Geochronology, Zircon Hf Isotope and Geochemistry of Volcanic Rocks from Shamuluo Formation in Western Banggongco-Nujiang Suture Zone, North Tibet
-
摘要: 班公湖-怒江缝合带在中生代的构造岩浆演化一直以来都是青藏高原基础地质研究中的热点之一.在该缝合带南部的冈底斯北部地区发育大量的中生代火山岩及相关岩浆岩,其岩石成因与成岩地球动力学背景长期以来存在较大的争议.以班公湖-怒江缝合带西段阿翁错地区沙木罗组新发现的火山岩夹层为研究对象,对沙木罗组的形成时代、火山岩的成因、构造环境以及动力学背景进行了探讨.沙木罗组火山岩由下部扎果安山岩和中部昂母过安山质晶屑凝灰岩组成.锆石U-Pb定年结果表明下部扎果安山岩锆石结晶年龄为141.3±1.7 Ma,中部昂母过安山质晶屑凝灰岩的锆石结晶年龄为134.0±0.4 Ma,与区域上沙木罗组产出的化石及碎屑锆石约束时代较为一致.研究区沙木罗组下部安山岩以低硅(SiO2=52.58%~55.35%)、低铝(Al2O3=14.43%~15.44%,A/CNK=0.58~0.75)、富镁(MgO=6.12%~8.51%)、富钠(Na2O=1.55%~5.03%,Na2O/K2O=1.81~3.61)为特征,属于高镁安山岩范畴;中部安山质晶屑凝灰岩以相对高硅(SiO2=55.83%~61.88%)、低镁(MgO=2.73%~4.51%)、高铝(Al2O3=17.75%~19.62%,A/CNK=0.90~1.08)、富钠(Na2O=1.55%~5.03%,Na2O/K2O=1.81~3.61)为特征,由下往上沙木罗组火山岩的SiO2、Al2O3、Na2O含量逐渐升高,MgO、K2O、Fe2O3含量逐渐降低,属于钠质低钾钙碱性系列岩石.二者均明显富集轻稀土(LREE)和大离子亲石元素(LILE),亏损高场强元素(HFSE),显示出典型的岛弧岩浆岩特征.下部扎果安山岩的锆石εHf(t)为+15.5~+18.7,中部昂母过安山质晶屑凝灰岩的锆石εHf(t)为+13.8~+16.2,指示安山岩、安山质晶屑凝灰岩的形成有新生地壳物质的参与.扎果高镁安山岩具有低的Y(11.9×10-6~13.5×10-6)、Yb(1.32×10-6~1.43×10-6)含量和较高的Sr(481×10-6~794×10-6)含量,以及较高的Sr/Y(35.6~65.6)和LaN/YbN(8.2~10.4),其形成可能与俯冲板片熔体交代地幔橄榄岩有关.综上所述,研究区沙木罗组火山岩形成于俯冲岛弧环境下,为早白垩世早期班公湖-怒江洋壳南向俯冲消减的岩浆响应.Abstract: The tectonic-magmatic evolution of the Banggongco-Nujiang suture zone is one of the hottest scientific problems related to fundamental geology of the Tibetan Plateau. The Mesozoic volcanic-intrusive rocks are widely distributed in the North Gangdese belt, which is also located in the southern of the Banghongco-Nujiang suture zone. However, the petrogenesis and geodynamic setting of those rocks remain under debate. It reports the newly found vocalic rock dissections from Shamuluo Formation in Awengcuo area, which are located at the west segment of Bangongco-Nujiang suture zone to explore these issues. Those rocks consist of lower dissection named Zhaguo andesite and central dissection named Angmuguo andesistic crystal tuff. Zircon U-Pb dating indicates that the Zhaguo andesite was emplaced at 141.3±1.7 Ma, and the Angmuguo andesistic crystal tuff was formed in the age of 134.0±0.4 Ma, which provides new chronological data for the Shamuluo Formation. The Zhaguo andesite exhibits SiO2contents of 52.58%-55.35%, Al2O3 contents of 14.43%-15.44% with A/CNK ranging from 0.58 to 0.75, MgO contents of 6.12%-8.51%, Na2O contents of 1.55%-5.03%, with Na2O/K2O ratios of 1.81-3.61 and Mg numbers of 57.6-63.2 (average in 59.8), which can be assigned to high-Mg andesite. The Angmuguo andesistic crystal tuff has contents of SiO2 (55.83%-61.88%), MgO (2.73%-4.51%), Al2O3(17.75%-19.62%) with A/CNK of 0.90-1.08, Na2O(1.55%-5.03%), and Na2O/K2O (1.81-3.61). All these samples are sodic low-K calc-alkaline series, and enriched in large ion lithopile elements (LILE) and depleted in high field strength elements (HFSE), showing a similar character of island arc-type magmas. The zircon εHf(t) of Zhaguo andesite values are +15.5 to +18.7, and the Angmuguo andesistic crystal tuff values from +13.8 to +16.2, indicating that these rocks came from the partial melting of newly-formed lower crust. The Zhaguo high-Mg andesite has low contents of Y (11.9×10-6-13.5×10-6), Yb (1.32×10-6-1.43×10-6), and high Sr (481×10-6-794×10-6) with the ratios of Sr/Y (35.6-65.6) and LaN/YbN(8.2-10.4). The melt of subducted slab and metasomic mantle peridoite played a great role on its forming process. Based on the above data, it is proposed that the volcanic rock magma from Shamuoluo Formation formed in inland-arc setting, which can be the early magma response of Bangongco-Nujiang Tethyan Ocean's southward subduction.
-
Key words:
- Shamuluo Formation /
- high-Mg andesite /
- Bangongco-Nujiang suture zone /
- North Tibet /
- geochemistry /
- geochronology
-
图 1 研究区大地构造位置(a)和地质简图(b)
图a据Zhang et al.(2004);①为阿尼玛卿-昆仑断裂,②为羊湖-金沙江断裂,③为双湖-澜沧江断裂,④为班公湖-怒江断裂,⑤为雅鲁藏布江断裂
Fig. 1. Sketch showing tectonic setting (a) and simplified geological map (b) of the study area
图 4 沙木罗组火山岩SiO2-Nb/Yb图解(a)和Zr/TiO2-Nb/Y图解(b)
底图分别据Winchester and Floyd (1977)和Irvine and Baragar (1971)
Fig. 4. SiO2-Nb/Yb diagram (a) and Zr/TiO2-Nb/Y diagram (b) of volcanic rocks from Shamuluo Formation
图 5 沙木罗组火山岩稀土元素球粒陨石标准化配分图(a)和微量元素原始地幔标准化蛛网图(b)
标准化数据引自Sun and McDonough (1989)
Fig. 5. Chondrite-normalized REE pattern (a) and primitive mantle-normalized trace element pattern (b) of volcanic rocks from the Shamuluo Formation
图 6 研究区沙木罗组火山岩的SiO2-TFeO/MgO图解(a)和MgO-SiO2图解(b)
据邓晋福等(2010).图a:直线为CA(钙碱性系列)与Th(拉斑系列)分界线,虚线为低Fe钙碱性与中Fe钙碱性系列分界线,LF-CA为低Fe钙碱性系列. 图b:HMA.高镁安山岩,MA.镁安山岩
Fig. 6. The SiO2-TFeO/MgO diagram (a) and MgO-SiO2 diagram (b) of the volcanic rocks from the Shamuluo Formation in the study area
-
[1] Blichert-Toft, J., Albarède, F., 1997. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth and Planetary Science Letters, 148(1-2): 243-258. https://doi.org/10.1016/s0012-821x(97)00040-x [2] Bolhar, R., Weaver, S. D., Whitehouse, M. J., et al., 2008. Sources and Evolution of Arc Magmas Inferred from Coupled O and Hf Isotope Systematics of Plutonic Zircons from the Cretaceous Separation Point Suite (New Zealand). Earth and Planetary Science Letters, 268(3-4): 312-324. https://doi.org/10.1016/j.epsl.2008.01.022 [3] Bryant, J. A., Yogodzinski, G. M., Churikova, T. G., 2011. High-Mg# Andesitic Lavas of the Shisheisky Complex, Northern Kamchatka: Implications for Primitive Calc-Alkaline Magmatism. Contributions to Mineralogy and Petrology, 161: 791-810. https://doi.org/10.1007/s00410-010-0565-4 [4] Chen, G. R., Liu, H. F., Jiang, G. W., et al., 2004. Discovery of the Shamuluo Formation in the Central Segment of the Bangong Co-Nujiang River Suture Zone, Tibet. Geological Bulletin of China, 23(2): 193-194(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD200402015.htm [5] Coulon, C., Maluski, H., Bollinger, C., et al., 1986. Mesozoic and Cenozoic Volcanic Rocks from Central and Southern Tibet: 39Ar-40Ar Dating, Petrological Characteristics and Geodynamical Significance. Earth & Planetary Science Letters, 79(3-4): 281-302. https://doi.org/10.1016/0012-821x(86)90186-x [6] Deng, J. F., Liu, C., Feng, Y. F., et al., 2010. High Magnesian Andesitic/Dioritic Rocks(HMA) and Magnesian Andesitic/Dioritic Rocks(MA): Two Igneous Rock Types Related to Oceanic Subduction. Geology in China, 37(4): 1112-1118(in Chinese with English abstract). http://www.ixueshu.com/document/b182fab31af30eb1842d0834d8903a70318947a18e7f9386.html [7] Deng, J. H., Yuan, Z. G., Yu, J., et al., 2017. New Discovery of the Basal Conglomerate in the Upper Jurassic-Lower Cretaceous Shamuluo Formation in Western Part of Bangong Lake-Nujiang River Suture Zone and Its Geological Significance. Geological Review, 63(2): 302-310(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201702005.htm [8] Fan, J. J., Li, C., Xie, C. M., et al., 2015. The Evolution of the Bangong-Nujiang Neo-Tethys Ocean: Evidence from Zircon U-Pb and Lu-Hf Isotopic Analyses of Early Cretaceous Oceanic Islands and Ophiolites. Tectonophysics, 655: 27-40. https://doi.org/10.1016/j.tecto.2015.04.019 [9] Frey, F. A., Green, D. H., Roy, S. D., 1978. Integrated Models of Basalt Petrogenesis: A Study of Quartz Tholeiites to Olivine Melilitites from South Eastern Australia Utilizing Geochemical and Experimental Petrological Data. Journal of Petrology, 19(3): 463-513. https://doi.org/10.1093/petrology/19.3.463 [10] Gao, S., Rudnick, R. L., Yuan, H. L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432(7019): 892-897. https://doi.org/10.1038/nature03162 [11] Geng, Q. R., Pan, G. T., Wang, L. Q., et al., 2011. Tethyan Evolution and Metallogenic Geological Background of the Bangong Co-Nujiang Belt and the Qiangtang Massif in Tibet. Geological Bulletin of China, 30(8): 1261-1274(in Chinese with English abstract). http://www.cqvip.com/QK/95894A/20118/38931656.html [12] Goolaerts, A., Mattielli, N., de Jong, J., et al., 2004. Hf and Lu Isotopic Reference Values for the Zircon Standard 91500 by MC-ICP-MS. Chemical Geology, 206(1-2): 1-9. https://doi.org/10.1016/j.chemgeo.2004.01.008 [13] Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147. https://doi.org/10.1016/s0016-7037(99)00343-9 [14] Griffin, W. L., Wang, X., Jackson, S. E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China: In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3-4): 237-269. https://doi.org/10.1016/s0024-4937(02)00082-8 [15] Hirose, K., 1997. Melting Experiments on Lherzolite KLB-1 under Hydrous Conditions and Generation of High-Magnesian Andesitic Melts. Geology, 25(1): 42-44. https://doi.org/10.1130/0091-7613(1997)0250042:meolku>2.3.co;2 doi: 10.1130/0091-7613(1997)0250042:meolku>2.3.co;2 [16] Huang, T. T., Xu, J. F., Chen, J. L., et al., 2017. Sedimentary Record of Jurassic Northward Subduction of the Bangong-Nujiang Ocean: Insights from Detrital Zircons. International Geology Review, 59(2): 166-184. https://doi.org/10.1080/00206814.2016.1218801 [17] Hoskin, P. W. O., Black, L. P., 2000. Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon. Journal of Metamorphic Geology, 18(4): 423-439. https://doi.org/10.1046/j.1525-1314.2000.00266.x [18] Irvine, T. N., Baragar, W. R. A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5): 523-548. https://doi.org/10.1139/e71-055 [19] Ji, G. Z., Zhu, L. D., Yang, W. G., et al., 2014. Sedimentary Environment Analysis for Sha Mu Luo Formation of Upper-Jurassic to Lower-Cretaceous, Eastern Gaize, Tibet. Science & Technology Vision, (11): 69-70, 139(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KJSJ201411047.htm [20] Jung, S., Masberg, P., 1998. Major- and Trace- Element Systematics and Isotope Geochemistry of Cenozoic Mafic Volcanic Rocks from the Vogelsberg (Central Germany): Constraints on the Origin of Continental Alkaline and Tholeiitic Basalts and Their Mantle Sources. Journal of Volcanology and Geothermal Research, 86(1-4): 151-177. https://doi.org/10.1016/s0377-0273(98)00087-0 [21] Kang, Z. Q., Xu, J. F., Wang, B. D., et al., 2010. Qushenla Formation Volcanic Rocks in North Lhasa Block: Products of Bangong Co-Nujiang Tethy's Southward Subduction. Acta Petrologica Sinica, 26(10): 3106-3116(in Chinese with English abstract). http://www.researchgate.net/publication/283768751_Qushenla_Formation_volcanic_rocks_in_north_Lhasa_block_Products_of_Bangong_Co-Nujiang_Tethy's_southward_subduction [22] Kapp, P., DeCelles, P. G., Gehrels, G. E., et al., 2007. Geological Records of the Lhasa-Qiangtang and Indo-Asian Collisions in the Nima Area of Central Tibet. Geological Society of America Bulletin, 119(7-8): 917-932. https://doi.org/10.1130/b26033.1 [23] Kay, R. W., Kay, S. M., 1993. Delamination and Delamination Magmatism. Tectonophysics, 219(1-3): 177-189. https://doi.org/10.1016/0040-1951(93)90295-U [24] Kelemen, P. B., 1995. Genesis of High Mg# Andesites and the Continental Crust. Contributions to Mineralogy and Petrology, 120(1): 1-19. https://doi.org/10.1007/bf00311004 [25] Kelemen, P. B., Hart, S. R., Bernstein, S., 1998. Silica Enrichment in the Continental Upper Mantle via Melt/Rock Reaction. Earth and Planetary Science Letters, 164(1-2): 387-406. https://doi.org/10.1016/s0012-821x(98)00233-7 [26] Kelemen, P. B., Yogodzinski, G. M., Scholl, D. W., 2003.Along-Strike Variation in the Aleutian Island Arc: Genesis of High Mg# Andesite and Implications for Continental Crust. In: Eiler, J., ed., Inside the Subduction Factory. American Geophysical Union, Washington, D. C.. https://doi.org/10.1029/138gm11 [27] le Bas, M. J., 2000. IUGS Reclassification of the High-Mg and Picritic Volcanic Rocks. Journal of Petrology, 41(10): 1467-1470. https://doi.org/10.1093/petrology/41.10.1467 [28] Leier, A. L., Kapp, P., Gehrels, G. E., et al., 2007. Detrital Zircon Geochronology of Carboniferous-Cretaceous Strata in the Lhasa Terrane, Southern Tibet. Basin Research, 19(3): 361-378. https://doi.org/10.1111/bre.2007.19.issue-3 [29] Li, D. W., 2008. Three-Stage Tectonic Evolution and Metallogenic Evolution in the Qinghai-Tibet Plateau and Its Adjacent Area. Earth Science, 33(6): 723-742(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200806000.htm [30] Li, H. L., Gao, C., Li, Z. H., et al., 2016. Age and Tectonic Significance of Jingzhushan Formation in Bangong Lake Area, Tibet. Geotectonica et Metallogenia, 40(4): 663-673(in Chinese with English abstract). http://www.researchgate.net/publication/309114066_Age_and_tectonic_significance_of_Jingzhushan_formation_in_Bangong_Lake_area_Tibet [31] Li, S., Ding, L., Guilmette, C., et al., 2017. The Subduction-Accretion History of the Bangong-Nujiang Ocean: Constraints from Provenance and Geochronology of the Mesozoic Strata near Gaize, Central Tibet. Tectonophysics, 702: 42-60. https://doi.org/10.1016/j.tecto.2017.02.023 [32] Liao, L. G., Li, X. Y., Zou, A. J., et al., 2006. New Explanation of the Shamuluo Formation in the Gase Region, Northern Xizang. Sedimentary Geology and Tethyan Geology, 26(2): 12-15(in Chinese with English abstract). [33] Liu, W. L., Huang, Q. T., Gu, M., et al., 2018. Origin and Tectonic Implications of the Shiquanhe High-Mg Andesite, Western Bangong Suture, Tibet. Gondwana Research, 60: 1-14. https://doi.org/10.1016/j.gr.2018.03.017 [34] Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 [35] Kang, Z. Q., Xu, J. F., Wang, B. D., et al., 2010. Qushenla Formation Volcanic Rocks in North Lhasa Block: Products of Bangong Co-Nujiang Tethy's Southward Subduction. Acta Petrologica Sinica, 26(10): 3106-3116(in Chinese with English abstract). http://www.researchgate.net/publication/283768751_Qushenla_Formation_volcanic_rocks_in_north_Lhasa_block_Products_of_Bangong_Co-Nujiang_Tethy's_southward_subduction [36] Ma, A. L., Hu, X. M., Kapp, P., et al., 2018. The Disappearance of a Late Jurassic Remnant Sea in the Southern Qiangtang Block (Shamuluo Formation, Najiangco Area): Implications for the Tectonic Uplift of Central Tibet. Palaeogeography, Palaeoclimatology, Palaeoecology, 506: 30-47. https://doi.org/10.1016/j.palaeo.2018.06.005 [37] Pan, G. T., Mo, X. X., Hou, Z. Q., et al., 2006. Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution. Acta Petrologica Sinica, 22(3): 521-533(in Chinese with English abstract). http://www.oalib.com/paper/1472080 [38] Patchett, P. J., Kouvo, O., Hedge, C. E., et al., 1982. Evolution of Continental Crust and Mantle Heterogeneity: Evidence from Hf Isotopes. Contributions to Mineralogy and Petrology, 78: 279-297. https://doi.org/10.1007/bf00398923 [39] Rapp, R. P., Shimizu, N., Norman, M. D., et al., 1999. Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chemical Geology, 160(4): 335-356. https://doi.org/10.1016/s0009-2541(99)00106-0 [40] Ratajeski, K., Sisson, T. W., Glazner, A. F., 2005. Experimental and Geochemical Evidence for Derivation of the El Capitan Granite, California, by Partial Melting of Hydrous Gabbroic Lower Crust. Contributions to Mineralogy and Petrology, 149(6): 713-734. https://doi.org/10.1007/s00410-005-0677-4 [41] Söderlund, U., Patchett, P. J., Vervoort, J. D., et al., 2004. The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions. Earth and Planetary Science Letters, 219(3-4): 311-324. https://doi.org/10.1016/s0012-821x(04)00012-3 [42] Stern, R. A., Hanson, G. N., 1991. Archean High-Mg Granodiorite: A Derivative of Light Rare Earth Element-Enriched Monzodiorite of Mantle Origin. Journal of Petrology, 32(1): 201-238. https://doi.org/10.1093/petrology/32.1.201 [43] Sui, Q. L., Wang, Q., Zhu, D. C., et al., 2013. Compositional Diversity of ca. 110 Ma Magmatism in the Northern Lhasa Terrane, Tibet: Implications for the Magmatic Origin and Crustal Growth in a Continent-Continent Collision Zone. Lithos, 168-169: 144-159. https://doi.org/10.1016/j.lithos.2013.01.012 [44] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [45] Tang, G. J., Wang, Q., 2010. High-Mg Andesites and Their Geodynamic Implications. Acta Petrologica Sinica, 26(8): 2495-2512(in Chinese with English abstract). http://www.researchgate.net/publication/285765484_High-Mg_andesites_and_their_geodynamic_implications [46] Tatsumi, Y., 1981. Melting Experiments on a High-Magnesian Andesite. Earth and Planetary Science Letters, 54(2): 357-365. https://doi.org/10.1016/0012-821x(81)90017-0 [47] Tatsumi, Y., 2001. Geochemical Modeling of Partial Melting of Subducting Sediments and Subsequent Melt-Mantle Interaction: Generation of High-Mg Andesites in the Setouchi Volcanic Belt, Southwest Japan. Geology, 29(4): 323-326. https://doi.org/10.1130/0091-7613(2001)0290323:gmopmo>2.0.co;2 doi: 10.1130/0091-7613(2001)0290323:gmopmo>2.0.co;2 [48] Tatsumi, Y., Hanyu, T., 2003. Geochemical Modeling of Dehydration and Partial Melting of Subducting Lithosphere: Toward a Comprehensive Understanding of High-Mg Andesite Formation in the Setouchi Volcanic Belt, SW Japan. Geochemistry, Geophysics, Geosystems, 4(9): 1081. https://doi.org/10.1029/2003gc000530 [49] Tollstrup, D. L., Gill, J. B., 2005. Hafnium Systematics of the Mariana Arc: Evidence for Sediment Melt and Residual Phases. Geology, 33(9): 737-740. https://doi.org/10.1130/g21639.1 [50] Wang, Q., Zhao, Z. H., Xu, J. F., et al., 2006. Carboniferous Adakite-High-Mg Andesite-Nb Enriched Basaltic Rock Suites in the Northern Tianshan Area: Implications for Phanerozoic Crustal Growth in the Central Asia Orogenic Belt and Cu-Au Mineralization. Acta Petrologica Sinica, 22(1): 11-30(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200601002.htm [51] Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. https://doi.org/10.1016/0009-2541(77)90057-2 [52] Wood, B. J., Turner, S. P., 2009. Origin of Primitive High-Mg Andesite: Constraints from Natural Examples and Experiments. Earth and Planetary Science Letters, 283(1-4): 59-66. https://doi.org/10.1016/j.epsl.2009.03.032 [53] Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220(in Chinese with English abstract). http://www.oalib.com/paper/1492671 [54] Wu, H., Li, C., Xu, M. J., et al., 2015. Early Cretaceous Adakitic Magmatism in the Dachagou Area, Northern Lhasa Terrane, Tibet: Implications for Slab Roll-Back and Subsequent Slab Break-off of the Lithosphere of the Bangong-Nujiang Ocean. Journal of Asian Earth Sciences, 97: 51-66. https://doi.org/10.1016/j.jseaes.2014.10.014 [55] Xia, D. X., Liu, S. K., 1997. Rock Stratum of the Tibet Autonomous. China University of Geosciences Press, Wuhan (in Chinese). [56] Xie, B. J., Cheng, J., Huang, C. G., 2010. The Found and the Significance for the West Area of Samut Luo Group in the Bangong Lake-Lu River Suture. Journal of East China Institute of Technology (Natural Science), 33(2): 159-164(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HDDZ201002011.htm [57] Xie, G. G., Mo, X. X., Zhao, Z. D., et al., 2009. Jurassic-Cretaceous Sedimentation and Evolution of Ancient Oceanic Basin in Bangong Lake Area, Tibet. Earth Science Frontiers, 16(4): 31-39(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200904005.htm [58] Xu, J. F., Shinjo, R., Defant, M. J., et al., 2002. Origin of Mesozoic Adakitic Intrusive Rocks in the Ningzhen Area of East China: Partial Melting of Delaminated Lower Continental Crust? Geology, 30(12): 1111-1114. https://doi.org/10.1130/0091-7613(2002)0301111:oomair>2.0.co;2 doi: 10.1130/0091-7613(2002)0301111:oomair>2.0.co;2 [59] Zeng, Y. C., Chen, J. L., Xu, J. F., et al., 2016. Sediment Melting during Subduction Initiation: Geochronological and Geochemical Evidence from the Darutso High-Mg Andesites within Ophiolite Melange, Central Tibet. Geochemistry, Geophysics, Geosystems, 17(12): 4859-4877. https://doi.org/10.1002/2016gc006456 [60] Zhang, K. J., Xia, B. D., Wang, G. M., et al., 2004. Early Cretaceous Stratigraphy, Depositional Environments, Sandstone Provenance, and Tectonic Setting of Central Tibet, Western China. Geological Society of America Bulletin, 116(9-10): 1202-1222. https://doi.org/10.1130/b25388.1 [61] Zhang, L. X., Wang, Q., Zhu, D. C., et al., 2013. Mapping the Lhasa Terrane through Zircon Hf Isotopes: Constraints on the Nature of the Crust and Metallogenic Potential. Acta Petrologica Sinica, 29(11): 3681-3688(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201311003.htm [62] Zheng, Y. Y., Xu, R. K., Zhang, G. Y., et al., 2008. The Feature of Geochemistry, Chronology and Tectonic Significance of Sangong Granite Series of Ritu Invasion Batholish in Tibet. Acta Petrologica Sinica, 24(2): 368-376(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200802018.htm [63] Zhu, D. C., Li, S. M., Cawood, P. A., et al., 2016. Assembly of the Lhasa and Qiangtang Terranes in Central Tibet by Divergent Double Subduction. Lithos, 245: 7-17. https://doi.org/10.1016/j.lithos.2015.06.023 [64] Zhu, D. C., Mo, X. X., Niu, Y. L., et al., 2009. Geochemical Investigation of Early Cretaceous Igneous Rocks along an East-West Traverse throughout the Central Lhasa Terrane, Tibet. Chemical Geology, 268(3-4): 298-312. https://doi.org/10.1016/j.chemgeo.2009.09.008 [65] Zhu, D. C., Mo, X. X., Zhao, Z. D., et al., 2008. Zircon U-Pb Geochronology of Zenong Group Volcanic Rocks in Coqen Area of the Gangdese, Tibet and Tectonic Significance. Acta Petrologica Sinica, 24(3): 401-412(in Chinese with English abstract). http://www.researchgate.net/publication/279715809_Zircon_U-Pb_geochronology_of_Zenong_Group_volcanic_rocks_in_Coqen_area_od_the_Gangdese_Tibet_and_tectonic_significance [66] Zhu, D. C., Pan, G. T., Mo, X. X., et al., 2006. Late Jurassic-Early Cretaceous Geodynamic Setting in Middle-Northern Gangdese: New Insights from Volcanic Rocks. Acta Petrologica Sinica, 22(3): 534-546(in Chinese with English abstract). http://www.oalib.com/paper/1472180 [67] Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2011. The Lhasa Terrane: Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1-2): 241-255. https://doi.org/10.1016/j.epsl.2010.11.005 [68] 陈国荣, 刘鸿飞, 蒋光武, 等, 2004. 西藏班公湖-怒江结合带中段沙木罗组的发现. 地质通报, 23(2): 193-194. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200402015.htm [69] 邓晋福, 刘翠, 冯艳芳, 等, 2010. 高镁安山岩/闪长岩类(HMA)和镁安山岩/闪长岩类(MA): 与洋俯冲作用相关的两类典型的火成岩类. 中国地质, 37(4): 1112-1118. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201004027.htm [70] 邓金火, 袁振国, 余江, 等, 2017. 班公湖-怒江结合带西段沙木罗组底砾岩的新发现及地质意义. 地质论评, 63(2): 302-310. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201702005.htm [71] 耿全如, 潘桂棠, 王立全, 等, 2011. 班公湖-怒江带、羌塘地块特提斯演化与成矿地质背景. 地质通报, 30(8): 1261-1274. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201108013.htm [72] 纪国忠, 朱利东, 杨文光, 等, 2014. 西藏改则东上侏罗统-下白垩统沙木罗组沉积环境分析. 科技视界, (11): 69-70, 139. https://www.cnki.com.cn/Article/CJFDTOTAL-KJSJ201411047.htm [73] 康志强, 许继峰, 王保弟, 等, 2010. 拉萨地块北部去申拉组火山岩: 班公湖-怒江特提斯洋南向俯冲的产物? 岩石学报, 26(10): 3106-3116. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201010022.htm [74] 李德威, 2008. 青藏高原及邻区三阶段构造演化与成矿演化. 地球科学, 33(6): 723-742. http://www.earth-science.net/article/id/1764 [75] 李华亮, 高成, 李正汉, 等, 2016. 西藏班公湖地区竟柱山组时代及其构造意义. 大地构造与成矿学, 40(4): 663-673. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201604004.htm [76] 廖六根, 李晓勇, 邹爱建, 等, 2006. 对藏北嘎色地区沙木罗组的新认识. 沉积与特提斯地质, 26(2): 12-15. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD200602002.htm [77] 潘桂棠, 莫宣学, 侯增谦, 等, 2006. 冈底斯造山带的时空结构及演化. 岩石学报, 22(3): 521-533. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603001.htm [78] 唐功建, 王强, 2010. 高镁安山岩及其地球动力学意义. 岩石学报, 26(8): 2495-2512. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201008022.htm [79] 王强, 赵振华, 许继峰, 等, 2006. 天山北部石炭纪埃达克岩-高镁安山岩-富Nb岛弧玄武质岩: 对中亚造山带显生宙地壳增生与铜金成矿的意义. 岩石学报, 22(1): 11-30. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200601002.htm [80] 吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm [81] 夏代祥, 刘世坤, 1997. 西藏自治区岩石地层. 武汉: 中国地质大学出版社. [82] 谢冰晶, 程捷, 黄传冠, 2010. 班公湖-怒江结合带西段沙木罗组的发现及意义. 东华理工大学学报(自然科学版), 33(2): 159-164. https://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ201002011.htm [83] 谢国刚, 莫宣学, 赵志丹, 等, 2009. 西藏班公湖地区侏罗纪-白垩纪沉积及古海洋盆地的演化. 地学前缘, 16(4): 31-39. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200904005.htm [84] 张立雪, 王青, 朱弟成, 等, 2013. 拉萨地体锆石Hf同位素填图: 对地壳性质和成矿潜力的约束. 岩石学报, 29(11): 3681-3688. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201311003.htm [85] 郑有业, 许荣科, 张刚阳, 等, 2008. 西藏日土岩基三宫岩石序列地球化学、年代学及构造意义. 岩石学报, 24(2): 368-376. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200802018.htm [86] 朱弟成, 莫宣学, 赵志丹, 等, 2008. 西藏冈底斯带措勤地区则弄群火山岩锆石U-Pb年代学格架及构造意义. 岩石学报, 24(3): 401-412. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200803001.htm [87] 朱弟成, 潘桂棠, 莫宣学, 等, 2006. 冈底斯中北部晚侏罗世-早白垩世地球动力学环境: 火山岩约束. 岩石学报, 22(3): 534-546. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603002.htm