Controlling Effect of Tectonic Transformation in Paleogene Wenchang Formation on Oil and Gas Accumulation in Zhu Ⅰ Depression
-
摘要: 珠一坳陷在中始新世文昌裂陷期幕内存在显著构造转变,该构造事件对烃源岩发育、储层形成及油气运聚等成藏的基础条件有重要影响.基于三维地震、钻井、测井、录井等资料研究表明,在构造转变制约下,早、晚文昌期生烃中心及物源体系出现明显迁移,使得高丰度暗色泥岩和大型块状砂岩在纵、横向上错层叠置发育;二者在时空上多期次叠加、耦合,控制了下构造层优势汇聚和上构造层油气再分配;二级构造带上丰富的圈闭类型为油气成群成带分布提供良好的存储场所.构造转变导致生储运聚等成藏条件发生变化,在珠一坳陷形成烃源迁移型、物源迁移型和断裂转换型3类控藏模式.Abstract: There was a significant structural change in the Middle Eocene Wenchang rift stage in ZhuⅠdepression, which has an important impact on the basic conditions of source rocks, reservoir formation, hydrocarbon migration and accumulation. On the basis of an integrated analysis of three-dimensional seismic, drilling, logging and mud logging data, hydrocarbon generation centers and sedimentation systems in the early and late Wenchang Formation have obviously migrated, causing high abundance dark mudstones and large massive sandstones to develop vertically and horizontally in staggered stacks, under the restriction of tectonic transformation. The superposition and coupling of the dark mudstones and massive sandstones have controlled the preponderance convergence of the lower structural layer and the redistribution of oil and gas in the upper structural layer. Abundant traps in secondary structural zones provided good storage places for oil and gas distribution. Tectonic transformation has led to changes of the conditions in hydrocarbon generation, storage, transportation and accumulation. And three types of accumulation control modes have been formed in ZhuⅠdepression, namely, source rock migration, provenance migration and fault conversion.
-
图 3 珠一坳陷早、晚文昌期构造转变典型地质现象
a.惠州26洼‒西江24洼裂陷南北转变, 代表裂陷南北转变及地层剥蚀现象;b.番禺4北次洼‒番禺4南次洼裂陷沿断裂走向迁移, 裂陷沿断层走向迁移及地层剥蚀现象;c.西江33洼缓坡带地层剥蚀现象, 代表构造转变期地层剥蚀现象;d.陆丰13洼南部缓坡带岩浆底辟现象, 代表构造转变期岩浆低侵和地层剥蚀现象;地震测线位置见图 1
Fig. 3. Typical geological phenomena of structural transformation during early and late Wenchang Formation in Zhu Ⅰ depression
图 4 珠一坳陷文昌组上、下段烃源岩迁移模式
据朱红涛等(2016)修改. a. 惠州凹陷: 跨断层南北转换模式;b.西江凹陷: 沿断层走向异迁移模式;c.恩平凹陷: 沿断层倾向自迁移模式
Fig. 4. Migration model of source rocks in upper and lower parts of Wenchang Formation, Zhu Ⅰ depression
图 11 珠一坳陷恩平地区烃源岩迁移型成藏模式
Fig. 11. Source rock migrated accumulation model of Enping area in Zhu Ⅰ depression
-
[1] Bell, R.E., Jackson, C.A.L., Whipp, P.S., et al., 2014. Strain Migration during Multiphase Extension: Observations from the Northern North Sea. Tectonics, 33(10): 1936-1963. doi: 10.1002/2014TC003551 [2] Chen, C.M., Shi, H.S., Xu, S.C., et al., 2003. The Conditions for Hydrocarbon Accumulation in the Eastern Pearl River Mouth Basin. Science Press, Beijing (in Chinese). [3] Chen, J., Zhang, Q.L., Wang, L.S., et al., 2008. Tectonic Transformation of Changling Fault Depression in the Southern Songliao Basin and Its Significance of Hydrocarbon Accumulation. Acta Geologica Sinica, 82(8): 1027-1035 (in Chinese with English abstract). doi: 10.1007/s11442-008-0201-7 [4] Corti, G., 2009. Continental Rift Evolution: From Rift Initiation to Incipient Break-up in the Main Ethiopian Rift, East Africa. Earth-Science Reviews, 96(1-2): 1-53. doi: 10.1016/j.earscirev.2009.06.005 [5] Guo, J.G., Dong, Y.X., Pang, X.Q., et al., 2015. Accumulation Conditions of Tight Sand Gas in the 3rd Member of the Shahejie Formation in Nanpu Sag, Bohai Bay Basin. Oil & Gas Geology, 36(1): 23-34 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/syytrqdz201501004 [6] Henstra, G.A., Rotevatn, A., Gawthorpe, R.L., et al., 2015. Evolution of a Major Segmented Normal Fault during Multiphase Rifting: The Origin of Plan-View Zigzag Geometry. Journal of Structural Geology, 74: 45-63. doi: 10.1016/j.jsg.2015.02.005 [7] Hu, J.Y., Huang, D.F., 1991. The Theoretical Basis of Chinese Terrestrial Petroleum Geology. Petroleum Industry Press, Beijing (in Chinese). [8] Hu, Y., Wu, Z.P., Zhong, Z.H., et al., 2016. Characterization and Genesis of the Middle and Late Eocene Tectonic Changes in ZhuⅠ Depression of Pearl River Mouth Basin. Oil & Gas Geology, 37(5): 779-785 (in Chinese with English abstract). [9] Jia, H.Y., Yang, C.C., Yu, J.G., et al., 2007. Structural Transition and Hydrocarbon Accumulation during Early Eocene in Dongying Sag of the Jiyang Depression. Progress in Geophysics, 22(4): 1312-1319 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ200704041.htm [10] Jiang, Y.L., Liu, H., Song, G.Q., et al., 2015. Relationship between Geological Structures and Hydrocarbon Enrichment of Different Depressions in the Bohai Bay Basin. Acta Geologica Sinica, 40(5): 1998-2011. http://d.wanfangdata.com.cn/Periodical/dzxb-e201506018 [11] Li, P.L., 1993. Cenozoic Tectonic Movement in the Pearl River Mouth Basin. China Offshore Oil and Gas, 7(6): 11-17 (in Chinese with English abstract). [12] Liu, P., Jiang, Y.L., Liu, H., et al., 2013. The Relationship between Fault Activity and Hydrocarbon Accumulation of Neogene in Zhanhua Depression, Bohai Bay Basin. Natural Gas Geoscience, 24(3): 541-547 (in Chinese with English abstract). [13] Liu, P., Zhang, X.T., Du, J.Y., et al., 2018. Tectonic-Thermal Evolution Process and the Petroleum Geological Significance of Relatively Low Geothermal Gradient in a Rift Basin: An Example from Xijiang Main Sag in Pearl River Mouth Basin. Geological Science and Technology Information, 37(2): 149-156 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DZKQ201802021.htm [14] Liu, Q.H., Zhu, X.M., Li, S.L., et al., 2016. Pre-Palaeogene Bedrock Distribution and Source-to-Sink System Analysis in the Shaleitian Uplift. Earth Science, 41(11): 1935-1949 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201611009.htm [15] Liu, Z.F., Wu, K.Q., Ke, L., et al., 2017. Main Factors Controlling Hydrocarbon Accumulation in Northern Subsag Belt of the Zhu-Ⅰ Depression, Pearl River Mouth Basin. Oil & Gas Geology, 38(3): 561-568 (in Chinese with English abstract). doi: 10.11743/ogg20170316 [16] Qi, P., Ren, J.Y., Lu, G.C., et al., 2010. Cenozoic Episodic Subsidence in the Middle and North Part of Huanghua Depression, Bohai Bay Basin. Earth Science, 35(6): 1041-1052 (in Chinese with English abstract). [17] Ravnås, R., Nøttvedt, A., Steel, R. J., et al., 2000. Syn-Rift Sedimentary Architectures in the Northern North Sea. Geological Society, London, Special Publication, 167: 133-177. doi: 10.1144/GSL.SP.2000.167.01.07 [18] Reemst, P., Cloeting, H. S., 2000. Poly Phase Rift Evolution of the Voring Margin (Mid Norway): Constraints from forward Tectonostratigraphic Modeling. Tectonics, 19(2): 225-240. doi: 10.1029/1999TC900025 [19] Shi, H.S., 2013. On the Uneven Distribution of Oil and Gas Resources and Zoning Difference Enrichment: A Sag of Pearl River Mouth Basin as an Example. China Offshore Oil and Gas, 25(5): 1-8 (in Chinese with English abstract). [20] Shi, H.S., Dai, Y.D., Liu, L.H., et al., 2015. Geological Characteristics and Distribution Model of Oil and Gas Reservoirs in Zhu Ⅰ Depression, Pearl River Mouth Basin. Acta Petrolei Sinica, 36(S2): 120-133 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB2015S2011.htm [21] Shi, H.S., Du, J.Y., Mei, L.F., et al., 2020. Huizhou Movement and Its Significance in Pearl River Mouth Basin, China. Petroleum Exploration and Development, 47(3): 447-461 (in Chinese with English abstract). doi: 10.1016/S1876-3804(20)60067-2 [22] Shi, H.S., Shu, Y., Du, J.Y., et al., 2017. Paleogene Petroleum Geology in the Eastern Pearl River Mouth Basin. Geological Publishing House, Beijing(in Chinese). [23] Strogen, D.P., Seebeck, H., Nicol, A., et al., 2017. Two-Phase Cretaceous-Paleocene Rifting in the Taranaki Basin Region, New Zealand: Implications for Gondwana Break-up. Journal of the Geological Society, 174(5): 929-946. doi: 10.1144/jgs2016-160 [24] Wang, X.D., Zhang, X.T., Lin, H. M., et al., 2019. Geological Structure Characteristics of Central Anticline Zone in Lufeng 13 Subsag, Pearl River Mouth Basin and Its Control Effect of Hydrocarbon Accumulation. Acta Petrolei Sinica, 40(1): 56-66 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYXB201901004.htm [25] Xie, X.N., Cheng, S.T., Lu, Y.C., 1996. Epsodic Tectonic Cycles and Internal Architectures of Sequences in Continental Basin. Earth Science, 21(1): 27-33 (in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=2018630 [26] Xu, C.G., Du, X.F., Xu, W., et al., 2017. New Advances of the "Source-to-Sink" System Research in Sedimentary Basin. Oil & Gas Geology, 38(1): 1-11 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT201701002.htm [27] Yang, M.H., Liu, C.Y., Yang, B.Y., 2001. Tectonic Transform of the Mesozoic and Their Relations to Hydrocarbon Traps in the Jizhong (Central Hebei Province) Basin, China. Geotectonica et Metallogenia, 25(2): 113-119 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK200102000.htm [28] Yang, P.R., Chen, J., Cai, J.G., et al, 2001. Structural Transitional Stages in Jiyang Depression and Their Significance on Petroleum Geology. PGRE, 8(3): 5-7 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YQCS200103001.htm [29] Ye, Q., Shi, H.S., Mei, L.F., et al., 2017. Post-Rift Faulting Migration, Transition and Dynamics in Zhu Ⅰ Depression, Pearl River Mouth Basin. Earth Science, 42(1): 105-118 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201701009.htm [30] Zhang, X.T., Wang, X.D., Shu, Y., et al., 2017. Geological Characteristics and Forming Conditions of Large and Medium Oilfields in Lufeng Sag of Eastern Pearl River Mouth Basin. Journal of Central South University (Science and Technology), 48(11): 2979-2989 (in Chinese with English abstract). doi: 10.11817/j.issn.1672-7207.2017.11.019 [31] Zhu, G.Y., Zhang, S.C., Chen, L., et al., 2009. Coupling Relationship between Natural Gas Charging and Deep Sandstone Reservoir Formation: A Case from the Kuqa Depression, Tarim Basin. Petroleum Exploration and Development, 36(3): 347-357 (in Chinese with English abstract). doi: 10.1016/S1876-3804(09)60132-4 [32] Zhu, H.T., Li, S., Liu, H.R., et al., 2016. The Types and implication of Migrated Sequence Stratigraphic Architecture in Continental Lacustrine Rift Basin: An Example from the Paleogene Wenchang Formation of Zhu Ⅰ Depression, Pearl River Mouth Basin. Earth Science, 41(3): 361-370 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201603001.htm [33] Zhu, H.T., Liu, K.Y., Zhu, X.M., et al., 2018. Varieties of Sequence Stratigraphic Configurations in Continental Basins. Earth Science, 43(3): 770-785 (in Chinese with English abstract). [34] Zhu, H.T., Xu, C.G., Zhu, X.M., et al., 2017. Advances of the Source-to-Sink Units and Coupling Model Research in Continental Basin. Earth Science, 42(11): 1851-1870 (in Chinese with English abstract). [35] Zhu, J.Z., Shi, H.S., Long, Z.L., et al., 2015. Accumulation Pattern and Hydrocarbon Distribution of Half-Graben Accumulation System in Zhuyi Depression. China Petroleum Exploration, 20(1): 24-37 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KTSY201501003.htm [36] 陈长民, 施和生, 许仕策, 等, 2003. 珠江口盆地(东部)第三系油气藏形成条件. 北京: 科学出版社. [37] 陈娟, 张庆龙, 王良书, 等, 2008. 松辽盆地长岭断陷盆地断陷期构造转换及油气地质意义. 地质学报, 82(8): 1027-1035. doi: 10.3321/j.issn:0001-5717.2008.08.002 [38] 郭继刚, 董月霞, 庞雄奇, 等, 2015. 南堡凹陷沙三段致密砂岩气成藏条件. 石油与天然气地质, 36(1): 23-34. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201501005.htm [39] 胡见义, 黄第藩, 1991. 中国陆相石油地质理论基础. 北京: 石油工业出版社. [40] 胡阳, 吴智平, 钟志洪, 等, 2016. 珠江口盆地珠一坳陷始新世中-晚期构造变革特征及成因. 石油与天然气地质, 37(5): 779-785. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201605020.htm [41] 贾红义, 杨长春, 于建国, 等, 2007. 济阳坳陷东营凹陷早始新世构造体制转换与油气成藏. 地球物理学进展, 22(4): 1312-1319. doi: 10.3969/j.issn.1004-2903.2007.04.042 [42] 李平鲁, 1993. 珠江口盆地新生代构造运动. 中国海上油气, 7(6): 11-17. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199306003.htm [43] 刘培, 蒋有录, 刘华, 等, 2013. 渤海湾盆地沾化凹陷断层活动与新近系油气成藏关系. 天然气地球科学, 24(3): 541-547. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201303014.htm [44] 刘培, 张向涛, 杜家元, 等, 2018. 低地温断陷构造-热演化过程及其石油地质意义: 以珠江口盆地西江主洼为例. 地质科技情报, 37(2): 149-156. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201802021.htm [45] 刘强虎, 朱筱敏, 李顺利, 等, 2016. 沙垒田凸起前古近系基岩分布及源-汇过程. 地球科学, 41(11): 1935-1949. doi: 10.3799/dqkx.2016.134 [46] 刘志峰, 吴克强, 柯岭, 等, 2017. 珠江口盆地珠一坳陷北部洼陷带油气成藏主控因素. 石油与天然气地质, 38(3): 561-568. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201703016.htm [47] 祁鹏, 任建业, 卢刚臣, 等, 2010. 渤海湾盆地黄骅坳陷中北区新生代幕式沉降过程. 地球科学, 35(6): 1041-1052. doi: 10.3799/dqkx.2010.118 [48] 施和生, 2013. 论油气资源不均匀分布与分带差异富集: 以珠江口盆地珠一坳陷为例. 中国海上油气, 25(5): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201305002.htm [49] 施和生, 代一丁, 刘丽华, 等, 2015. 珠江口盆地珠一坳陷油气藏地质特征与分布发育基本模式. 石油学报, 36(增刊2): 120-133. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2015S2011.htm [50] 施和生, 杜家元, 梅廉夫, 等, 2020. 珠江口盆地惠州运动及其意义. 石油勘探与开发, 47(3): 447-461. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202003003.htm [51] 施和生, 舒誉, 杜家元, 等, 2017. 珠江口盆地古近系石油地质. 北京: 地质出版社. [52] 汪旭东, 张向涛, 林鹤鸣, 等, 2019. 珠江口盆地陆丰13洼陷中央背斜带地质构造特征及对油气成藏的控制作用. 石油学报, 40(1): 56-66. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201901004.htm [53] 解习农, 程守田, 陆永潮, 1996. 陆相盆地幕式构造旋回与层序构成. 地球科学, 21(1): 27-33. http://www.earth-science.net/article/id/338 [54] 徐长贵, 杜晓峰, 徐伟, 等, 2017. 沉积盆地"源-汇" 系统研究新进展. 石油与天然气地质, 38(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201701002.htm [55] 杨明慧, 刘池阳, 杨斌谊, 2001. 冀中坳陷中生代构造变形的转换及油气. 大地构造与成矿学, 25(2): 113-119. doi: 10.3969/j.issn.1001-1552.2001.02.001 [56] 杨品荣, 陈洁, 蔡进功, 等, 2001. 济阳坳陷构造转型期及其石油地质意义. 油气地质与采收率, 8(3): 5-7. doi: 10.3969/j.issn.1009-9603.2001.03.002 [57] 叶青, 施和生, 梅廉夫, 等, 2017. 珠江口盆地珠一坳陷裂后期断裂作用: 迁移、转换及其动力学. 地球科学, 42(1): 105-118. doi: 10.3799/dqkx.2017.008 [58] 张向涛, 汪旭东, 舒誉, 等, 2017. 珠江口盆地陆丰凹陷大中型油田地质特征及形成条件. 中南大学学报(自然科学版), 48(11): 2979-2989. doi: 10.11817/j.issn.1672-7207.2017.11.021 [59] 朱光有, 张水昌, 陈玲, 等, 2009. 天然气充注成藏与深部砂岩储集层的形成——以塔里木盆地库车坳陷为例. 石油勘探与开发, 36(3): 347-357. doi: 10.3321/j.issn:1000-0747.2009.03.010 [60] 朱红涛, 李森, 刘浩冉, 等, 2016. 陆相断陷湖盆迁移型层序构型及意义: 以珠Ⅰ坳陷古近系文昌组为例. 地球科学, 41(3): 361-370. doi: 10.3799/dqkx.2016.028 [61] 朱红涛, 刘可禹, 朱筱敏, 等, 2018. 陆相盆地层序构型多元化体系. 地球科学, 43(3): 770-785. doi: 10.3799/dqkx.2018.906 [62] 朱红涛, 徐长贵, 朱筱敏, 等, 2017. 陆相盆地源-汇系统要素耦合研究进展. 地球科学, 42(11): 1851-1870. doi: 10.3799/dqkx.2017.117 [63] 朱俊章, 施和生, 龙祖烈, 等, 2015. 珠一坳陷半地堑成藏系统成藏模式与油气分布格局. 中国石油勘探, 20(1): 24-37. doi: 10.3969/j.issn.1672-7703.2015.01.003