Geochronology, Geochemistry and Geological Implications of Diabase Porphyrite in Tiemuli W-Fe Deposit, Chongyi County, Jiangxi Province
-
摘要: 华南地区中生代基性岩浆岩以拉斑玄武岩系列为主,碱性系列少见.江西崇义铁木里地区发育由碱性辉绿玢岩和A型花岗岩组成的双峰式侵入岩组合,对其中的辉绿玢岩开展了矿物学、年代学和地球化学研究.辉绿玢岩的斑晶矿物以次透辉石为主,少量为透辉石和普通辉石;基质中的斜长石为中长石(Ab=39.11%~43.30%),角闪石为钛闪石.LA-ICP-MS锆石U-Pb定年结果表明辉绿玢岩的形成不早于136.6 Ma.岩石具有低SiO2(41.73%~46.68%)、TiO2(1.72%~1.94%),富TFeO(7.64%~9.24%)、Al2O3(15.70%~17.22%),全碱含量高(5.28%~6.60%)的特征,Mg#值为0.51~0.54,属于碱性玄武岩系列.轻重稀土元素之间、轻稀土元素内部分馏强((La/Yb)N=17.58~22.28,(La/Sm)N=4.72~5.18),Eu异常不明显(δEu=0.84~0.99),显著富集大离子亲石元素,轻微富集高场强元素,过渡族元素含量较原始地幔偏低.Nd同位素表现为亏损特征(εNd=+3.45),(87Sr/86Sr)i=0.707 5,(206Pb/204Pb)i=18.769 6,(207Pb/204Pb)i=15.733 7,(208Pb/204Pb)i=39.110 0,显示OIB与EMII过渡特点.矿物成分、岩石地球化学、Nd同位素特征指示铁木里辉绿玢岩源自软流圈,部分熔融发生于石榴石稳定域,是软流圈地幔减压低程度熔融的产物,碱性玄武质岩浆与陆壳物质之间的同化混染作用较弱,岩浆演化过程中发生了单斜辉石、磷灰石和铁钛氧化物的分离结晶作用.华南内陆在白垩纪处于伸展拉张的应力状态,碱性玄武质岩石形成于岩石圈拉张和超壳深大断裂联合作用形成的板内伸展裂解(类裂谷)构造环境.Abstract: The Mesozoic basic igneous rock in South China is dominated by tholeiite series, while the alkali series is rare. Bimodal intrusive pluton composed of alkali diabase porphyrite and A-type granite occurs in Tiemuli area, Chongyi County, Jiangxi Province. Mineralogical, geochronological and geochemical analyses of the diabase porphyrite were carried out. The Tiemuli diabase porphyrite displays porphyritic texture.Phenocrysts are dominated by salite, with minor diopside and augite, while groundmass minerals comprise andesite (with Ab values of 39.11%-43.30%), kaersutite and clinopyroxene chemically equivalent to phenocrysts. The diabase porphyrite was emplaced after the granite (136.6 Ma) and belongs to alkali basalt series, characterized by low SiO2 (41.73%-46.68%) and TiO2 (1.72%-1.94%) contents, high TFeO (7.64%-9.24%), Al2O3 (15.70%-17.22%) and alkali (5.28%-6.60%) contents, and moderate Mg# values (molar ratios of MgO/(MgO+TFeO), 0.51-0.54). The fractionation between light rare earth elements (LREEs) and high rare earth elements (HREEs) and fractionation of LREEs are remarkable ((La/Yb)N=17.58-22.28, (La/Sm)N=4.72-5.18), while the Eu anormalies are negligible (δEu=0.84-0.99). All rocks are significantly enriched in large iron lithophile elements (LILEs) and are slightly enriched in high field strength elements (HFSEs), with lower contents of transition elements than primitive mantle. They have εNd, (87Sr/86Sr)i, (206Pb/204Pb)i, (207Pb/204Pb)i and (208Pb/204Pb)i values of +3.45, 0.707 5, 18.769 9, 15.733 7 and 39.110 0, respectively, displaying transitional features between OIB and EMII. Mineralogical, geochemical and Nd-Hf isotopic characteristics suggest that the Tiemuli diabase porphyrite was generated in asthenosphere and the partial melting took place in garnet stability field. The alkali basalt magma was derived from small degree of decompression melting of depleted asthenospheric mantle and contamination of crustal materials was minor. Fractional crystallization of clinopyroxene, apatite and Fe-Ti oxides took place during the basaltic magma evolution. Some enriched components from lithospheric mantle might be involved in. The Cretaceous alkali basaltic rocks developed interior of South China were formed in intracontinental extension (rift-like) regime related to regional lithospheric extension and deep-penetrating faults.
-
图 1 铁木里岩体大地构造位置图(a)和地质简图(b)
图b据1∶50 000麟潭圩幅地质图,江西省地质矿产局,1984
Fig. 1. A schematic tectonic framework of South China, showing the location of Tiemuli pluton (a) and the geological map of Tiemuli pluton (b)
图 3 铁木里辉绿玢岩中辉石的Wo-En-Fs图解(底图据Morimoto和黄婉康,1988)
Fig. 3. Wo-En-Fs discrimination diagram for pyroxenes from the Tiemuli diabase porphyrite (after Morimoto and Huang, 1988)
图 5 铁木里辉绿玢岩的(Na2O+K2O)-SiO2图解(a)和Zr/TiO2-Nb/Y图解(b)
图a底图据le Bas et al.(1986);图b底图据Winchester and Floyd(1976)
Fig. 5. (Na2O+K2O) vs. SiO2 diagram (a) and Zr/TiO2 vs. Nb/Y diagram (b) of the Tiemuli diabase porphyrite
图 6 铁木里辉绿玢岩球粒陨石标准化稀土元素配分曲线图(a)和原始地幔标准化微量元素蛛网图(b)(标准化值取自Sun and McDonough, 1989)
Fig. 6. Chondrite-normalized REE pattern (a) and primitive mantle-normalized trace element pattern (b) of the Tiemuli diabase porphyrite (normalized values from Sun and McDonough, 1989)
图 7 铁木里辉绿玢岩的εNd(t)-(87Sr/86Sr)i图解(a)、(207Pb/204Pb)i-(206Pb/204Pb)i图解(b)和(208Pb/204Pb)i-(206Pb/204Pb)i图解(c)(底图据Zindler and Hart, 1986)
Fig. 7. εNd(t) vs. (87Sr/86Sr)i diagram (a), (207Pb/204Pb)i vs. (206Pb/204Pb)i diagram (b) and (208Pb/204Pb)i vs. (206Pb/204Pb)i diagram (c) of the Tiemuli diabase porphyrite (after Zindler and Hart, 1986)
图 9 铁木里辉绿玢岩的微量元素对陆壳物质混染作用的判别图解(图b据Loubet et al., 1988)
Fig. 9. Discrimination diagrams of the Tiemuli diabase porphyrite for crustal contamination ((b) after Loubet et al., 1988)
图 11 铁木里辉绿玢岩中单斜辉石的SiO2-Al2O3关系图(a)和n(AlIV)-n(Si)关系图(b)
图a底图据张旗(1992);图b底图据Kushiro(1960)
Fig. 11. SiO2 vs. Al2O3 diagram (a) and n(AlIV) vs. n(Si) diagram (b) of clinopyroxenes from Tiemuli diabase porphyrite
图 12 铁木里辉绿玢岩中钛闪石的TiO2-Al2O3成分图解(据姜常义和安三元,1984)
Fig. 12. TiO2 vs. Al2O3 diagram of the Tiemuli diabase porphyrite (after Jiang and An, 1984)
图 13 铁木里辉绿玢岩构造环境判别图解
a.底图据Pearce and Cann(1973);A.岛弧拉斑玄武岩;B.MORB、岛弧拉斑玄武岩和钙碱性玄武岩;C.钙碱性玄武岩;D.板内玄武岩. b. 底图据Meschede(1986);AI.板内碱性玄武岩;AII.板内碱性玄武岩和板内拉斑玄武岩;B.E-MORB;C.板内拉斑玄武岩和火山弧玄武岩;D.N-MORB和火山弧玄武岩
Fig. 13. Discrimination diagrams for tectonic setting of the Tiemuli diabase porphyrite
-
[1] Asimow, P. D., Hirschmann, M. M., Stolper, E. M., 2001. Calculation of Peridotite Partial Melting from Thermodynamic Models of Minerals and Melts, IV. Adiabatic Decompression and the Composition and Mean Properties of Mid-Ocean Ridge Basalts. Journal of Petrology, 42(5): 963-998. https://doi.org/10.1093/petrology/42.5.963 [2] Chen, R., Zhou, J. C., 1999. Information of Crust-Mantle Interaction Implied in Early Cretaceous Composite Lavas and Dikes from Eastern Zhejiang. Geological Review, 45(S1): 784-795(in Chinese with English abstract). http://www.researchgate.net/publication/309564579_Information_of_crust-mantle_interaction_implied_in_Early_Cretaceous_composite_lavas_and_dikes_from_east_Zhejiang [3] Deng, P., Shu, L. S., Yang, M. G., et al., 2003. Geological Features and Dynamic Evolution of the Ganjiang Fault in Jiangxi Province. Geological Review, 49(2): 113-122(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200302000.htm [4] Elhlou, S., Belousova, E., Griffin, W. L., et al., 2006. Trace Element and Isotopic Composition of GJ-Red Zircon Standard by Laser Ablation. Geochimica et Cosmochimica Acta, 70(18): A158. https://doi.org/10.1016/j.gca.2006.06.1383 [5] Fan, Q. C., Liu, R. X., Lin, Z. R., et al., 1997. The Experimental Study about the Spinel-Garnet Phase Transition in Upper-Mantle and Its Implication. Scientia Sinica Terrae, 27(2): 109-114(in Chinese). [6] Fan, W. M., Wang, Y. J., Guo, F., et al., 2003. Mesozoic Mafic Magmatism in Hunan-Jiangxi Provinces and the Lithospheric Extension. Earth Science Frontiers, 10(3): 159-169(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200303022.htm [7] Frey, F. A., Green, D. H., Roy, S. D., 1978. Integrated Models of Basalt Petrogenesis: A Study of Quartz Tholeiites to Olivine Melilitites from South Eastern Australia Utilizing Geochemical and Experimental Petrological Data.Journal of Petrology, 19(3): 463-513. https://doi.org/10.1093/petrology/19.3.463 [8] Gast, P. W., 1968. Trace Element Fractionation and the Origin of Tholeiitic and Alkaline Magma Types. Geochimica et Cosmochimica Acta, 32(10): 1057-1086. https://doi.org/10.1016/0016-7037(68)90108-7 [9] Hou, K. J., Li, Y. H., Zou, T. R., et al., 2007. Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications. Acta Petrologica Sinica, 23(10): 2595-2604(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200710026.htm [10] Huang, Y. M., Hawkesworth, C., Smith, I., et al., 2000. Geochemistry of Late Cenozoic Basaltic Volcanism in Northland and Coromandel, New Zealand: Implications for Mantle Enrichment Processes. Chemical Geology, 164(3-4): 219-238. https://doi.org/10.1016/s0009-2541(99)00145-x [11] Humayun, M., Qin, L. P., Norman, M. D., 2004. Geochemical Evidence for Excess Iron in the Mantle beneath Hawaii. Science, 306(5693): 91-94. https://doi.org/10.1126/science.1101050 [12] Jackson, M. G., Dasgupta, R., 2008. Compositions of HIMU, EM1, and EM2 from Global Trends between Radiogenic Isotopes and Major Elements in Ocean Island Basalts. Earth and Planetary Science Letters, 276(1-2): 175-186. https://doi.org/10.1016/j.epsl.2008.09.023 [13] Jackson, S. E., Pearson, N. J., Griffin, W. L., et al., 2004. The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to In Situ U-Pb Zircon Geochronology. Chemical Geology, 211(1-2): 47-69. https://doi.org/10.1016/j.chemgeo.2004.06.017 [14] Jiang, C. Y., An, S. Y., 1984. On Chemical Characteristics of Calcic Amphiboles from Igneous Rocks and Their Petrogenesis Significance. Journal of Mineralogy and Petrology, 4(3): 1-9(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KWYS198403000.htm [15] Kushiro, I., 1960. Si-Al Relation in Clinopyroxenes from Igneous Rocks. American Journal of Science, 258(8): 548-554. https://doi.org/10.2475/ajs.258.8.548 [16] le Bas, M. J., le Maitre, R. W., Streckeisen, A., et al., 1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology, 27(3): 745-750. https://doi.org/10.1093/petrology/27.3.745 [17] Lei, Z. L., Zeng, G., Wang, X. J., et al., 2019. Mantle Source Lithology of Late Mesozoic Mafic Dikes in Southeastern China.Earth Science, 44(4): 1159-1170(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201904008.htm [18] Li, J. W., Zhou, M. F., Li, X. F., et al., 2001. The Hunan-Jiangxi Strike-Slip Fault System in Southern China: Southern Termination of the Tan-Lu Fault. Journal of Geodynamics, 32(3): 333-354. https://doi.org/10.1016/s0264-3707(01)00033-3 [19] Li, X. H., Chung, S. L., Zhou, H. W., et al., 2004. Jurassic Intraplate Magmatism in Southern Hunan-Eastern Guangxi: 40Ar/39Ar Dating, Geochemistry, Sr-Nd Isotopes and Implications for the Tectonic Evolution of SE China.Geological Society, London, Special Publications, 226(1): 193-215. https://doi.org/10.1144/gsl.sp.2004.226.01.11 [20] Li, X. H., Hu, R. Z., Rao, B., 1997. Geochronology and Geochemistry of Cretaceous Mafic Dikes from Northern Guangdong, SE China.Geochimica, 26(2): 14-31(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX702.003.htm [21] Liu, F., Li, K., Huang, G. C., et al., 2018. Zircon U-Pb Geochronology and Geochemical Characteristics of the Kunlunguan A-Type Granite in Central Guangxi. Earth Science, 43(7): 2313-2329(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201807009.htm [22] Lou, F., Ma, H. M., Liu, Y. Y., et al., 2011. Time-Space Distribution and Formation Mechanism of the Mesozoic Mafic Dikes in Southeast China.Earth Science Frontiers, 18(1): 15-23(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201101004.htm [23] Loubet, M., Sassi, R., di Donato, G., 1988. Mantle Heterogeneities: A Combined Isotope and Trace Element Approach and Evidence for Recycled Continental Crust Materials in Some OIB Sources. Earth and Planetary Science Letters, 89(3-4): 299-315. https://doi.org/10.1016/0012-821x(88)90118-5 [24] Lu, L., Liang, T., Zhao, Z., et al., 2018. A Unique Association of Scheelite and Magnetite in the Tiemuli W-Fe Skarn Deposit: Implications for Early Cretaceous Metallogenesis in the Nanling Region, South China.Ore Geology Reviews, 94: 136-154. https://doi.org/10.1016/j.oregeorev.2018.01.028 [25] Maier, W. D., Arndt, N. T., Curl, E. A., 2000. Progressive Crustal Contamination of the Bushveld Complex: Evidence from Nd Isotopic Analyses of the Cumulate Rocks. Contributions to Mineralogy and Petrology, 140(3): 316-327. https://doi.org/10.1007/s004100000186 [26] Meng, L. F., Li, Z. X., Chen, H. L., et al., 2012. Geochronological and Geochemical Results from Mesozoic Basalts in Southern South China Block Support the Flat-Slab Subduction Model. Lithos, 132-133: 127-140. https://doi.org/10.1016/j.lithos.2011.11.022 [27] Meschede, M., 1986. A Method of Discriminating between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram. Chemical Geology, 56(3-4): 207-218. https://doi.org/10.1016/0009-2541(86)90004-5 [28] Morimoto, N., Huang, W. K., 1988. Nomenclature of Pyroxene. Acta Mineralogica Sinica, 8(4): 289-305(in Chinese). doi: 10.1007/BF01226262 [29] Pearce, J. A., Cann, J. R., 1973. Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses. Earth and Planetary Science Letters, 19(2): 290-300. https://doi.org/10.1016/0012-821x(73)90129-5 [30] Peng, T. P., Wang, Y. J., Jiang, Z. M., et al., 2004. 40Ar/39Ar Geochronology and Geochemistry of Cretaceous Basaltic Rocks for the Central and Northwestern Jiangxi Province. Earth Science, 33(5): 447-458(in Chinese with English abstract). http://www.researchgate.net/publication/303161352_40Ar39Ar_geochronology_and_geochemistry_of_Cretaceous_basaltic_rocks_for_the_central_and_northwestern_Jiangxi_Province [31] Rudnick, R.L., Gao, S., 2003. Composition of the Continental Crust. Elsevier, Amsterdam. [32] Shu, L. S., 2012. An Analysis of Principal Features of Tectonic Evolution in South China Block. Geological Bulletin of China, 31(7): 1035-1053(in Chinese with English abstract). [33] Sláma, J., Košler, J., Condon, D. J., et al., 2008. Plešovice Zircon: A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chemical Geology, 249(1-2): 1-35. https://doi.org/10.1016/j.chemgeo.2007.11.005 [34] Song, P. H., Zhang, X. M., Liu, Y. S., et al., 2017. Moho Imaging Based on Receiver Function Analysis with Teleseismic Wavefield Reconstruction: Application to South China.Tectonophysics, 718: 118-131. https://doi.org/10.1016/j.tecto.2017.05.031 [35] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [36] Thompson, R. N., Morrison, M. A., 1988. Asthenospheric and Lower-Lithospheric Mantle Contributions to Continental Extensional Magmatism: An Example from the British Tertiary Province. Chemical Geology, 68(1-2): 1-15. https://doi.org/10.1016/0009-2541(88)90082-4 [37] Wang, K. F., Plank, T., Walker, J. D., et al., 2002. A Mantle Melting Profile across the Basin and Range, SW USA. Journal of Geophysical Research: Solid Earth, 107(B1): ECV 5-1-ECV 5-21. https://doi.org/10.1029/2001jb000209 [38] Wang, Y. J., Fan, W. M., Guo, F., et al., 2003. Geochemistry of Mesozoic Mafic Rocks Adjacent to the Chenzhou-Linwu Fault, South China: Implications for the Lithospheric Boundary between the Yangtze and Cathaysia Blocks. International Geology Review, 45(3): 263-286. https://doi.org/10.2747/0020-6814.45.3.263 [39] Wang, Y. J., Liao, C. L., Fan, W. M., et al., 2004. Early Mesozoic OIB-Type Alkaline Basalt in Central Jiangxi Province and Its Tectonic Implications. Geochimica, 33(2): 109-117(in Chinese with English abstract). http://www.researchgate.net/publication/285298235_Early_Mesozoic_OIB-type_alkaline_basalt_in_central_Jiangxi_Province_and_its_tectonic_implications [40] Winchester, J. A., Floyd, P. A., 1976. Geochemical Magma Type Discrimination: Application to Altered and Metamorphosed Basic Igneous Rocks. Earth and Planetary Science Letters, 28(3): 459-469. https://doi.org/10.1016/0012-821x(76)90207-7 [41] Xie, X., Xu, X. S., Zou, H. B., et al., 2005. Prelude of Mesozoic Large-Scale Magmatism in Southeast China: The Early Middle Jurassic Basalts. Scientia Sinica Terrae, 35(7): 587-605(in Chinese). [42] Yu, D. G., Wang, Y., Zhang, G. Q., 2005. Mineralogical Characteristics and Significance of Multi-Generation Pyroxene of Cenozoic Basic-Rock in Guangfeng Basin. Journal of East China Institute of Technology, 28(4): 301-305(in Chinese with English abstract). [43] Zhang, Q., 1992. The Mafic-Ultramafic Rocks and Wilson Cycle. Acta Petrologica Sinica, 8(2): 168-176(in Chinese with English abstract). http://www.jourlib.org/paper/1470066 [44] Zhao, Z. H., Bao, Z. W., Zhang, B. Y., 1998. Geochemical Characteristics of the Mesozoic Basalts in Southern Hunan Province. Scientia Sinica Terrae, 28(Suppl. 2): 7-14(in Chinese). [45] Zindler, A., Hart, S., 1986. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 14(1): 493-571. https://doi.org/10.1146/annurev.ea.14.050186.002425 [46] 陈荣, 周金城, 1999. 浙东早白垩世复合岩流和岩墙中蕴含的壳幔作用信息. 地质论评, 45(S1): 784-795. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP1999S1113.htm [47] 邓平, 舒良树, 杨明桂, 等, 2003. 赣江断裂带地质特征及其动力学演化. 地质论评, 49(2): 113-122. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200302000.htm [48] 樊祺诚, 刘若新, 林卓然, 等, 1997. 上地幔尖晶石-石榴石相转变实验研究及其意义. 中国科学: 地球科学, 27(2): 109-114. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199702002.htm [49] 范蔚茗, 王岳军, 郭锋, 等, 2003. 湘赣地区中生代镁铁质岩浆作用与岩石圈伸展. 地学前缘, 10(3): 159-169. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200303022.htm [50] 侯可军, 李延河, 邹天人, 等, 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用. 岩石学报, 23(10): 2595-2604. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200710026.htm [51] 姜常义, 安三元, 1984. 论火成岩中钙质角闪石的化学组成特征及其岩石学意义. 矿物岩石, 4(3): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS198403000.htm [52] 雷祝梁, 曾罡, 王小均, 等, 2019. 中国东南部晚中生代基性岩脉地幔源区的岩性演化历史. 地球科学, 44(4): 1159-1170. doi: 10.3799/dqkx.2019.021 [53] 李献华, 胡瑞忠, 饶冰, 1997. 粤北白垩纪基性岩脉的年代学和地球化学. 地球化学, 26(2): 14-31. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX702.003.htm [54] 刘飞, 李堃, 黄圭成, 等, 2018. 桂中昆仑关A型花岗岩锆石U-Pb年代学与地球化学特征. 地球科学, 43(7): 2313-2329. doi: 10.3799/dqkx.2018.180 [55] 娄峰, 马浩明, 刘延勇, 等, 2011. 中国东南部中生代基性岩脉时空分布与形成机理. 地学前缘, 18(1): 15-23. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201101004.htm [56] Morimoto, N., 黄婉康, 1988. 辉石命名法. 矿物学报, 8(4): 289-305. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB198804000.htm [57] 彭头平, 王岳军, 江志敏, 等, 2004. 江西中西部地区白垩纪玄武质岩石的40Ar/39Ar年代学和地球化学研究. 地球化学, 33(5): 447-458. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200405002.htm [58] 舒良树, 2012. 华南构造演化的基本特征. 地质通报, 31(7): 1035-1053. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201207004.htm [59] 王岳军, 廖超林, 范蔚茗, 等, 2004. 赣中地区早中生代OIB碱性玄武岩的厘定及构造意义. 地球化学, 33(2): 109-117. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200402000.htm [60] 谢昕, 徐夕生, 邹海波, 等, 2005. 中国东南部晚中生代大规模岩浆作用序幕: J2早期玄武岩. 中国科学: 地球科学, 35(7): 587-605. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200507000.htm [61] 余达淦, 王勇, 张国庆, 2005. 广丰新生代基性岩多世代辉石矿物学特征及意义. 东华理工学院学报, 28(4): 301-305. https://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ200504001.htm [62] 张旗, 1992. 镁铁-超镁铁岩与威尔逊旋回. 岩石学报, 8(2): 168-176. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB199202007.htm [63] 赵振华, 包志伟, 张伯友, 1998. 湘南中生代玄武岩类地球化学特征. 中国科学: 地球科学, 28(增刊2): 7-14. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK1998S2001.htm