Review on Geological Research of Oceanic Island-Seamount and Its Significance for Reconstruction of Ocean Plate
-
摘要: 在中国区域大地构造研究中,对洋岛-海山/洋底高原的识别尚未引起足够重视.为深入研究中国大陆洋板块构造,系统回顾了洋岛-海山/洋底高原的基本概念、基本特征和增生造山过程.洋岛-海山/洋底高原是在海底扩张、大洋壳演化过程中由于地幔热点/柱作用形成的有异常厚度洋壳的区域,是大洋岩石圈的重要组成部分.洋岛-海山/洋底高原在垂向上具有典型的二元结构,下部以镁铁质、超镁铁质岩石为主,上部以碳酸盐岩建造为主.现今大洋盆地中大面积分布着正在演化中和正在俯冲的洋岛-海山,根据比较大地构造学原理,古洋岛-海山的存在指示古大洋盆地的存在,是研究造山带的重要载体.认为地史时期大洋盆地中有相当数量的洋岛、海山,在俯冲增生碰撞造山过程中保留下来的古洋岛-海山残块以构造岩片(块)形式夹持在俯冲增生杂岩中,随大洋盆地关闭;其作为缝合带的重要组成部分,是识别对接带的重要判别依据之一.Abstract: The identification of oceanic island-seamount/oceanic plateau has not been attended sufficiently in the regional tectonic analysis of China. In order to study the ocean plate geology of China in depth, the basic concepts, characteristics and accretionary procession of the oceanic island-seamount and ocean floor plateau are reviewed systematically in this paper. Ocean island-seamount/oceanic plateau is an area with abnormal thickness ocean crust formed by hot spot/mantle plume in the process of ocean floor spreading and ocean crust evolution. It is an important part of the oceanic lithosphere. The ocean island-seamount/oceanic plateau has a typical binary structure, with the lower part dominated by mafic and ultramafic rocks, and the upper part composed of carbonate rock formation. According to the principles of comparative tectonics, the existence of the ancient ocean island-seamount indicates the relics of the fossil ocean basin. It is an important carrier to study the orogenic belt. It is considered that there are quite a number of oceanic island-seamounts in the oceanic basin during the geological history. During the subduction-accretion to collision orogeny, the remaining fossil oceanic island-seamounts are sandwiched in the subduction-accretion complex in the form of tectonic slices (blocks), which is one of the important criteria to identify the suture zone, when the ocean closed.
-
图 1 全球数字地形图,显示主要洋岛-海山/洋底高原
Fig. 1. ETOPO1 ice surface global relief model, showing main oceanic island‐seamounts/oceanic plateaus
图 2 海山地层结构模式
据Sano and Kanmera (1988)和Safonova et al.(2016)
Fig. 2. A seamount statigraphic model reconstructed from the Akiyoshi accretionary complex
图 3 海山的6个演化阶段
a.小型海山;b.中型海山;c.浅海山;d.洋岛;e.平顶山;f.海山破坏.据Staudigel and Clague (2010)
Fig. 3. Six stages of seamount evolution
图 5 洋底高原岩石组合关系示意图
据Kerr et al.(1998)和Condie (2001)
Fig. 5. Schematic rock column showing the inferred relationship of the different igneous rocks
图 6 翁通-爪哇高原深海钻探及其邻区代表岩性柱
Fig. 6. Representative lithologic column of Ontong-Java plateau deep sea drilling and its adjacent area
图 7 哥斯达黎加中部俯冲海山遥感影像显示俯冲海山的破坏形态
a.俯冲海山刚进入增生楔;b.已进入增生楔的海山;c.几乎被增生楔覆盖的海山.底图据Google Earth,地质信息据von Huene et al.(2004)
Fig. 7. Remote sensing image of central Costa Rica showing disruptive morphology from subducting seamounts
图 9 洋底高原与岛弧(a)和活动大陆边缘(b)碰撞示意图
Fig. 9. Schematic cross sections showing the possible effects of oceanic plateau collision with an island arc (a) and a subduction zone at a continental margin (b)
图 10 马鬃山杂岩中洋岛-海山组合
Fig. 10. Oceanic island/seamount relics in the Mazongshan complex
表 1 不同构造背景下火山岩层序的地球化学和地质判别特征
Table 1. Diagnostic geochemical and geological characteristics of volcanic sequences from different tectonic settings
构造环境 高MgO熔岩(> 14%) 低MgO熔岩(< 3%) Nb/La 球粒陨石标准化REE配分模式 枕状熔岩 火山喷发层 陆地喷发 深海沉积夹层 洋底高原 常见 很少 ≥1 主要平坦型 是 很少 偶然 是 洋中脊 很少 很少 ≥1 LREE亏损型 是 很少 很少 否 边缘海盆地 很少 很少 ≥1 主要平坦型 是 是 无 否 洋岛玄武岩 很少 很少 ≥1 LREE富集 是 很少 通常 很少 被动边缘 常见 很少 平坦型到LREE富集 并不都是熔岩枕状 偶然 通常 否 弧 很少 常见 远小于1 LREE富集 并不都是熔岩枕状 是 通常 很少 大陆溢流玄武岩 常见 常见 通常远小于1,少部分≥1 平坦型到LREE富集 否 偶然 是 否 注:据Kerr (2014). -
[1] Abbott, D.H., 1996.Plumes and Hotspots as Sources of Greenstone Belts.Lithos, 37(2):113-127. https://doi.org/10.1016/0024-4937(95)00032-1 [2] Abbott, D.H., Mooney, W.D., 1995.The Structural and Geochemical Evolution of the Continental Crust:Support for the Oceanic Plateau Model of Continental Growth.Reviews of Geophysics, 33:231-242. https://doi.org/10.1029/95rg00551 [3] Albarède, F., 1998.The Growth of Continental Crust.Tectonophysics, 296(1):1-14. https://doi.org/10.1016/s0040-1951(98)00133-4 [4] Amante, C., Eakins, B.W., 2009. ETOPO1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis.NOAA Technical Memorandum NESDIS NGDC-24.National Geophysical Data Center, NOAA, U.S.A..https://doi.org/10.7289/v5c8276m [5] Arrial, P.A., Billen, M.I., 2013.Influence of Geometry and Eclogitization on Oceanic Plateau Subduction.Earth and Planetary Science Letters, 363:34-43. https://doi.org/10.1016/j.epsl.2012.12.011 [6] Bangs, N.L.B., Gulick, S.P.S., Shipley, T.H., 2006.Seamount Subduction Erosion in the Nankai Trough and Its Potential Impact on the Seismogenic Zone.Geology, 34(8):701-704. https://doi.org/10.1130/g22451.1 [7] Ben-Avraham, Z., Nur, A., Jones, D., et al., 1981.Continental Accretion:From Oceanic Plateaus to Allochthonous Terranes.Science, 213(4503):47-54. https://doi.org/10.1126/science.213.4503.47 [8] Bénard, F., Callot, J., Vially, R., et al., 2010.The Kerguelen Plateau:Records from a Long-Living/Composite Microcontinent.Marine and Petroleum Geology, 27(3):633-649. https://doi.org/10.1016/j.marpetgeo.2009.08.011 [9] Bonnet, G., Agard, P., Whitechurch, H., et al., 2020.Fossil Seamount in Southeast Zagros Records Intraoceanic Arc to Back-Arc Transition:New Constraints for the Evolution of the Neotethys.Gondwana Research, 81:423-444. https://doi.org/10.1016/j.gr.2019.10.019 [10] Bryan, S.E., Ernst, R.E., 2008.Revised Definition of Large Igneous Provinces (LIPs).Earth-Science Reviews, 86(1):175-202. https://doi.org/10.1016/j.earscirev.2007.08.008 [11] Buchs, D.M., Arculus, R.J., Baumgartner, P.O., et al., 2011.Oceanic Intraplate Volcanoes Exposed:Example from Seamounts Accreted in Panama.Geology, 39(4):335-338. https://doi.org/10.1130/g31703.1 [12] Buchs, D.M., Hoernle, K., Hauff, F., et al., 2016.Evidence from Accreted Seamounts for a Depleted Component in the Early Galapagos Plume.Geology, 44(5):383-386. https://doi.org/10.1130/g37618.1 [13] Buslov, M.M., Saphonova, I.Y., Watanabe, T., et al., 2001.Evolution of the Paleo-Asian Ocean (Altai-Sayan Region, Central Asia) and Collision of Possible Gondwana-Derived Terranes with the Southern Marginal Part of the Siberian Continent.Geosciences Journal, 5(3):203-224. https://doi.org/10.1007/bf02910304 [14] Buslov, M.M., Watanabe, T., Fujiwara, Y., et al., 2004.Late Paleozoic Faults of the Altai Region, Central Asia:Tectonic Pattern and Model of Formation. Journal of Asian Earth Sciences, 23(5):655-671. https://doi.org/10.1016/s1367-9120(03)00131-7 [15] Calvert, A.J., Fisher, M.A., Ramachandran, K., et al., 2003.Possible Emplacement of Crustal Rocks into the Forearc Mantle of the Cascadia Subduction Zone.Geophysical Research Letters, 30(23):2196. https://doi.org/10.1029/2003gl018541 [16] Campbell, I.H., 2007.Testing the Plume Theory. Chemical Geology, 241(3):153-176. https://doi.org/10.1016/j.chemgeo.2007.01.024 [17] Chadwick, W., Embley, R., Baker, E., et al., 2010.Spotlight:Northwest Rota-1 Seamount.Oceanography, 23(1):182-183. https://doi.org/10.5670/oceanog.2010.82 [18] Cloos, M., 1993.Lithospheric Buoyancy and Collisional Orogenesis:Subduction of Oceanic Plateaus, Continental Margins, Island Arcs, Spreading Ridges, and Seamounts. Geological Society of America Bulletin, 105(6):715-737. doi: 10.1130/0016-7606(1993)105<0715:LBACOS>2.3.CO;2 [19] Cloos, M., Shreve, R. L., 1996. Shear-Zone Thickness and the Seismicity of Chilean- and Marianas-Type Subduction Zones. Geology, 24(2):107-110. https://doi.org/10.1130/0091-7613(1996)0240107:sztats > 2.3.co; 2 doi: 10.1130/0091-7613(1996)0240107:sztats>2.3.co;2 [20] Coffin, M.F., Eldholm, O., 2001.Large Igneous Provinces:Progenitors of Some Ophiolites? Geological Society of America Special Paper, 352:59-70 https://doi.org/10.1130/0-8137-2352-3.59 [21] Condie, K.C., 2001.Mantle Plumes and Their Record in Earth History.Cambridge University Press, Cambridge. [22] Condie, K.C., Abbott, D.H., 1999.Oceanic Plateaus and Hotspot Islands:Identification and Role in Continental Growth.Lithos, 46:1-4. https://doi.org/10.1016/s0024-4937(98)00053-x [23] Contreras-Reyes, E., Grevemeyer, I., Watts, A.B., et al., 2010.Crustal Intrusion beneath the Louisville Hotspot Track.Earth and Planetary Science Letters, 289(3):323-333. https://doi.org/10.1016/j.epsl.2009.11.020 [24] Dobretsov, N.L., Buslov, M.M., Yu, U., 2004.Fragments of Oceanic Islands in Accretion-Collision Areas of Gorny Altai and Salair, Southern Siberia, Russia:Early Stages of Continental Crustal Growth of the Siberian Continent in Vendian-Early Cambrian Time.Journal of Asian Earth Sciences, 23(5):673-690. https://doi.org/10.1016/s1367-9120(03)00132-9 [25] Dong, X.F., Yu, S.Q., Tang, Z.C., et al., 2016.Geochemical Characteristics of the Intra-Oceanic Arc Type Metabasic -Volcanics in Chencai Accretion Complex of Zhejiang Province and Their Geological Significance.Geology in China, 43(3):817-828 (in Chinese with English abstract). [26] Donnelly, T. W., 1973. Late Cretaceous Basalts from the Caribbean, a Possible Flood Basalt Province of Vast Size. EOS Transactions American Geophysical Union, 54(1):1004. [27] Duncan, R.A., 2002.A Time Frame for Construction of the Kerguelen Plateau and Broken Ridge.Journal of Petrology, 43(7):1109-1119. https://doi.org/10.1093/petrology/43.7.1109 [28] Duncan, R.A., Keller, R.A., 2004.Radiometric Ages for Basement Rocks from the Emperor Seamounts, ODP Leg 197.Geochemistry, Geophysics, Geosystems, 5(8):Q08L03. https://doi.org/10.1029/2004gc000704 [29] Espurt, N., Funiciello, F., Martinod, J., et al., 2008.Flat Subduction Dynamics and Deformation of the South American Plate:Insights from Analog Modeling.Tectonics, 27(3):TC3011. https://doi.org/10.1029/2007tc002175 [30] Fan, J.J., Li, C., Wang, M., et al., 2018.Material Composition, Age and Significance of the Dong Co Melange in the Bangong Co-Nujiang Suture Zone.Geological Bulletin of China, 37(8):1417-1427 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD201808006.htm [31] Fisher, M.A., Collot, J., Geist, E.L, 1991.Structure of the Collision Zone between Bougainville Guyot and the Accretionary Wedge of the New Hebrides Island Arc, Southwest Pacific.Tectonics, 10(5):887-903. https://doi.org/10.1029/91tc00860 [32] Fitton, J.G., Godard, M., 2004.Origin and Evolution of Magmas on the Ontong Java Plateau.Geological Society, London, Special Publications, 229:151-178. https://doi.org/10.1144/gsl.sp.2004.229.01.10 [33] Frey, F.A., Weis, D., Borisova, A.Y., et al., 2002.Involvement of Continental Crust in the Formation of the Cretaceous Kerguelen Plateau:New Perspectives from ODP Leg 120 Sites. Journal of Petrology, 43(7):1207-1239. https://doi.org/10.1093/petrology/43.7.1207 [34] Got, J.L., Monteiller, V., Monteux, J., et al., 2008.Deformation and Rupture of the Oceanic Crust may Control Growth of Hawaiian Volcanoes.Nature, 451:453-456. https://doi.org/10.1038/nature06481 [35] Harris, P.T., MacMillan-Lawler, M., Rupp, J., et al., 2014.Geomorphology of the Oceans.Marine Geology, 352:4-24. https://doi.org/10.1016/j.margeo.2014.01.011 [36] Hastie, A.R., Kerr, A.C., 2010.Mantle Plume or Slab Window?:Physical and Geochemical Constraints on the Origin of the Caribbean Oceanic Plateau. Earth-Science Reviews, 98(3):283-293. https://doi.org/10.1016/j.earscirev.2009.11.001 [37] Hein, J.R., Koschinsky, A., Halbach, P., et al., 1997.Iron and Manganese Oxide Mineralization in the Pacific.Geological Society, London, Special Publications, 119:123-138. https://doi.org/10.1144/gsl.sp.1997.119.01.09 [38] Hein, J.R., Conrad, T.A., Staudigel, H., 2010.Seamount Mineral Deposits:A Source of Rare Metals for High-Technology Industries.Oceanography, 23(1):184-189. https://doi.org/10.5670/oceanog.2010.70 [39] Helmstaedt, H., Schulze, D., 1986.Southern African Kimberlites and Their Mantle Sample:Implication for Archean Tectonics and Lithosphere Evolution.Geological Society of Australia Special Publication, 14:358-368. http://www.researchgate.net/publication/284047575_Southern_African_kimberlites_and_their_mantle_sample_Implications_for_Archean_tectonics_and_lithosphere_evolution [40] Hoernle, K., Abt, D.L., Fischer, K.M., et al., 2008.Arc-Parallel Flow in the Mantle Wedge beneath Costa Rica and Nicaragua.Nature, 451:1094-1097. https://doi.org/10.1038/nature06550 [41] Kanmera, K., Sano, H., 1991.Collisional Collapse and Accretion of Late Paleozoic Akiyoshi Seamount.Episodes, 14(3):217-223. https://doi.org/10.18814/epiiugs/1991/v14i3/004 [42] Kerr, A.C., 2014.Oceanic Plateaus.In: Holland, H.D., Turekian, K.K., eds., Treatise on Geochemistry (2nd Edition).Elsevier, Amsterdam. [43] Kerr, A.C., Marriner, G.F., Tarney, J., et al., 1997a.Cretaceous Basaltic Terranes in Western Columbia:Elemental, Chronological and Sr-Nd Isotopic Constraints on Petrogenesis.Journal of Petrology, 38(6):677-702. https://doi.org/10.1093/petroj/38.6.677 [44] Kerr, A.C., Tarney, J., Marriner, G.F., et al., 1997b.The Caribbean-Colombian Cretaceous Igneous Province:The Internal Anatomy of an Oceanic Plateau.Geophysical Monograph, 100:45-93. https://doi.org/10.1029/gm100p0123 [45] Kerr, A.C., Mahoney, J.J., 2007.Oceanic Plateaus:Problematic Plumes, Potential Paradigms.Chemical Geology, 241(3):332-353. https://doi.org/10.1016/j.chemgeo.2007.01.019 [46] Kerr, A.C., Tarney, J., 2005.Tectonic Evolution of the Caribbean and Northwestern South America:The Case for Accretion of Two Late Cretaceous Oceanic Plateaus.Geology, 33(4):269-272. https://doi.org/10.1130/g21109.1 [47] Kerr, A. C., Tarney, J., Nivia, A., et al., 1998. The Internal Structure of Oceanic Plateaus:Inferences from Obducted Cretaceous Terranes in Western Colombia and the Caribbean. Tectonophysics, 292(3-4):173-188. https://doi.org/10.1016/s0040-1951(98)00067-5 [48] Kerr, A.C., White, R.V., Thompson, P.M.E., et al., 2003.No Oceanic Plateau-No Caribbean Plate? The Seminal Role of an Oceanic Plateau in Caribbean Plate Evolution. AAPG Memoir, 79:126-168. http://www.researchgate.net/publication/303121950_No_oceanic_plateau-No_Caribbean_Plate_The_seminal_role_of_an_oceanic_plateau_in_Caribbean_Plate_evolution [49] Kimura, G., Ludden, J.N., 1995.Peeling Oceanic Crust in Subduction Zones.Geology, 23(3):217-220. doi: 10.1130/0091-7613(1995)023<0217:POCISZ>2.3.CO;2 [50] Koppers, A.A.P., Gowen, M.D., Colwell, L.E., et al., 2011.New 40Ar/39Ar Age Progression for the Louisville Hot Spot Trail and Implications for Inter-Hot Spot Motion.Geochemistry, Geophysics, Geosystems, 12(12):Q0AM02. https://doi.org/10.1029/2011gc003804 [51] Koppers, A.A.P., Watts, A.B., 2010.Intraplate Seamounts as a Window into Deep Earth Processes.Oceanography, 23(1):42-57. https://doi.org/10.5670/oceanog.2010.61 [52] Koppers, A.A.P., Yamazaki, T., Geldmacher, J., 2013.IODP Expedition 330:Drilling the Louisville Seamount Trail in the SW Pacific.Scientific Drilling, 15(15):11-22. https://doi.org/10.2204/iodp.sd.15.02.2013 [53] Kou, X.H., Zhang, K.X., Zhu, Y.H., et al., 2009.Middle Permian Seamount from Xiahe Area, Gansu Province, Northwest China:Zircon U-Pb Age, Biostratigraphy and Tectonic Implications.Journal of Earth Science, 20(2):364-380. https://doi.org/10.1007/s12583-009-0030-3 [54] Kroenke, L. W., 1974. Origin of Continents through Development and Coalescence of Oceanic Flood Basalt Plateaus. EOS Transactions of the American Geophysical Union, 55:443. [55] Kusky, T.M., 1998.Tectonic Setting and Terrane Accretion of the Archean Zimbabwe Craton. Geology, 26(2):163-166.https://doi.org/10.1130/0091-7613(1998)0260163:tsatao > 2.3.co; 2 doi: 10.1130/0091-7613(1998)0260163:tsatao>2.3.co;2 [56] Kusky, T.M., Windley, B.F., Safonova, I., et al., 2013.Recognition of Ocean Plate Stratigraphy in Accretionary Orogens through Earth History:A Record of 3.8 Billion Years of Sea Floor Spreading, Subduction, and Accretion.Gondwana Research, 24(2):501-547. https://doi.org/10.1016/j.gr.2013.01.004 [57] Lallemand, S., Culotta, R., von Huene, R., 1989.Subduction of the Daiichi Kashima Seamount in the Japan Trench.Tectonophysics, 160(1):231-247. https://doi.org/10.1016/0040-1951(89)90393-4 [58] Laursen, J., Scholl, D.W., von Huene, R., 2002.Neotectonic Deformation of the Central Chile Margin:Deepwater Forearc Basin Formation in Response to Hot Spot Ridge and Seamount Subduction.Tectonics, 21(5):1038. https://doi.org/10.1029/2001tc901023 [59] Li, T.D., Xiao, Q.H., Pan, G.T., et al., 2019.A Consideration about the Development of Ocean Plate Geology.Earth Science, 44(5):1441-1451(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201905003.htm [60] Liu, B.P., Feng, Q.L., Fang, N.Q., et al., 1993.Tectonic Evolution of Palaeo-Tethys Poly-Island-Ocean in Changning-Menglian and Lancangjiang Belts, Southwestern Yunnan, China.Earth Science, 18(5):529-539 (in Chinese with English Abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX199305000.htm [61] Liu, L.J., Gurnis, M., Seton, M., et al., 2010.The Role of Oceanic Plateau Subduction in the Laramide Orogeny.Nature Geoscience, 3(5):353-357. https://doi.org/10.1038/ngeo829 [62] Lu, L., Yan, L.L., Li, Q.H., et al., 2016.Oceanic Plateau and Its Significances on the Earth System:A Review.Acta Petrologica Sinica, 32(6):1851-1876(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201606019.htm [63] Mann, P., Taira, A., 2004.Global Tectonic Significance of the Solomon Islands and Ontong Java Plateau Convergent Zone.Tectonophysics, 389(3):137-190. https://doi.org/10.1016/j.tecto.2003.10.024 [64] Marcaillou, B., Collot, J.Y., Ribodetti, A., et al., 2016.Seamount Subduction at the North-Ecuadorian Convergent Margin:Effects on Structures, Inter-Seismic Coupling and Seismogenesis.Earth and Planetary Science Letters, 433:146-158. https://doi.org/10.1016/j.epsl.2015.10.043 [65] Martinod, J., Husson, L., Roperch, P., et al., 2010.Horizontal Subduction Zones, Convergence Velocity and the Building of the Andes. Earth and Planetary Science Letters, 299(3-4):299-309. https://doi.org/10.1016/j.epsl.2010.09.010 [66] Masson, D.G., Parson, L.M., Milsom, J., et al., 1990.Subduction of Seamounts at the Java Trench:A View with Long-Range Sidescan Sonar.Tectonophysics, 185(1):51-65. https://doi.org/10.1016/0040-1951(90)90404-v [67] Mauffret, A., Leroy, S., 1997.Seismic Stratigraphy and Structure of the Caribbean Igneous Province.Tectonophysics, 283(1):61-104. https://doi.org/10.1016/s0040-1951(97)00103-0 [68] Menard, H.W., 1964.Marine Geology of the Pacific.McGraw-Hill, New York, 271. [69] Miura, S., Suyehiro, K., Shinohara, M., et al., 2004.Seismological Structure and Implications of Collision between the Ontong Java Plateau and Solomon Island Arc from Ocean Bottom Seismometer-Airgun Data.Tectonophysics, 389(3-4):191-220. https://doi.org/10.1016/j.tecto.2003.09.029 [70] Neal, C.R., Mahoney, J.J., Kroenke, L.W., et al., 1997.The Ontong Java Plateau.Geophysical Monograph, 100:183-216. http://www.researchgate.net/publication/306395664_The_Ontong_Java_Plateau [71] Nishizawa, A., Kaneda, K., Watanabe, N., et al., 2009.Seismic Structure of the Subducting Seamounts on the Trench Axis:Erimo Seamount and Daiichi-Kashima Seamount, Northern and Southern Ends of the Japan Trench.Earth, Planets and Space, 61(3):e5-e8. https://doi.org/10.1186/bf03352912 [72] Nye, C.J., Reid, M.R., 1986.Geochemistry of Primary and Least Fractionated Lavas from Okmok Volcano, Central Aleutians:Implications for Arc Magmagenesis.Journal of Geophysical Research:Solid Earth, 91(B10):10271-10287. doi: 10.1029/JB091iB10p10271 [73] Oakley, A.J., Taylor, B., Moore, G.F., 2008.Pacific Plate Subduction beneath the Central Mariana and Izu-Bonin Fore Arcs:New Insights from an Old Margin.Geochemistry, Geophysics, Geosystems, 9(6):Q06003. https://doi.org/10.1029/2007gc001820 [74] O'Neill, C., Müller, D., Steinberger, B., 2003.Geodynamic Implications of Moving Indian Ocean Hotspots.Earth and Planetary Science Letters, 215(1-2):151-168. https://doi.org/10.1016/s0012-821x(03)00368-6 [75] Pan, G.T., Xiao, Q.H., Lu, S.N., et al., 2008.Definition, Classification, Characteristics and Diagnostic Indications of Tectonic Facies.Geological Bulletin of China, 27(10):1613-1637(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200810005.htm [76] Pan, G.T., Xiao, Q.H., Zhang, K.X., et al., 2019.Recognition of the Oceanic Subduction-Accretion Zones from the Orogenic Belt in Continents and Its Important Scientific Significance.Earth Science, 44(5):1544-1561(in Chinese with English abstract). [77] Petterson, M.G., 2004.The Geology of North and Central Malaita, Solomon Islands:The Thickest and Most Accessible Part of the World's Largest (Ontong Java) Ocean Plateau.Geological Society, London, Special Publications, 229:63-81. https://doi.org/10.1144/gsl.sp.2004.229.01.06 [78] Petterson, M.G., Babbs, T.L., Neal, C.R., et al., 1999.Geological-Tectonic Framework of Solomon Islands, SW Pacific:Crustal Accretion and Growth within an Intra-Oceanic Setting.Tectonophysics, 301(1):35-60. https://doi.org/10.1016/s0040-1951(98)00214-5 [79] Petterson, M.G., Neal, C.R., Mahoney, J.J., et al., 1997.Structure and Deformation of North and Central Malaita, Solomon Islands:Tectonic Implications for the Ontong Java Plateau-Solomon Arc Collision, and for the Fate of Oceanic Plateaus.Tectonophysics, 283(1-4):1-33. https://doi.org/10.1016/s0040-1951(97)00206-0 [80] Phinney, E.J., Mann, P., Coffin, M.F., et al., 2004.Sequence Stratigraphy, Structural Style, and Age of Deformation of the Malaita Accretionary Prism (Solomon Arc-Ontong Java Plateau Convergent Zone).Tectonophysics, 389(3):221-246. https://doi.org/10.1016/j.tecto.2003.10.025 [81] Pitcher, T.J., Morato, T., Hart, P.J.B., et al., 2007.Seamounts:Ecology, Fisheries & Conservation.Blackwell Publishing, Oxford, 527. [82] Polat, A., Kerrich, R., 2001.Geodynamic Processes, Continental Growth, and Mantle Evolution Recorded in Late Archean Greenstone Belts of the Southern Superior Province, Canada.Precambrian Research, 112(1-2):5-25. https://doi.org/10.1016/s0301-9268(01)00168-1 [83] Ranero, C.R., von Huene, R., 2000.Subduction Erosion along the Middle America Convergent Margin.Nature, 404:748-752. https://doi.org/10.1038/35008046 [84] Regelous, M., Hofmann, A.W., Abouchami, W., et al., 2003.Geochemistry of Lavas from the Emperor Seamounts, and the Geochemical Evolution of Hawaiian Magmatism from 85 to 42 Ma. Journal of Petrology, 44(1):113-140. https://doi.org/10.1093/petrology/44.1.113 [85] Richardson, W.P., Okal, E.A., van der Lee, S., 2000.Rayleigh-Wave Tomography of the Ontong-Java Plateau.Physics of the Earth and Planetary Interiors, 118(1-2):29-51. https://doi.org/10.1016/s0031-9201(99)00122-3 [86] Safonova, I.Y., 2008.Geochemical Evolution of Intraplate Magmatism in the Paleo-Asian Ocean from the Late Neoproterozoic to the Early Cambrian.Petrology, 16(5):492-511. https://doi.org/10.1134/s0869591108050056 [87] Safonova, I.Y., 2009.Intraplate Magmatism and Oceanic Plate Stratigraphy of the Paleo-Asian and Paleo-Pacific Oceans from 600 to 140 Ma.Ore Geology Reviews, 35(2):137-154. https://doi.org/10.1016/j.oregeorev.2008.09.002 [88] Safonova, I.Y., Maruyama, S., Kojima, S., et al., 2016.Recognizing OIB and MORB in Accretionary Complexes:A New Approach Based on Ocean Plate Stratigraphy, Petrology and Geochemistry.Gondwana Research, 33:92-114. https://doi.org/10.1016/j.gr.2015.06.013 [89] Safonova, I.Y., Buslov, M.M., Simonov, V.A., et al., 2011.Geochemistry, Petrogenesis and Geodynamic Origin of Basalts from the Katun' Accretionary Complex of Gorny Altai (Southwestern Siberia).Russian Geology and Geophysics, 52(4):421-442. https://doi.org/10.1016/j.rgg.2011.03.005 [90] Safonova, I.Y., Santosh, M., 2014.Accretionary Complexes in the Asia-Pacific Region:Tracing Archives of Ocean Plate Stratigraphy and Tracking Mantle Plumes.Gondwana Research, 25(1):126-158. https://doi.org/10.1016/j.gr.2012.10.008 [91] Safonova, I.Y., Utsunomiya, A., Kojima, S., et al., 2009.Pacific Superplume-Related Oceanic Basalts Hosted by Accretionary Complexes of Central Asia, Russian Far East and Japan.Gondwana Research, 16(3):587-608. https://doi.org/10.1016/j.gr.2009.02.008 [92] Sage, F., Collot, J.Y., Ranero, C.R., 2006.Interplate Patchiness and Subduction-Erosion Mechanisms:Evidence from Depth-Migrated Seismic Images at the Central Ecuador Convergent Margin.Geology, 34(12):997-1000. https://doi.org/10.1130/g22790a.1 [93] Saito, S., Goldberg, D., 1997.Evolution of Tectonic Compaction in the Barbados Accretionary Prism:Estimates from Logging-While-Drilling.Earth and Planetary Science Letters, 148(3-4):423-432. https://doi.org/10.1016/s0012-821x(97)00056-3 [94] Sano, H., Kanmera, K., 1988.Paleogeographic Reconstruction of Accreted Oceanic Rocks, Akiyoshi, Southwest Japan.Geology, 16(7):600-603. doi: 10.1130/0091-7613(1988)016<0600:PROAOR>2.3.CO;2 [95] Sano, S., Hayasaka, Y., Tazaki, K., 2000.Geochemical Characteristics of Carboniferous Greenstones in the Inner Zone of Southwest Japan.Island Arc, 9(1):81-96. https://doi.org/10.1046/j.1440-1738.2000.00263.x [96] Saunders, A.D., Tarney, J., Kerr, A.C., et al., 1996.The Formation and Fate of Large Oceanic Igneous Provinces.Lithos, 37(2-3):81-95. https://doi.org/10.1016/0024-4937(95)00030-5 [97] Schmidt, R., Schmincke, H.U., 2000.Seamounts and Island Building.In:Sigurdsson, H., ed., Encyclopedia of Volcanoes. Academic Press, San Diego. [98] Staples, R.K., White, R.S., Brandsdóttir, B., et al., 1997.Färoe-Iceland Ridge Experiment 1.Crustal Structure of Northeastern Iceland.Journal of Geophysical Research:Solid Earth, 102(B4):7849-7866. https://doi.org/10.1029/96jb03911 [99] Staudigel, H., Clague, D.A., 2010.The Geological History of Deep-Sea Volcanoes:Biosphere, Hydrosphere, and Lithosphere Interactions.Oceanography, 23(1):58-71. https://doi.org/10.5670/oceanog.2010.62 [100] Staudigel, H., Feraud, G., Giannerini, G., 1986.The History of Intrusive Activity on the Island of La Palma (Canary Islands).Journal of Volcanology and Geothermal Research, 27(3-4):299-322. https://doi.org/10.1016/0377-0273(86)90018-1 [101] Staudigel, H., Koppers, A.A.P., Lavelle, J.W., et al., 2010a.Defining the Word "Seamount".Oceanography, 23(1):20-21. https://doi.org/10.5670/oceanog.2010.85 [102] Staudigel, H., Koppers, A.A.P., Plank, T., et al., 2010b.Seamounts in the Subduction Factory.Oceanography, 23(1):176-181. https://doi.org/10.5670/oceanog.2010.69 [103] Staudigel, H., Plank, T., White, B., et al., 1996.Geochemical Fluxes during Seafloor Alteration of the Basaltic Upper Oceanic Crust:DSDP Sites 417 and 418.Geophysical Monograph, 96:19-38. https://doi.org/10.1029/gm096p0019 [104] Stein, M., Ben-Avraham, Z., 2007.Mechanisms of Continental Crust Growth. In: Stevenson, D., ed., Treatise on Geophysics.Elsevier, Amsterdam.https://doi.org/10.1016/b978-044452748-6.00144-9 [105] Taira, A., Mann, P., Rahardiawan, R., 2004.Incipient Subduction of the Ontong Java Plateau along the North Solomon Trench.Tectonophysics, 389(3):247-266. https://doi.org/10.1016/j.tecto.2004.07.052 [106] Tarduno, J.A., Sliter, W.V., Kroenke, L., et al., 1991.Rapid Formation of Ontong Java Plateau by Aptian Mantle Plume Volcanism.Science, 254(5030):399-403. https://doi.org/10.1126/science.254.5030.399 [107] Tetreault, J.L., Buiter, S.J.H., 2012.Geodynamic Models of Terrane Accretion:Testing the Fate of Island Arcs, Oceanic Plateaus, and Continental Fragments in Subduction Zones.Journal of Geophysical Research:Solid Earth, 117:B08403. https://doi.org/10.1029/2012jb009316 [108] Tetreault, J.L., Buiter, S.J.H., 2014.Future Accreted Terranes:A Compilation of Island Arcs, Oceanic Plateaus, Submarine Ridges, Seamounts, and Continental Fragments. Solid Earth, 5(2):1243-1275. https://doi.org/10.5194/se-5-1243-2014 [109] Thompson, P.M.E., Kempton, P.D., White, R.V., et al., 2004.Elemental, Hf-Nd Isotopic and Geochronological Constraints on an Island Arc Sequence Associated with the Cretaceous Caribbean Plateau:Bonaire, Dutch Antilles.Lithos, 74(1-2):91-116. https://doi.org/10.1016/j.lithos.2004.01.004 [110] Timm, C., Bassett, D., Graham, I.J., et al., 2013.Louisville Seamount Subduction and Its Implication on Mantle Flow beneath the Central Tonga-Kermadec Arc.Nature Communications, 4(1):1720. https://doi.org/10.1038/ncomms2702 [111] Trehu, A.M., Asudeh, I., Brocher, T.M., et al., 1994.Crustal Architecture of the Cascadia Forearc. Science, 266(5183):237-243. https://doi.org/10.1126/science.266.5183.237 [112] Utsunomiya, A., Suzuki, N., Ota, T., 2008.Preserved Paleo-Oceanic Plateaus in Accretionary Complexes:Implications for the Contributions of the Pacific Superplume to Global Environmental Change.Gondwana Research, 14(1):115-125. https://doi.org/10.1016/j.gr.2007.11.003 [113] von Huene, R., Ranero, C.R., 2009.Neogene Collision and Deformation of Convergent Margins along the Backbone of the Americas.Geological Society of America Memoir, 204:67-83. https://doi.org/10.1130/2009.1204(03) [114] von Huene, R., Ranero, C.R., Vannucchi, P., 2004.Generic Model of Subduction Erosion.Geology, 32(10):913-916. https://doi.org/10.1130/g20563.1 [115] Wang, C.Z., Jiang, Y., Zhao, X.L., et al., 2016.Geochronological and Geochemical Characteristics of the Xiahetu Amphibolites from Chencai Group and Their Tectonic Implications.Acta Petrologica et Mineralogica, 35(3):425-442 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-YSKW201603004.htm [116] Wang, G.H., Han, F.L., Yang, Y.J., et al., 2009.Discovery and Geologic Significance of Late Paleozoic Accretionary Complexes in Central Qiangtang, Northern Tibet, China.Geological Bulletin of China, 28(9):1181-1187(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD200909004.htm [117] Wang, J.X., Zhang, K.X., Windley, B.F., et al., 2020.A Mid-Palaeozoic Ocean-Continent Transition in the Mazongshan Subduction-Accretion Complex, Beishan, NW China:New Structural, Chemical and Age Data Constrain the Petrogenesis and Tectonic Evolution.Geological Magazine. https://doi.org/10.1017/s0016756820000114 [118] Watts, A.B., Koppers, A., Robinson, D., 2010.Seamount Subduction and Earthquakes.Oceanography, 23(1):166-173. https://doi.org/10.5670/oceanog.2010.68 [119] Wessel, P., Kroenke, L.W., 2000.Ontong Java Plateau and Late Neogene Changes in Pacific Plate Motion.Journal of Geophysical Research:Solid Earth, 105(B12):28255-28277. https://doi.org/10.1029/2000jb900290 [120] Wessel, P., Sandwell, D.T., Kim, S.S., 2010.The Global Seamount Census.Oceanography, 23(1):24-33. https://doi.org/10.5670/oceanog.2010.60 [121] White, W.M., 2010.Oceanic Island Basalts and Mantle Plumes:The Geochemical Perspective.Annual Review of Earth and Planetary Sciences, 38(1):133-160. https://doi.org/10.1146/annurev-earth-040809-152450 [122] Xu, F., Zhou, Z.Y., 2003.Oceanic Plateaus:Windows to the Earth's Interior. Advance in Earth Sciences, 18(5):745-752(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DXJZ200305015.htm [123] Yang, G.X., Li, Y.J., Tong, L.L., et al., 2019.An Overview of Oceanic Island Basalts in Accretionary Complexes and Seamounts Accretion in the Western Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 179:385-398. https://doi.org/10.1016/j.jseaes.2019.04.011 [124] Yesson, C., Clark, M.R., Taylor, M.L., et al., 2011.The Global Distribution of Seamounts Based on 30 Arc Seconds Bathymetry Data.Deep Sea Research Part Ⅰ:Oceanographic Research Papers, 58(4):442-453. https://doi.org/10.1016/j.dsr.2011.02.004 [125] Yuan, S.H., Pan, G.T., Wang, L.Q., et al., 2009.Accretionary Orogenesis in the Active Continental Margins.Earth Science Frontiers, 16(3):31-48. https://doi.org/10.1016/s1872-5791(08)60095-0 [126] Zhang, H.Q., Sun, X.M., Chen, X.B., 1997.Oceanic Island-Seamount Carbonate Sedimentary Feature and Its Paleogeographic Significance.Geological Science and Technology Information, 16(1):29-33 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ701.005.htm [127] Zhao, X.L., Jiang, Y., Xing, G.F., et al., 2020.The Early Paleozoic Oceanic Island Seamount in the Chencai Area, Zhejiang Province:Implication of the Yangtze-Cathaysia Amalgamation.Geological Journal, 55(2):1148-1162. https://doi.org/10.1002/gj.3480 [128] 董学发, 余盛强, 唐增才, 等, 2016.浙江"陈蔡增生杂岩"中洋内弧型变基性火山岩的地球化学特征及其地质意义.中国地质, 43(3):817-828. http://www.cqvip.com/QK/90050X/201603/668990686.html [129] 范建军, 李才, 王明, 等, 2018.班公湖-怒江缝合带洞错混杂岩物质组成、时代及其意义.地质通报, 37(8):1417-1427. http://www.cnki.com.cn/Article/CJFDTotal-ZQYD201808006.htm [130] 李廷栋, 肖庆辉, 潘桂棠, 等, 2019.关于发展洋板块地质学的思考.地球科学, 44(5):1441-1451. doi: 10.3799/dqkx.2019.970 [131] 刘本培, 冯庆来, 方念乔, 等, 1993.滇西南昌宁-孟连带和澜沧江带古特提斯多岛洋构造演化.地球科学, 18(5):529-539. http://www.earth-science.net/article/id/68 [132] 陆鹿, 严立龙, 李秋环, 等, 2016.洋底高原及其对地球系统意义研究综述.岩石学报, 32(6):1851-1876. http://www.cqvip.com/QK/94579X/201606/669405466.html [133] 潘桂棠, 肖庆辉, 陆松年, 等, 2008.大地构造相的定义、划分、特征及其鉴别标志.地质通报, 27(10):1613-1637 http://d.wanfangdata.com.cn/Periodical_zgqydz200810004.aspx [134] 潘桂棠, 肖庆辉, 张克信, 等, 2019.大陆中洋壳俯冲增生杂岩带特征与识别的重大科学意义.地球科学, 44(5):1544-1561. doi: 10.3799/dqkx.2019.063 [135] 王存智, 姜杨, 赵希林, 等, 2016.陈蔡岩群下河图斜长角闪岩年代学、地球化学特征及其构造意义.岩石矿物学杂志, 35(3):425-442. http://www.cnki.com.cn/Article/CJFDTotal-YSKW201603004.htm [136] 王根厚, 韩芳林, 杨运军, 等, 2009.藏北羌塘中部晚古生代增生杂岩的发现及其地质意义.地质通报, 28(9):1181-1187. http://www.cqvip.com/Main/Detail.aspx?id=32044452 [137] 徐斐, 周祖翼, 2003.洋底高原:了解地球内部的窗口.地球科学进展, 18(5):745-752. http://www.cnki.com.cn/Article/CJFDTotal-DXJZ200305015.htm [138] 张海清, 孙晓猛, 陈先兵, 1997.洋岛、海山碳酸盐岩的沉积特征及其古地理意义.地质科技情报, 16(1):29-33. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ701.005.htm