Mountains, Shanxi Province, and Their Geological Implications. Geological Review, 65(6): 1350-1362 (inChinesewithEnglishabstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201906005 [75] Zhang, S. H., Zhao, Y., Santosh, M., 2012. Mid-Mesoproterozoic Bimodal Magmatic Rocks in the Northern North China Craton: Implications for Magmatism Related to Breakup of the Columbia Supercontinent. Precambrian Research, 222/223: 339-367. https://doi.org/10.1016/j.precamres.2011.06.003" target=="_blank"> https://doi.org/10.1016/j.precamres.2011.06.003 [76] Zhang, Y. Y., Yuan, C., Sun, M., et al., 2020. Two Late Carboniferous Belts of Nb-Enriched Mafic Magmatism in the Eastern Tianshan: Heterogeneous Mantle Sources and Geodynamic Implications. GSA Bulletin, Online. https://doi.org/10.1130/b35366.1" target=="_blank"> https://doi.org/10.1130/b35366.1 [77] Zhao, G. C., 2009. Metamorphic Evolution of Major Tectonic Units in the Basement of the North China Craton: Key Issues and Discussion. Acta Petrologica Sinica, 25(8): 1772-1792 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-sinica_thesis/0201252026187.html [78] Zhao, G. C., Cawood, P. A., Li, S. Z., et al., 2012. Amalgamation of the North China Craton: Key Issues and Discussion. Precambrian Research, 222-223: 55-76. https://doi.org/10.1016/j.precamres.2012.09.016" target=="_blank"> https://doi.org/10.1016/j.precamres.2012.09.016 [79] Zhao, G. C., Cawood, P. A., Wilde, S. A., et al., 2001. High-Pressure Granulites (Retrograded Eclogites) from the Hengshan Complex, North China Craton: Petrology and Tectonic Implications. Journal of Petrology, 42(6): 1141-1170. https://doi.org/10.1093/petrology/42.6.1141" target=="_blank"> https://doi.org/10.1093/petrology/42.6.1141 [80] Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 136(2): 177-202. https://doi.org/10.1016/j.precamres.2004.10.002" target=="_blank"> https://doi.org/10.1016/j.precamres.2004.10.002 [81] Zhao, G. C., Wilde, S. A., Sun, M., et al., 2008. SHRIMP U-Pb Zircon Geochronology of the Huai'an Complex: Constraints on Late Archean to Paleoproterozoic Magmatic and Metamorphic Events in the Trans-North China Orogen. American Journal of Science, 308(3): 270-303. https://doi.org/10.2475/03.2008.04" target=="_blank"> https://doi.org/10.2475/03.2008.04 [82] Zhao, G. C., Zhai, M. G., 2013. Lithotectonic Elements of Precambrian Basement in the North China Craton: Review and Tectonic Implications. Gondwana Research, 23(4): 1207-1240. https://doi.org/10.1016/j.gr.2012.08.016" target=="_blank"> https://doi.org/10.1016/j.gr.2012.08.016 [83] 董春艳, 马铭株, 刘守偈, 等, 2012.华北克拉通古元古代中期伸展体制新证据:鞍山-弓长岭地区变质辉长岩的锆石SHRIMP U-Pb定年和全岩地球化学.岩石学报, 28(9): 2785-2792. http://d.wanfangdata.com.cn/Periodical/ysxb98201209009 [84] 杜利林, 杨崇辉, 任留东, 等, 2012.吕梁地区2.2~2.1 Ga岩浆事件及其构造意义.岩石学报, 28(9): 2751-2769. http://qikan.cqvip.com/Qikan/Article/Detail?id=43428508 [85] 冯娟萍, 欧阳征健, 马海勇, 等, 2020.华北克拉通东南缘中条山陶家窑基性岩墙群U-Pb定年、地球化学特征及其构造环境.地质学报, 94(2): 573-586. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb202002014 [86] 耿建珍, 李怀坤, 张健, 等, 2011.锆石Hf同位素组成的LA-MC-ICP-MS测定.地质通报, 30(10): 1508-1513. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201110004 [87] 刘平华, 刘福来, 蔡佳, 等, 2013a.华北克拉通孔兹岩带中段大青山-乌拉山变质杂岩立甲子基性麻粒岩年代学及地球化学研究.岩石学报, 29(2): 462-484. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201302009 [88] 刘平华, 刘福来, 王舫, 等, 2013b.胶北西留古元古代~2.1 Ga变辉长岩岩石学与年代学初步研究.岩石学报, 29(7): 2371-2390. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201307009.htm [89] 沈其韩, 耿元生, 宋会侠, 2018.近70年中国变质岩石学-变质地质学的研究进展.地球科学, 43(1): 1-23. doi: 10.3799/dqkx.2018.001 [90] 田辉, 张家辉, 王惠初, 等, 2019.怀安杂岩中含BIF岩石组合的形成时代及产出构造背景.地球科学, 44(1): 37-51. doi: 10.3799/dqkx.2018.301 [91] 王惠初, 于海峰, 苗培森, 等, 2011.前寒武纪地质学研究进展与前景.地质调查与研究, 34(4): 241-252, 312. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhwjyjjz201104001 [92] 魏春景, 2018.华北中部造山带五台-恒山地区古元古代变质作用与构造演化.地球科学, 43(1): 24-43. doi: 10.3799/dqkx.2018.002 [93] 吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2): 185-220. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200702001 [94] 杨崇辉, 杜利林, 耿元生, 等, 2017.冀东古元古代基性岩墙群的年龄及地球化学: ~2.1 Ga伸展及~1.8 Ga变质.岩石学报, 33(9): 2827-2849. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201709012.htm [95] 余超, 2019.辽北清原地区英云闪长岩年代学、地球化学特征及其地质意义.地质调查与研究, 42(1): 18-29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhwjyjjz201901003 [96] 翟明国, 2009.华北克拉通两类早前寒武纪麻粒岩(HT-HP和HT-UHT)及其相关问题.岩石学报, 25(8): 1753-1771. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200908003 [97] 翟明国, 胡波, 彭澎, 等, 2014.华北中:新元古代的岩浆作用与多期裂谷事件.地学前缘, 21(1): 100-119. http://www.cqvip.com/QK/98600X/201401/50137027.html [98] 张家辉, 田辉, 王惠初, 等, 2019a.华北克拉通怀安杂岩中早前寒武纪两期变质表壳岩的重新厘定:岩石学及锆石U-Pb年代学证据.地球科学, 44(1): 1-22. doi: 10.3799/dqkx.2018.259 [99] 张家辉, 王惠初, 田辉, 等, 2019b.华北克拉通怀安杂岩新太古代和古元古代富铝变质表壳岩的地球化学特征及构造意义.地质学报, 93(7): 1618-1638. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201907006 [100] 张家辉, 王惠初, 田辉, 等, 2019c.华北克拉通怀安杂岩中"MORB"型高压基性麻粒岩的成因及其构造意义.岩石学报, 35(11): 3506-3528. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201911016 [101] 张少华, 张瑞英, 周金昱, 2019.中条山地区古元古代变基性岩墙的地球化学特征、LA-ICP-MS U-Pb年龄及其地质意义.地质论评, 65(6): 1350-1362. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201906005 [102] 赵国春, 2009.华北克拉通基底主要构造单元变质作用演化及其若干问题讨论.岩石学报, 25(8): 1772-1792. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200908004 -
dqkxzx-45-9-3239-附表1 2 3.doc