Geochronology, Geochemistry and Petrogenesis of Late Jurassic Granitoids in Shiquanhe Area, Western Lhasa Block, Tibet
-
摘要: 目前关于拉萨地块西段狮泉河地区中生代岩浆岩的报道相对较少,限制了对该地区中生代岩浆作用的认识.对狮泉河地区石英闪长岩和闪长质包体的锆石U-Pb年龄、岩石学特征与元素地球化学进行了研究.结果显示,寄主石英闪长岩的年龄为161.1±1.7 Ma,闪长质包体的年龄为159.8±1.6 Ma和157.0±1.3 Ma,两者为同期形成.寄主石英闪长岩为I型准铝质中钾-高钾钙碱性系列岩石,具有富集大离子亲石元素、亏损高场强元素的特征.闪长质包体为准铝质中钾-高钾钙碱性系列岩石.岩石学、地球化学特征研究表明,该套岩石可能与中侏罗世班公湖-怒江特提斯洋南向俯冲有关,班公湖-怒江特提斯洋南向俯冲引起幔源物质发生熔融,上涌的幔源岩浆与拉萨地块古老基底重熔形成的酸性岩浆混合,形成了含闪长质包体的晚侏罗世岩体.Abstract: There are relatively few reports on the Mesozoic magmatic rocks in the Shiquanhe area of western Lhasa Block, which limits the understanding of the Mesozoic magmatism in this area. In this paper, it presents the major element, trace element and zircon U-Pb age data of bulk-rock for the host quartz diorite and dioritic enclaves from the Shiquanhe area. The zircon dating yields U-Pb age of 161.1±1.7 Ma for the host quartz diorite, of 159.8±1.6 Ma and 157.0±1.3 Ma respectively for dioritic enclaves, indicating that the host quartz diorite and dioritic enclaves have similar crystallization ages and they both formed at Late Jurassic. The host quartz diorite is metaluminous and calc-alkaline to high K calc-alkaline I-type granitoids. They are enriched in large ion lithopile elements, and depleted in high field strength elements. The dioritic enclaves are metaluminous and calc-alkaline to high K calc-alkaline. Based on the data in this study and previous ones, it is proposed that Late Jurassic quartz diorite was formed in tectonic setting of the southward subduction of Bangongco-Nujiang Neo-Tethyan oceanic seafloor, and generated by the magma mixing between mantle-derived basic magma and acidic magma formed by the melting of the ancient crustal material of Lhasa Block.
-
Key words:
- Late Jurassic /
- quartz diorite /
- dioritic enclave /
- zircon U-Pb age /
- Shiquanhe area /
- geochemistry /
- geochronology
-
图 1 青藏高原南部构造单元划分(a)及研究区地质简图(b)
底图据李勇等(2018)修改. SXG.狮泉河-许如错-工布江达断裂;THS.吉隆-定日-岗巴-错那断裂
Fig. 1. Tectonic framework of southern Tibetan Plateau (a) and simplified geological map of Shiquanhe area (b)
-
[1] Cao, M. J., Qin, K. Z., Li, G. M., et al., 2016. Tectono-Magmatic Evolution of Late Jurassic to Early Cretaceous Granitoids in the West Central Lhasa Subterrane, Tibet. Gondwana Research, 39:386-400. https://doi.org/10.1016/j.gr.2016.01.006 [2] Chappell, B.W., 1999. Aluminium Saturation in I- and S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46(3):535-551. https://doi.org/10.1016/s0024-4937(98)00086-3 [3] Chappell, B. W., Wyborn, D., 2012. Origin of Enclaves in S-Type Granites of the Lachlan Fold Belt. Lithos, 154:235-247. https://doi.org/10.1016/j.lithos.2012.07.012 [4] Cheng, Y. B., Spandler, C., Mao, J. W., et al., 2012. Granite, Gabbro and Mafic Microgranular Enclaves in the Gejiu Area, Yunnan Province, China:A Case of Two-Stage Mixing of Crust- and Mantle-Derived Magmas. Contributions to Mineralogy and Petrology, 164(4):659-676. https://doi.org/10.1007/s00410-012-0766-0 [5] Chu, M. F., Chung, S. L., Song, B., et al., 2006. Zircon U-Pb and Hf Isotope Constraints on the Mesozoic Tectonics and Crustal Evolution of Southern Tibet. Geology, 34(9):745-748. https://doi.org/10.1130/g22725.1 [6] Collins, W. J., Richards, S. W., 2008. Geodynamic Significance of S-Type Granites in Circum-Pacific Orogens. Geology, 36(7):559-562. https://doi.org/10.1130/g24658a.1 [7] Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. A "Wire" Signal Smoothing Device for Laser Ablation Inductively Coupled Plasma Mass Spectrometry Analysis. Spectrochimica Acta Part B:Atomic Spectroscopy, 78:50-57. https://doi.org/10.1016/j.sab.2012.09.007 [8] Ji, W. Q., Wu, F. Y., Chung, S. L., et al., 2009. Zircon U-Pb Geochronology and Hf Isotopic Constraints on Petrogenesis of the Gangdese Batholith, Southern Tibet. Chemical Geology, 262(3-4):229-245. https://doi.org/10.1016/j.chemgeo.2009.01.020 [9] Jiang, X., Zhao, Z.D., Zhu, D.C., et al., 2010. Zircon U-Pb Geochronology and Hf Isotopic Geochemistry of Jiangba, Bangba, and Xiongba Granitoids in Western Gangdese, Tibet. Acta Petrologica Sinica, 26(7):2155-2164 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201007018.htm [10] Johnston, S., Gehrels, G., Valencia, V., et al., 2009. Small-Volume U-Pb Zircon Geochronology by Laser Ablation-Multicollector-ICP-MS. Chemical Geology, 259(3-4):218-229. https://doi.org/10.1016/j.chemgeo.2008.11.004 [11] Kapp, P., DeCelles, P. G., Gehrels, G. E., et al., 2007. Geological Records of the Lhasa-Qiangtang and Indo-Asian Collisions in the Nima Area of Central Tibet. Geological Society of America Bulletin, 119(7-8):917-933. https://doi.org/10.1130/b26033.1 [12] Li, X.B., Wang, B.D., Liu, H., et al., 2015. The Late Jurassic High-Mg Andesites in the Daru Tso Area, Tibet:Evidence for the Subduction of the Bangong Co-Nujiang River Oceanic Lithosphere. Geological Bulletin of China, 34(Z1):251-261 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD2015Z1003.htm [13] Li, Y., Zhang, S.Z., Li, F.Q., et al., 2018. Zircon U-Pb Ages and Implications of the Dianzhong Formation in Chazi Area, Middle Lhasa Block, Tibet. Earth Science, 43(8):2755-2766 (in Chinese with English abstract). [14] Liu, C.D., Mo, X.X., Luo, Z.H., et al., 2004. Mixing Events between the Crust- and Mantle-Derived Magmas in Eastern Kunlun:Evidence from Zircon SHRIMP Chronology. Chinese Science Bulletin, 49(6):596-602 (in Chinese). doi: 10.1360/csb2004-47-6-596 [15] Liu, M., Zhao, Z.D., Guan, Q., et al., 2011. Tracing Magma Mixing Genesis of the Middle Early-Jurassic Host Granites and Enclaves in Nyainrong Microcontinent, Tibet from Zircon LA-ICP-MS U-Pb Dating and Hf Isotopes. Acta Petrologica Sinica, 27(7):1931-1937 (in Chinese with English abstract). [16] Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082 [17] Ma, S. W., Meng, Y. K., Xu, Z. Q., et al., 2017. The Discovery of Late Triassic Mylonitic Granite and Geologic Significance in the Middle Gangdese Batholiths, Southern Tibet. Journal of Geodynamics, 104:49-64. https://doi.org/10.1016/j.jog.2016.10.007 [18] Meng, Y. K., Xu, Z. Q., Santosh, M., et al., 2016. Late Triassic Crustal Growth in Southern Tibet:Evidence from the Gangdese Magmatic Belt. Gondwana Research, 37:449-464. https://doi.org/10.1016/j.gr.2015.10.007 [19] Mo, X.X., 2019. Magmatism and Deep Geological Process. Earth Science, 44(5):1487-1493 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201905007.htm [20] Mo, X. X., Niu, Y. L., Dong, G. C., et al., 2008. Contribution of Syncollisional Felsic Magmatism to Continental Crust Growth:A Case Study of the Paleogene Linzizong Volcanic Succession in Southern Tibet. Chemical Geology, 250(1-4):49-67. https://doi.org/10.1016/j.chemgeo.2008.02.003 [21] Mo, X.X., Pan, G.T., 2006. From the Tethys to the Formation of the Qinghai-Tibet Plateau:Constrained by Tectono-Magmatic Events. Earth Science Frontiers, 13(6):43-51 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200606007.htm [22] Nima, C.R., Wang, G.C., Dun, D., et al., 2017. Zircon U-Pb Ages, Geochemical Characteristics and Tectonics Implications of Late Jurassic Intermediate Intrusive Rocks in Shiquanhe Area, Western Tibet. Journal of Geomechanics, 23(5):673-685 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DZLX201705010.htm [23] Niu, Y. L., Zhao, Z. D., Zhu, D. C., et al., 2013. Continental Collision Zones are Primary Sites for Net Continental Crust Growth:A Testable Hypothesis. Earth-Science Reviews, 127:96-110. https://doi.org/10.1016/j.earscirev.2013.09.004 [24] Pan, G.T., Mo, X.X., Hou, Z.Q., et al., 2006. Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution. Acta Petrologica Sinica, 22(3):521-533 (in Chinese with English abstract). [25] Qi, N.Y., Zhao, Z.D., Tang, Y., et al., 2019. Geochronology, Geochemistry and Petrogenesis of the Late Jurassic-Early Cretaceous Granitoids in Zuozuo, Western Central Lhasa Terrane, Tibet. Acta Petrologica Sinica, 35(2):405-422 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.02.09 [26] Qu, X.M., Wang, R.J., Xin, H.B., et al., 2009. Geochronology and Geochemistry of Igneous Rocks Related to the Subduction of the Tethys Oceanic Plate along the Bangong Lake Arc Zone, the Western Tibetan Plateau. Geochimica, 38(6):523-535 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQHX200906005.htm [27] Sisson, T. W., Ratajeski, K., Hankins, W. B., et al., 2005. Voluminous Granitic Magmas from Common Basaltic Sources. Contributions to Mineralogy and Petrology, 148(6):635-661. https://doi.org/10.1007/s00410-004-0632-9 [28] Wang, B.D., Liu, H., Wang, L.Q., et al., 2020. Spatial-Temporal Framework of the Shiquanhe-Laguoco-Yongzhu-Jili Ophiolite Melange Zone, Qinghai-Tibet Plateau and Its Tectonic Evolution. Earth Science, 45(8):2764-2784 (in Chinese with English abstract). [29] Wang, D.Z., Xie, L., 2008. Magma Mingling:Evidence from Enclaves. Geological Journal of China Universities, 14(1):16-21 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GXDX200801004.htm [30] Wang, Y., Tang, J. X., Wang, L. Q., et al., 2018. Petrogenesis of Jurassic Granitoids in the West Central Lhasa Subterrane, Tibet, China:The Geji Example. International Geology Review, 60(9):1155-1171. https://doi.org/10.1080/00206814.2017.1375438 [31] White, A. J. R., Chappell, B. W., Wyborn, D., 1999. Application of the Restite Model to the Deddick Granodiorite and Its Enclaves:A Reinterpretation of the Observations and Data of Maas et al. (1997). Journal of Petrology, 40(3):413-421. https://doi.org/10.1093/petroj/40.3.413 [32] Wolf, M. B., London, D., 1994. Apatite Dissolution into Peraluminous Haplogranitic Melts:An Experimental Study of Solubilities and Mechanisms. Geochimica et Cosmochimica Acta, 58(19):4127-4145. https://doi.org/10.1016/0016-7037(94)90269-0 [33] Wu, F.Y., Li, X.H., Yang, J.H., et al., 2007. Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6):1217-1238 (in Chinese with English abstract). [34] Yan, J.J., 2019. Geochronology, Geochemistry and Petrogenesis of Mesozoic Magmatic Rocks in Shiquanhe Area, Tibetan Plateau (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [35] Yan, J.J., Zhao, Z.D., Liu, D., et al., 2017. Geochemistry and Petrogenesis of the Late Jurassic Xuru Tso Batholith in Central Lhasa Terrane, Tibet. Acta Petrologica Sinica, 33(8):2437-2453 (in Chinese with English abstract). [36] Zhang, H.F., Xu, W.C., Guo, J.Q., et al., 2007. Indosinian Orogenesis of the Gangdise Terrane:Evidences from Zircon U-Pb Dating and Petrogenesis of Granitoids. Earth Science, 32(2):155-166 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200702001.htm [37] Zhou, X., Zheng, J. P., Xiong, Q., et al., 2017. Early Mesozoic Deep-Crust Reworking beneath the Central Lhasa Terrane (South Tibet):Evidence from Intermediate Gneiss Xenoliths in Granites. Lithos, 274-275:225-239. https://doi.org/10.1016/j.lithos.2016.12.035 [38] Zhu, D. C., Li, S. M., Cawood, P. A., et al., 2016. Assembly of the Lhasa and Qiangtang Terranes in Central Tibet by Divergent Double Subduction. Lithos, 245:7-17. https://doi.org/10.1016/j.lithos.2015.06.023 [39] Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2011. The Lhasa Terrane:Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1-2):241-255. https://doi.org/10.1016/j.epsl.2010.11.005 [40] Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23(4):1429-1454. https://doi.org/10.1016/j.gr.2012.02.002 [41] 姜昕, 赵志丹, 朱弟成, 等, 2010.西藏冈底斯西部江巴、邦巴和雄巴岩体的锆石U-Pb年代学与Hf同位素地球化学.岩石学报, 26(7):2155-2164. http://d.wanfangdata.com.cn/Periodical_ysxb98201007017.aspx [42] 李小波, 王保弟, 刘函, 等, 2015.西藏达如错地区晚侏罗世高镁安山岩:班公湖-怒江洋壳俯冲消减的证据.地质通报, 34(Z1):251-261. http://www.cnki.com.cn/Article/CJFDTotal-ZQYD2015Z1003.htm [43] 李勇, 张士贞, 李奋其, 等, 2018.拉萨地块中段查孜地区典中组火山岩锆石U-Pb年龄及地质意义.地球科学, 43(8):2755-2766. doi: 10.3799/dqkx.2018.593 [44] 刘成东, 莫宣学, 罗照华, 等, 2004.东昆仑壳——幔岩浆混合作用:来自锆石SHRIMP年代学的证据.科学通报, 49(6):596-602. http://www.cqvip.com/QK/94252X/20046/9411408.html [45] 刘敏, 赵志丹, 管琪, 等, 2011.西藏聂荣微陆块早侏罗世中期花岗岩及其包体的岩浆混合成因:锆石LA-ICP-MS U-Pb定年和Hf同位素证据.岩石学报, 27(7):1931-1937. http://d.old.wanfangdata.com.cn/Periodical_ysxb98201107002.aspx [46] 莫宣学, 2019.岩浆作用与地球深部过程.地球科学, 44(5):1487-1493. doi: 10.3799/dqkx.2019.972 [47] 莫宣学, 潘桂棠, 2006.从特提斯到青藏高原形成:构造-岩浆事件的约束.地学前缘, 13(6):43-51. http://www.cqvip.com/QK/71135X/201107/23186256.html [48] 尼玛次仁, 王国灿, 顿都, 等, 2017.西藏狮泉河地区晚侏罗世中性侵入岩锆石U-Pb年龄、地球化学特征及构造意义.地质力学学报, 23(5):673-685. http://d.wanfangdata.com.cn/Periodical/dzlxxb201705005 [49] 潘桂棠, 莫宣学, 侯增谦, 等, 2006.冈底斯造山带的时空结构及演化.岩石学报, 22(3):521-533. http://www.cqvip.com/QK/71135X/201107/23324705.html [50] 齐宁远, 赵志丹, 唐演, 等, 2019.西藏中拉萨地块西段左左乡晚侏罗世-早白垩世花岗岩年代学、地球化学与岩石成因.岩石学报, 35(2):405-422. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=YSXB201902009 [51] 曲晓明, 王瑞江, 辛洪波, 等, 2009.西藏西部与班公湖特提斯洋盆俯冲相关的火成岩年代学和地球化学.地球化学, 38(6):523-535. http://www.cqvip.com/Main/Detail.aspx?id=31887686 [52] 王保弟, 刘函, 王立全, 等, 2020.青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化.地球科学, 45(8):2764-2784. [53] 王德滋, 谢磊, 2008.岩浆混合作用:来自岩石包体的证据.高校地质学报, 14(1):16-21. http://d.wanfangdata.com.cn/Periodical/gxdzxb200801002 [54] 吴福元, 李献华, 杨进辉, 等, 2007.花岗岩成因研究的若干问题.岩石学报, 23(6):1217-1238. http://d.wanfangdata.com.cn/Periodical/ysxb98200706001 [55] 闫晶晶, 2019.青藏高原狮泉河地区中生代岩浆岩的年代学、地球化学和岩石成因(博士学位论文).北京: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-11415-1019140257.htm [56] 闫晶晶, 赵志丹, 刘栋, 等, 2017.西藏中拉萨地块晚侏罗世许如错花岗岩地球化学与岩石成因.岩石学报, 33(8):2437-2453. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201708007.htm [57] 张宏飞, 徐旺春, 郭建秋, 等, 2007.冈底斯印支期造山事件:花岗岩类锆石U-Pb年代学和岩石成因证据.地球科学, 32(2):155-166. http://www.earth-science.net/article/id/3435 -
dqkx-45-8-2846-Table1.docx