Yanshanian Tectonic Activities and Their Sedimentary Responses in Northwestern Junggar Basin
-
摘要: 燕山运动是侏罗纪/白垩纪之交,区域规模和岩石圈尺度的重大构造运动.与中国东部地区相比,该运动在中国西部盆地的岩浆作用、构造事件动力学机制及其沉积响应等方面还存在诸多争议.利用碎屑锆石年代学和砂岩岩相学分析,对准噶尔盆地腹部石南地区的燕山期构造运动及盆地内的沉积响应进行分析,得到以下认识:(1)准噶尔盆地腹部侏罗纪-白垩纪同沉积期火山活动相关碎屑锆石是燕山期区域性火山活动的重要沉积响应.(2)准噶尔盆地燕山期发生强烈的陆内造山运动,盆地内构造单元发生相应的挤压变形.(3)准噶尔盆地内沉积体系对燕山期构造运动具有良好响应,白垩系底砾岩指示了盆地周缘造山带的快速隆升和盆地边界的萎缩.Abstract: The Yanshanian movement was a major tectonic movement on a regional and lithospheric scale at the turn of the Jurassic to Cretaceous, which laid the foundation of tectonics in China. Compared with eastern China, there are still many controversies on the magmatism, tectonic dynamic mechanism and sedimentary response of the Yanshanian movement in the western China basin. In this study, the Yanshanian tectonic movement and sedimentary response of the basin are discussed based on the clastic zircon chronology and sandstone lithofacies of the Late Jurassic-Early Cretaceous sandstone samples in the Shinan area of the Junggar basin. The main conclusions can be drawn as follows. (1) Age of syndepositional volcanism recorded by the detrital zircons derived from magmatic rocks in the southern margin and northern part of the Junggar basin effectively indicates the existence of regional volcanism in the Late Jurassic-Early Cretaceous. (2) Intense intracontinental orogeny in the Yanshanian period led to extrusion deformation of tectonic units in the Junggar basin. (3) The sedimentary system had a good response to the Yanshanian tectonic movement. Cretaceous conglomerates indicate the rapid uplift of the orogenic belt around the basin and the shrinkage of the basin boundary.
-
图 1 中亚造山带及邻区板块位置图(a)和准噶尔盆地及邻区地质简图(b)以及准噶尔盆地周缘造山带中酸性结晶岩年龄频率直方图(c)
a. Li et al.(2016); b.据新疆维吾尔自治区地质矿产局(1993)修改;阿尔泰造山带中酸性结晶岩年龄参考自胡霭琴等(1997);陈富文等(1999);李玮(2007);杨甫等(2013);田红彪(2018);东北缘造山带中酸性结晶岩年龄参考自韩宝福等(2006);苏玉平等(2010);陈万峰(2017);王家林(2019);西北缘造山带中酸性结晶岩年龄参考自Chen and Jahn(2004);韩宝福等(2006);李辛子等(2010);靳松(2016);陈万峰(2017);王家林(2019);北天山‒中天山及博格达山中酸性结晶岩年龄参考自Dumitru et al.(2001);王家林(2019)
Fig. 1. Location of the Central Asian orogenic belt and its adjacent plates(a), schematic map of the Junggar basin and adjacent areas (b) and histograms of age frequency of acidic crystalline rock in the peripheral orogenic belt of the Junggar basin (c)
图 2 研究区地层及沉积环境柱状图
地层划分以准噶尔盆地石南地区地层为标准;地层岩性以石南49井为参考;构造应力场变化参考自李玮(2007)
Fig. 2. Histogram of stratigraphic and sedimentary environments in the study area
图 7 准噶尔盆地砂岩样品碎屑锆石年龄
a.下侏罗统砂岩样品; b.中侏罗统砂岩样品; c.中-上侏罗统-上侏罗统砂岩样品; d.白垩系砂岩样品. 据王志维(2009); 杨甫等(2013); Yang et al.(2013); Tang et al.(2014); Fang et al.(2015, 2019)
Fig. 7. Detrital zircon ages of sandstone samples in the Junggar basin
图 8 准噶尔盆地及周缘造山带晚侏罗世‒早白垩世裂变径迹年龄
磷灰石和锆石裂变径迹年龄参考自Dumitru et al.(2001); 郭召杰等(2006);Yuan et al.(2006, 2009); 李丽等(2008);沈传波等(2008);李玮等(2010);李振华(2011)
Fig. 8. The Late Jurassic-Early Cretaceous fission track ages in the Junggar basin and surrounding orogenic belts
图 9 准噶尔盆地及周缘造山带燕山期构造‒岩浆活动与盆地沉积响应示意图
阿尔泰造山带岩浆活动参考自胡霭琴等(1997);陈富文等(1999);李玮(2007);杨甫等(2013);田红彪(2018);东准噶尔造山带岩浆活动参考自韩宝福等(2006);苏玉平等(2010);陈万峰(2017);王家林(2019);西准噶尔造山带岩浆活动参考自Chen and Jahn(2004);李辛子等(2010);韩宝福等(2006);靳松(2016);陈万峰(2017);王家林(2019);准噶尔南缘造山带岩浆活动参考自Dumitru et al.(2001);王家林(2019);准噶尔盆地及周缘造山带磷灰石和锆石裂变径迹年龄参考自Dumitru et al.(2001);郭召杰等(2006);Yuan et al.(2006, 2009);李丽等(2008);沈传波等(2008);李玮等(2010);李振华(2011)
Fig. 9. Schematic diagram of tectonic - magmatic activity and sedimentary response of Yanshanian period in the Junggar basin and its surrounding orogenic belt
图 10 准噶尔盆地燕山运动中期古流向及白垩系底砾岩分布示意图
白垩系底砾岩分布据方世虎等(2006)修改
Fig. 10. Diagram of Middle Yanshanian paleoflow and Cretaceous basal conglomerate distribution in the Junggar basin
表 1 准噶尔盆地周缘造山带潜在物源区岩浆活动
Table 1. Magmatic activities in the orogenic belts around the Junggar basin
潜在物源区 年龄分布(Ma) 岩性 构造阶段 参考文献 阿尔泰造山带 482~457 安山岩‒英安斑岩‒流纹斑岩、闪长岩‒花岗闪长岩‒英云闪长岩‒二长花岗岩‒正长花岗 俯冲‒大陆边缘弧 田红彪,2018 425~387 英安质‒流纹质凝灰岩‒流纹斑岩、辉长岩‒英云闪长岩‒花岗闪长岩‒二长花岗岩‒白云母二长花岗岩‒ 正长花岗岩‒碱长花岗岩 俯冲碰撞 李玮,2007;田红彪,2018 330~250 花岗岩(碱性花岗岩、黑云母花岗岩、片麻理花岗岩等) 后碰撞 李玮,2007 180~160,149~135 黑云母花岗岩、钠长花岗岩、二云母花岗岩等 陆内挤压碰撞 胡霭琴等,1997;陈富文等,1999;杨甫等,2013 东准噶尔造山带
(青格里底山‒卡拉麦里山)510~453 玄武岩、石英闪长岩、斜长花岗岩等 岛弧 苏玉平等,2010 440~360 斜长花岗岩、辉长岩、石英闪长岩等 洋壳俯冲 陈万峰,2017 330~260 钾长花岗岩、花岗闪长岩、二长花岗岩和碱性花岗岩等 后碰撞 韩宝福等,2006 西准噶尔造山带
(扎伊尔山‒哈拉阿拉特山‒谢米斯台山‒萨吾尔山)523~444 堆晶岩、辉长岩、闪长岩、斜长花岗岩等 洋内俯冲 Chen and Jahn, 2004 436~400 花岗岩、闪长岩、安山岩、流纹岩、凝灰岩等 俯冲消减 靳松,2016;陈万峰,2017 350~270 钾长花岗岩、二长花岗岩、花岗斑岩、闪长岩等 后碰撞 Chen and Jahn, 2004;韩宝福等,2006;靳松,2016 270~263 辉绿岩、闪长玢岩等 后碰撞 李辛子等,2010;靳松,2016 准噶尔南缘造山带
(伊林黑比尔根山‒博格达山)460~350 花岗岩、花岗闪长岩、玄武岩、黑云母花岗岩、花岗片麻岩等 弧岩浆 Dumitru et al., 2001;王家林,2019 340~300 闪长岩、花岗闪长岩、流纹岩、安山岩、正长岩、斜长花岗岩等 洋壳俯冲 300~260 花岗岩、黑云母花岗岩、花岗闪长岩、黑云母钾长花岗岩、流纹岩等 后碰撞 表 2 研究区砂岩样品碎屑锆石U⁃Pb年龄组分及统计分析
Table 2. U-Pb age compositions and statistical analyses of detrital zircons from sandstone samples in the study area
样品号 样品年代 碎屑锆石年龄组(Ma) 峰值年龄(Ma) 所占比例 有效年龄数 Th/U S203 J2x 194~161 170、181 0.14 17 0.54~1.49 270~217 244、220 0.14 17 0.30~1.99 369~279 323、297、283 0.50 60 0.12~1.51 504~386 455、493 0.17 21 0.23~1.13 572~538 539、572 0.03 4 0.35~1.35 1 561~1 407 1 407、1 561 0.02 2 0.31~0.49 S108 J2t 194~161 174 0.10 14 0.29~2.25 360~249 299、316、344 0.49 68 0.21~1.98 420~371 392、375 0.19 27 0.20~0.89 517~437 489、506、470 0.14 19 0.33~1.11 905~720 900、803、723 0.04 6 0.11~0.80 1 702~1 510 1 526 0.03 4 0.73~1.11 SN30 K1q 184~132 135、153 0.26 41 0.30~1.95 260~220 246、221 0.03 4 0.33~1.27 369~271 280、321、302 0.48 76 0.20~1.83 446~379 394、431 0.10 15 0.35~0.68 522~479 503 0.04 7 0.52~0.62 936~772 824、786、936 0.06 10 0.13~1.24 1 780~1 458 1 458、1 600、1 780 0.02 3 0.39~0.48 -
[1] Bai, J. K., Chen, J. L., Zhu, X. H., et al., 2018. Provenance Characteristics of Kalamaili Formation in Northeastern Margin of Junggar Basin: Constraints of Geochemistry and Detrital Zircon U-Pb Geochronology. Earth Science, 43(12): 4411-4426 (in Chinese with English abstract). [2] Chen, B., Jahn, B. M., 2004. Genesis of Post-Collisional Granitoids and Basement Nature of the Junggar Terrane, NW China: Nd-Sr Isotope and Trace Element Evidence. Journal of Asian Earth Sciences, 23(5): 691-703. https://doi.org/10.1016/s1367-9120(03)00118-4 [3] Chen, F. W., Li, H. Q., Gong, D. H., et al., 1999. New Evidence of Isotopic Chronology of Yanshanian Diagenesis and Mineralization in the Altai Orogenic Belt, China. Chinese Science Bulletin, 44(11): 1142-1147 (in Chinese). doi: 10.1360/csb1999-44-11-1142 [4] Chen, W. F., 2017. Comparative Study on Late Paleozoic Tectonic-Magmatism Evolution in Eastern and Western Junggar, Xinjiang, Western China (Dissertation). Lanzhou University, Lanzhou (in Chinese with English abstract). [5] Corfu, F., 2003. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 53(1): 469-500. https://doi.org/10.2113/0530469 [6] Dong, S. W., Zhang, Y. Q., Li, H. L., et al., 2019. The Yanshan Orogeny and Late Mesozoic Multi-Plate Convergence in East Asia—Commemorating 90th Years of the "Yanshan Orogeny". Science in China (Series D: Earth Sciences), 49(6): 913-938 (in Chinese with English abstract). [7] Dumitru, T. A., Zhou, D., Chang, E. Z., et al., 2001. Uplift, Exhumation, and Deformation in the Chinese Tian Shan. Paleozoic and Mesozoic Tectonic Evolution of Central and Eastern Asia: From Continental Assembly to Intracontinental Deformation. Memoirs-Geological Society of America, Boulder, 71-100. https://doi.org/10.1130/0-8137-1194-0.71 [8] Fang, S. H., Song, Y., Jia, C. Z., et al., 2006. Relationship between Cretaceous Basal Conglomerate and Oil/Gas Reservoiring in the Junggar Basin. Natural Gas Industry, 26(5): 13-16 (in Chinese with English abstract). [9] Fang, Y. N., Wu, C. D., Guo, Z. J., et al., 2015. Provenance of the Southern Junggar Basin in the Jurassic: Evidence from Detrital Zircon Geochronology and Depositional Environments. Sedimentary Geology, 315: 47-63. https://doi.org/10.1016/j.sedgeo.2014.10.014 [10] Fang, Y. N., Wu, C. D., Wang, Y. Z., et al., 2019. Topographic Evolution of the Tianshan Mountains and Their Relation to the Junggar and Turpan Basins, Central Asia, from the Permian to the Neogene. Gondwana Research, 75: 47-67. https://doi.org/10.1016/j.gr.2019.03.020 [11] Guo, Z. J., Zhang, Z. C., Wu, C. D., et al., 2006. The Mesozoic and Cenozoic Exhumation History of Tianshan and Comparative Studies to the Junggar and Altai Mountains. Acta Geologica Sinica, 80(1): 1-15 (in Chinese with English abstract). doi: 10.1111/j.1755-6724.2006.tb00788.x [12] Han, B. F., He, G. Q., Wang, X. C., et al., 2011. Late Carboniferous Collision between the Tarim and Kazakhstan-Yili Terranes in the Western Segment of the South Tian Shan Orogen, Central Asia, and Implications for the Northern Xinjiang, Western China. Earth-Science Reviews, 109(3-4): 74-93. https://doi.org/10.1016/j.earscirev.2011.09.001 [13] Han, B. F., Ji, J. Q., Song, B., et al., 2006. Late Paleozoic Vertical Growth of Continental Crust around the Junggar Basin, Xinjiang, China (Part Ⅰ): Timing of Post- Collisional Plutonism. Acta Petrologica Sinica, 22(5): 1077-1086 (in Chinese with English abstract). [14] Hong, T. Y., 2006. The Study on the Features of the Bottom Cretaceous Unconformity and Its Controlling Affect on the Hydrocarbon Accumulation in the Hinterland of Junggar Basin (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [15] Hu, A. Q., Wang, Z. G., Tu, G. C., 1997. Geological Evolution and Diagenesis and Mineralization Laws in the Northern Xinjiang. Science Press, Beijing (in Chinese). [16] Jin, S., 2016. Study on Geochronology and Geochemistry of Paleozoic Magmatism in West Junggar Area, Xinjiang (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). [17] Jolivet, M., Bourquin, S., Heilbronn, G., et al., 2015. The Upper Jurassic-Lower Cretaceous Alluvial-Fan Deposits of the Kalaza Formation (Central Asia): Tectonic Pulse or Increased Aridity?. Geological Society, London, Special Publications, 427(1): 491-521. https://doi.org/10.1144/sp427.6 [18] Li, C.M., 2009. A Review on the Minerageny and Situ Microanalytical Dating Techniques of Zircons. Geological Survey and Research, 32(3): 161-174(in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/qhwjyjjz200903001 [19] Li, D., He, D. F., Tang, Y., 2016. Reconstructing Multiple Arc-Basin Systems in the Altai-Junggar Area (NW China): Implications for the Architecture and Evolution of the Western Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 121: 84-107. https://doi.org/10.1016/j.jseaes.2016.02.010 [20] Li, L., Chen, Z. L., Qi, W. X., et al., 2008. Apatite Fission Track Evidence for Uplifting-Exhumation Processes of Mountains Surrounding the Junggar Basin. Acta Petrologica Sinica, 24(5): 1011-1020 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200805008.htm [21] Li, W., 2007. The Mechanic and Tectonic Evolution of Mesozoic Basins in Northwestern Junggar Orogenic Belt (Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract). [22] Li, W., Hu, J.M., Qu, H.J., 2010. Fission Track Analysis of Junggar Basin Peripheral Orogen and Its Geological Significance. Acta Geologica Sinica, 84(2): 171-182 (in Chinese with English abstract). http://adsabs.harvard.edu/abs/2010EGUGA..1211996L [23] Li, X.Z., Han, B.F., Ji, J.Q., et al., 2004. Geology, Geochemistry and K-Ar Ages of the Karamay Basic-Intermediate Dyke Swarm from Xinjiang, China. Geochimica, 33(6): 574-584 (in Chinese with English abstract). [24] Li, Z. H., 2011. Analysis on the Tectonic Event and Palaeo-Geothermal Feature of Yanshanian in the Northern Junggar Basin (Dissertation). Northwest University, Xi'an (in Chinese with English abstract). [25] Shen, C. B., Mei, L. F., Zhang, S. W., et al., 2008. Fission-Track Dating Evidence on Space-Time Difference of Mesozoic-Cenozoic Uplift of the Yilianhabierga Mountain and Bogeda Mountain. Mineralogy and Petrology, 28(2): 63-70 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS200802013.htm [26] Song, J. Y., Qin, M. K., Cai, Y. Q., et al., 2019. Uplift-Denudation of Orogenic Belts Control on the Formation of Sandstone Type Uranium (U) Deposits in Eastern Junggar, Northwest China: Implications from Apatite Fission Track (AFT). Earth Science, 44(11): 3910-3925 (in Chinese with English abstract). [27] Su, Y.P., Zheng, J.P., Griffin, W., et al., 2010. Zircon U-Pb Ages and Hf Isotopes of Volcanic Rocks from the Batamayineshan Formation, East Junggar Basin. Chinese Science Bulletin, 55(30): 2931-2943 (in Chinese). doi: 10.1360/csb2010-55-30-2931 [28] Tang, W. H., Zhang, Z. C., Li, J. F., et al., 2014. Late Paleozoic to Jurassic Tectonic Evolution of the Bogda Area (Northwest China): Evidence from Detrital Zircon U-Pb Geochronology. Tectonophysics, 626: 144-156. https://doi.org/10.1016/j.tecto.2014.04.005 [29] Tian, H. B., 2018. The Paleozoic to Mesozoic Magmatism and Tectonic Evolution of the Central Altay Tectonic Belt, Xinjiang, China (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [30] Wang, J. L., 2019. Source-to-Sink System and Sedimentary Filling Evolution of the Permian-Triassic Sediments in the Southern Junggar Basin and Its Adjacent Regions (Dissertation). Peking University, Beijing (in Chinese with English abstract). [31] Wang, S. E., Gao, L. Z., 2012. SHRIMP U-Pb Dating of Zircons from Tuff of Jurassic Qigu Formation in Junggar Basin, Xinjiang. Geological Bulletin of China, 31(4): 503-509 (in Chinese with English abstract). [32] Wang, Z. W., 2009. Research on the Tectonic Event and Thermal Evolution History of Piedmont Zone in Northern Margin of Junggar Basin (Dissertation). Northwest University, Xi'an (in Chinese with English abstract). [33] Wu, F. L., Yao, Z. G., 2011. Application of U-Pb Dating in the Study on the Provenance Analysis of Detrital Zircons in the Southern Margin of Junggar Basin, China. Journal of Xi'an Shiyou University (Natural Science Edition), 26(3): 6-13 (in Chinese with English abstract). http://www.cqvip.com/main/zcps.aspx?c=1&id=38057830 [34] Wu, Y. B., Zheng, Y. F., 2004. Zircon Genetic Mineralogy and Its Restriction on the Interpretation of U-Pb Age. Chinese Science Bulletin, 49(16): 1589-1604 (in Chinese). doi: 10.1360/csb2004-49-16-1589 [35] Xiao, W.J., Shu, L.S., Gao, J., et al., 2009. Geodynamic Processes of the Central Asian Orogenic Belt and Its Metallogeny. China Basic Science, 11(3): 14-19 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_china-basic-science_thesis/02012154003.html [36] Xinjiang Bureau of Geo-Exploration & Mineral Development, 1993. Regional Geology of the Xinjiang Uygur Autonomous Region. Geological Publishing House, Beijing (in Chinese). [37] Xu, X., Chen, C., Ding, T. F., et al., 2008. Discovery of Lisa Basalt Northwestern Edge of Junggar Basin and It's Geological Significance. Xinjiang Geology, 26(1): 9-16 (in Chinese with English abstract). [38] Yang, F., Chen, G., Zhang, H. R., et al., 2013. LA-ICP-MS U-Pb Dating of Detrital Zircon from the Mesozoic Sandstone Core-Samples in Well DB1 of Northeast Junggar Basin. Journal of Lanzhou University (Natural Sciences), 49(3): 313-319 (in Chinese with English abstract). [39] Yang, W., Jolivet, M., Dupont-Nivet, G., et al., 2013. Source to Sink Relations between the Tian Shan and Junggar Basin (Northwest China) from Late Palaeozoic to Quaternary: Evidence from Detrital U-Pb Zircon Geochronology. Basin Research, 25(2): 219-240. https://doi.org/10.1111/j.1365-2117.2012.00558.x [40] Yang, Y. T., Guo, Z. X., Luo, Y. J., 2017. Middle-Late Jurassic Tectonostratigraphic Evolution of Central Asia, Implications for the Collision of the Karakoram-Lhasa Block with Asia. Earth-Science Reviews, 166: 83-110. https://doi.org/10.1016/j.earscirev.2017.01.005 [41] Yuan, W. M., Carter, A., Dong, J. Q., et al., 2006. Mesozoic-Tertiary Exhumation History of the Altai Mountains, Northern Xinjiang, China: New Constraints from Apatite Fission Track Data. Tectonophysics, 412(3-4): 183-193. https://doi.org/10.1016/j.tecto.2005.09.007 [42] Yuan, W. M., Zheng, Q. G., Bao, Z. K., et al., 2009. Zircon Fission Track Thermochronology Constraints on Mineralization Epochs in Altai Mountains, Northern Xinjiang, China. Radiation Measurements, 44(9-10): 950-954. https://doi.org/10.1016/j.radmeas.2009.10.094 [43] Yue, Y. L., 2008. Filling Characteristics of Sequence and Deposition and Recognition of Litho-Stratigraphic Traps of Formations from J1s to K1q1 in Shinan Area, Junggar Basin (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [44] Zhang, Q. F., Hu, A. Q., Zhang, G. X., et al., 1994. Evidence from Isotopic Age for Presence of Mesozoic-Cenozoic Magmatic Activities in Altai Region, Xinjiang. Geochimica, 23(3): 269-280 (in Chinese with English abstract). [45] Zhou, T.Q., Wu, C.D., Yuan, B., et al., 2019. New Insights into Multiple Provenances Evolution of the Jurassic from Heavy Minerals Characteristics in Southern Junggar Basin, NW China. Petroleum Exploration and Development, (1): 67-81. http://en.cnki.com.cn/Article_en/CJFDTotal-PEAD201901007.htm [46] 白建科, 陈隽璐, 朱小辉, 等, 2018. 准噶尔盆地东北缘卡拉麦里组物源区特征: 碎屑岩地球化学及锆石U-Pb年代学的制约. 地球科学, 43(12): 4411-4426. doi: 10.3799/dqkx.2018.587 [47] 陈富文, 李华芹, 工登红, 等, 1999. 中国阿尔泰造山带燕山期成岩成矿同位素年代学新证据. 科学通报, 44(11): 1142-1147. doi: 10.3321/j.issn:0023-074X.1999.11.003 [48] 陈万峰, 2017. 新疆东、西准噶尔地区晚古生代构造岩浆演化对比研究(博士学位论文). 兰州: 兰州大学. [49] 董树文, 张岳桥, 李海龙, 等, 2019. "燕山运动"与东亚大陆晚中生代多板块汇聚构造——纪念"燕山运动"90周年. 中国科学(D辑: 地球科学), 49(6): 913-938. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201906002.htm [50] 方世虎, 宋岩, 贾承造, 等, 2006. 准噶尔盆地白垩系底砾岩与油气成藏的关系. 天然气工业, 26(5): 13-16. doi: 10.3321/j.issn:1000-0976.2006.05.005 [51] 郭召杰, 张志诚, 吴朝东, 等, 2006. 中、新生代天山隆升过程及其与准噶尔、阿尔泰山比较研究. 地质学报, 80(1): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200601000.htm [52] 韩宝福, 季建清, 宋彪, 等, 2006. 新疆准噶尔晚古生代陆壳垂向生长(Ⅰ): 后碰撞深成岩浆活动的时限. 岩石学报, 22(5): 1077-1086. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605003.htm [53] 洪太元, 2006. 准噶尔盆地腹部白垩系底部不整合特征及其控油作用研究(博士学位论文). 北京: 中国地质大学. [54] 胡霭琴, 王中刚, 涂光炽, 1997. 新疆北部地质演化及成岩成矿规律. 北京: 科学出版社. [55] 靳松, 2016. 新疆西准噶尔地区古生代岩浆活动的年代学和地球化学研究(博士学位论文). 武汉: 中国地质大学. [56] 李长民, 2009. 锆石成因矿物学与锆石微区定年综述. 地质调查与研究, 32(3): 161-174. doi: 10.3969/j.issn.1672-4135.2009.03.001 [57] 李丽, 陈正乐, 祁万修, 等, 2008. 准噶尔盆地周缘山脉抬升-剥露过程的FT证据. 岩石学报, 24(5): 1011-1020. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200805008.htm [58] 李玮, 2007. 准噶尔西北缘造山带中生代盆地形成机制及构造演化(博士学位论文). 北京: 中国地质科学院. [59] 李玮, 胡健民, 渠洪杰, 2010. 准噶尔盆地周缘造山带裂变径迹研究及其地质意义. 地质学报, 84(2): 171-182. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201002003.htm [60] 李辛子, 韩宝福, 季建清, 等, 2004. 新疆克拉玛依中基性岩墙群的地质地球化学和K-Ar年代学. 地球化学, 33(6): 574-584. doi: 10.3321/j.issn:0379-1726.2004.06.005 [61] 李振华, 2011. 准噶尔盆地北部燕山期构造事件及其古地温特征分析(博士学位论文). 兰州: 西北大学. [62] 沈传波, 梅廉夫, 张士万, 等, 2008. 依连哈比尔尕山和博格达山中新生代隆升的时空分异: 裂变径迹热年代学的证据. 矿物岩石, 28(2): 63-70. doi: 10.3969/j.issn.1001-6872.2008.02.011 [63] 宋继叶, 秦明宽, 蔡煜琦, 等, 2019. 准东构造隆升对砂岩型铀成矿作用的制约: 磷灰石裂变径迹证据. 地球科学, 44(11): 3910-3925. doi: 10.3799/dqkx.2018.331 [64] 苏玉平, 郑建平, Griffin, W., 等, 2010. 东准噶尔盆地巴塔玛依内山组火山岩锆石U-Pb年代及Hf同位素研究. 科学通报, 55(30): 2931-2943. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201030009.htm [65] 田红彪, 2018. 新疆中阿尔泰构造带古生代-中生代岩浆作用及大地构造演化(博士学位论文). 北京: 中国地质大学. [66] 王家林, 2019. 准噶尔盆地南缘及邻区二叠-三叠纪源汇系统与沉积充填演化(博士学位论文). 北京: 北京大学. [67] 王思恩, 高林志, 2012. 新疆准噶尔盆地侏罗系齐古组凝灰岩SHRIMP锆石U-Pb年龄. 地质通报, 31(4): 503-509. doi: 10.3969/j.issn.1671-2552.2012.04.002 [68] 王志维, 2009. 准噶尔盆地北缘山前带构造事件与热演化史研究(硕士学位论文). 西安: 西北大学. [69] 武富礼, 姚志刚, 2011. 碎屑锆石U-Pb定年在准噶尔盆地南缘物源研究中的应用. 西安石油大学学报(自然科学版), 26(3): 6-13. doi: 10.3969/j.issn.1673-064X.2011.03.002 [70] 吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 [71] 肖文交, 舒良树, 高俊, 等, 2009. 中亚造山带大陆动力学过程与成矿作用. 中国基础科学, 11(3): 14-19. doi: 10.3969/j.issn.1009-2412.2009.03.004 [72] 新疆维吾尔自治区地质矿产局, 1993. 新疆维吾尔自治区区域地质志. 北京: 地质出版社. [73] 徐新, 陈川, 丁天府, 等, 2008. 准噶尔西北缘早侏罗世玄武岩的发现及地质意义. 新疆地质, 26(1): 9-16. doi: 10.3969/j.issn.1000-8845.2008.01.003 [74] 杨甫, 陈刚, 章辉若, 等, 2013. 准噶尔盆地东北部DB1井中生界碎屑锆石LA-ICP-MS U-Pb定年. 兰州大学学报(自然科学版), 49(3): 313-319. doi: 10.3969/j.issn.0455-2059.2013.03.005 [75] 岳云雷, 2008. 准噶尔盆地石南地区三工河组-清水河组层序沉积充填特征及岩性地层圈闭识别(博士学位论文). 北京: 中国地质大学. [76] 张前锋, 胡蔼琴, 张国新, 等, 1994. 阿尔泰地区中、新生代岩浆活动的同位素年龄证据. 地球化学, 23(3): 269-280. doi: 10.3321/j.issn:0379-1726.1994.03.007