Stable Carbon Isotope Perturbations Recorded in Triassic Tulong Group-Qulonggongba Formation of South Tibet
-
摘要: 古生代-中生代之交生物灭绝后,三叠纪海洋长期、复杂的生物和环境变化过程受到高度关注.基于牙形石、菊石生物时代及土隆地区三叠系全岩稳定碳同位素曲线,识别出6次负偏和5次正偏.其中早三叠世碳同位素的N1-N4四次负偏和P1-P4四次正向偏移过程,能与我国华南、日本等多个剖面进行对应,反映我国藏南所在的高纬度地区经历了与低纬度地区相同的全球碳循环异常.首次报道了土隆剖面识别出的晚三叠世卡尼期碳同位素负偏,其幅度达到3.3‰,可对应意大利、日本以及我国川西北地区和华南南盘江盆地所记录的卡尼期极端气候事件.中卡尼期温度升高,降雨量急剧增多,风化作用显著加强,陆源硅质碎屑输入增强,可能是土隆剖面岩性剧烈变化的环境驱动因素.Abstract: In the aftermath of the Permian-Triassic mass extinction during the Paleozoic-Mesozoic transition,Triassic oceans were characterized by the long-term and complex biological and environmental changes. Here it reports a stratigraphic study of the Tulong section using ammonites,conodonts and stable carbon isotope in South Tibet. The carbon isotope curves show six negative shifts and five positive peaks from earliest Triassic to middle Late Triassic. Within these carbon isotopic perturbations,the four negative and four positive shifts of the Early Triassic are well correlative with the profiles of South China and Japan,suggesting that the studied area records global signals for multi-phase environmental and biotic changes. Meanwhile,a distinct negative carbon isotope shift,with a decrease of 3.3‰,occurred in the Late Triassic of the Tulong section,is indicative to the Carnian climatic event,which has been extensively found in Italy,Japan and South China. This study presents a successive carbon isotope curve with few biostratigraphic records throughout the Triassic,firstly reporting the Carnian climatic event in Tibet. The rapid temperature rise in the humid climate,intensive weathering and strong terrestrial input might contribute to the distinct lithological changes of the Middle Carnian in the study area.
-
Key words:
- carbon isotope /
- Triassic /
- Tulong Group /
- Qulonggongba Formation /
- Tibet /
- stratigraphy
-
图 1 西藏土隆地区地质图及构造位置
修改自潘桂棠等(2013). I.拉达克-冈底斯-察隅弧盆系;I1.昂龙岗日-班戈-腾冲岩浆弧带;I2.措勤-申扎岩浆弧带;I3.隆格尔-工布江达复合岛弧带;I4.拉达克-冈底斯-下察隅岩浆弧带;I5.日喀则弧前盆地;II.印度河-雅鲁藏布江结合带;III.喜马拉雅地块;III1.拉岗轨日被动陆缘盆地;III2.北喜马拉雅碳酸盐台地;III3.高喜马拉雅基底杂岩带;III4.低喜马拉雅被动陆缘盆地
Fig. 1. The geological map and tectonic framework of Tulong area, Tibet
表 1 西藏土隆剖面δ13C和δ18O同位素值
Table 1. The contents of δ13C and δ18O at the Tulong section, Tibet
样品 δ13C (‰, PDB) δ18O (‰, PDB) TWS01-1 -0.94 -4.08 TWS1-2 -1.62 -4.79 TWS1-2 -1.65 -4.78 TWS01-3 -2.54 -5.39 TWS01-4 -2.09 -5.12 TWS01-5 -2.71 -6.88 TWS01-6 -3.11 -6.99 TWS01-7 -3.45 -9.78 TWS03-1 1.38 -8.54 TWS03-2 1.31 -10.26 TWS04-1 1.48 -13.80 TWS04-2 1.46 -14.85 TWS04-3 1.52 -15.17 TWS04-4 1.51 -13.54 TWS04-5 2.07 -15.87 TWS04-6 1.42 -14.37 TWS05-1 1.08 -12.86 TWS05-2 0.49 -13.86 TWS05-3 0.56 -13.05 TWS05-4 1.00 -14.05 TWS05-5 1.45 -12.18 TWS05-6 1.08 -13.03 TWS05-7 1.74 -11.34 TWS06-1 2.34 -14.77 TWS06-2 1.79 -9.26 TWS07-1 2.15 -11.32 TWS07-2 1.53 -12.52 TWS08-01 -1.57 -9.27 TWS08-02 -0.72 -9.21 TWS08-03 -2.57 -12.26 TWS08-04 -2.49 -12.29 TWS08-05 -2.38 -12.14 TWS08-06 -2.49 -8.49 TWS08-07 -2.09 -10.21 TWS08-08 -1.97 -8.15 TWS08-09 -1.88 -11.27 TWS08-10 -1.74 -8.64 TWS08-11 -1.64 -10.32 TWS08-12 -1.56 -11.91 TWS08-13 -1.53 -12.51 TWS08-14 -1.44 -10.47 TWS08-15 -1.31 -11.96 TWS08-16 -1.21 -9.18 TWS08-17 -1.23 -9.36 TWS08-18 -1.11 -10.34 TWS08-19 -1.00 -9.11 TWS08-20 -0.64 -9.88 TWS09-1 0.63 -11.57 TWS09-2 0.17 -10.75 TWS09-3 0.58 -11.91 TWS09-4 0.38 -12.04 TWS09-5 1.69 -11.86 TWS09-6 2.93 -12.16 TWS09-6 2.86 -12.27 TWS10-1 -0.10 -11.06 TWS11-1 -0.11 -11.47 TWS11-2 -0.46 -11.77 TWS11-3 0.33 -11.91 TWS12-1 0.60 -12.07 TWS12-2 1.09 -12.50 TWS13-1 1.08 -12.84 TWS13-2 1.13 -12.61 TWS14-1 1.47 -10.38 TWS14-2 1.87 -12.20 TWS14-3 0.60 -10.79 TWS14-3 0.59 -10.86 TWS14-4 2.00 -11.61 TWS14-5 1.63 -11.68 TWS14-6 2.05 -11.11 TWS15-1 2.15 -11.35 TWS16-1 1.43 -11.51 TWS16-2 1.43 -13.59 TWS17-1 1.28 -12.71 TWS19-1 1.43 -12.62 TWS19-2 1.44 -11.86 TWS19-3 1.16 -12.06 TWS19-4 1.81 -10.66 TWS20-1 2.08 -12.63 TWS20-2 1.66 -13.10 TWS21-1 2.56 -10.70 TWS21-2 2.42 -10.37 TWS21-3 1.85 -11.36 TWS21-4 1.66 -10.64 TWS21-5 1.44 -11.61 TWS21-6 2.16 -11.31 TWS21-7 1.97 -10.51 TWS21-8 1.68 -11.96 TWS21-9 1.44 -8.19 TWS21-10 0.01 -13.68 TWS21-10 0.02 -13.60 TWS21-11 1.06 -11.03 TWS22-1 1.50 -10.65 TWS22-2 1.71 -9.99 TWS22-3 1.82 -11.71 TWS22-4 1.23 -11.51 TWS22-5 1.46 -10.69 TWS23-1 1.37 -12.40 TWS23-2 1.46 -9.99 TWS24-1 0.74 -11.98 TWS25-1 0.59 -9.53 TWS25-2 1.89 -11.11 TWS27-1 1.58 -10.09 TWS27-2 1.71 -9.67 TWS27-3 2.11 -10.38 TWS28-1 0.66 -11.71 TWS29-1 0.95 -12.59 TWS29-2 1.15 -15.90 TWS29-3 0.80 -12.76 TWS29-4 0.76 -12.69 TWS30-1 0.93 -12.44 TWS30-2 0.74 -14.61 TWS30-3 0.05 -12.39 TWS30-4 0.34 -14.62 TWS30-5 0.08 -13.94 TWS30-6 -0.64 -14.27 TWS31-1 0.05 -12.21 TWS31-2 -0.51 -12.90 TWS31-3 -1.20 -12.61 TWS31-4 0.73 -9.31 -
[1] An, X.Y., Zhang, Y.J., Zhu, T.X., et al., 2018. Stable Carbon Isotope Characteristics of Permian-Triassic Boundary at the Selong Xishan Section. Earth Science, 43(8):2848-2857 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201808022 [2] Berner, R. A., 1990. Atmospheric Carbon Dioxide Levels over Phanerozoic Time. Science, 249(4975):1382-1386. https://doi.org/10.1126/science.249.4975.1382 [3] Brühwiler, T., Goudemand, N., Galfetti, T., et al., 2009. The Lower Triassic Sedimentary and Carbon Isotope Records from Tulong (South Tibet) and Their Significance for Tethyan Palaeoceanography. Sedimentary Geology, 222(3-4):314-332. https://doi.org/10.1016/j.sedgeo.2009.10.003 [4] Cheng, G.F., He, Y., Zhou, J.W., et al., 2017. Large-scale Slip Deformational Beding from the Middle Triassic Turbidites in Dayang, Ceheng, Guizhou:Discovery and Significance. Sedimentary Geology and Tethyan Geology, 37(3):42-49 (in Chinese with English abstract). [5] Goudemand, N., Orchard, M. J., Bucher, H., et al., 2012. The Elusive Origin of Chiosella Timorensis (Conodont Triassic). Geobios, 45(2):199-207. https://doi.org/10.1016/j.geobios.2011.06.001 [6] Horacek, M., Brandner, R., Abart, R., 2007. Carbon Isotope Record of the P/T Boundary and the Lower Triassic in the Southern Alps:Evidence for Rapid Changes in Storage of Organic Carbon. Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1):347-354. https://doi.org/10.1016/j.palaeo.2006.11.049 [7] Hornung, T., 2007. Multistratigraphy of the Draxllehen Quarry near Berchtesgaden (Tuvalian-Lacian 2):Implication for Halstatt Limestone Sedimentation and Palaeoclimate in the Aftermath of the "Carnian Crisis". Austrian Journal of Earth Sciences, 100:82-89. [8] Hornung, T., Brandner, R., 2005. Biochronostratigraphy of the Reingraben Turnover (Hallstatt Facies Belt):Local Black Shale Events Controlled by Regional Tectonics, Climatic Change and Plate Tectonics. Facies, 51(1-4):460-479. https://doi.org/10.1007/s10347-005-0061-x [9] Hu, X.M., Wang, C.S., Li, X.H., 2001. Stable Carbon Isotope Response to Oceanic Anoxic Events. Journal of Chengdu University of Technology, 28(1):1-6 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb200101001 [10] Huang, K.K., Huang, S.J., Hu, Z.W., et al., 2016. Carbon Isotopic Composition and Evolution of the Lower Triassic Marine Carbonates from Dukou of Xuanhan and Beibei of Chongqing, Sichuan Basin. Journal of Palaeogeography, 18(1):101-114 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb201601008 [11] Huang, S. J., Huang, K. K., Zhong, Y. J., et al., 2017. Carbon Isotope Composition and Comparison of Lower Triassic Marine Carbonate Rocks from Southern Longmenxia Section in Guang'an, Sichuan Basin. Scientia Sinica Terrae, 47(1):57-71 (in Chinese). doi: 10.1360/N072016-00156 [12] Jin, X., Shi, Z.Q., Wang, Y.Y., et al., 2015. Mid-Carnian(Late Triassic) Extreme Climate Event:Advances and Unsolved Problems. Acta Sedimentologica Sinica, 33(1):105-115 (in Chinese with English abstract). [13] Li, M. T., Song, H. J., Woods, A. D., et al., 2019. Facies and Evolution of the Carbonate Factory during the Permian-Triassic Crisis in South Tibet, China. Sedimentology, 66(7):3008-3028. https://doi.org/10.1111/sed.12619 [14] Liang, D., Tong, J. N., Zhao, L. S., 2011. Lower Triassic Smithian-Spathian Boundary at West Pingdingshan Section in Chaohu, Anhui Province. Scientia Sinica Terrae. 41(2):149-157 (in Chinese). doi: 10.1360/zd-2011-41-2-149 [15] Mazza, M., Nicora, A., Rigo, M., 2018. Metapolygnathus Parvus Kozur, 1972 (Conodonta):A Potential Primary Marker for the Norian GSSP (Upper Triassic). Bollettino della Società Paleontologica Italiana, 57(2):81-101. http://www.researchgate.net/publication/327836318_Metapolygnathus_parvus_Kozur_1972_Conodonta_A_potential_primary_marker_for_the_Norian_GSSP_Upper_Triassic [16] Mueller, S., Krystyn, L., Kürschner, W. M., 2016. Climate Variability during the Carnian Pluvial Phase:A Quantitative Palynological Study of the Carnian Sedimentary Succession at Lunz am See, Northern Calcareous Alps, Austria. Palaeogeography, Palaeoclimatology, Palaeoecology, 441:198-211. https://doi.org/10.1016/j.palaeo.2015.06.008 [17] Mutti, M., Weissert, H., 1995. Triassic Monsoonal Climate and Its Signature in Ladinian-Carnian Carbonate Platforms (Southern Alps, Italy). SEPM Journal of Sedimentary Research, 65B:357-367. https://doi.org/10.1306/d4268252-2b26-11d7-8648000102c1865d [18] Orchard, M. J., 2008. Lower Triassic Conodonts from the Canadian Arctic, Their Intercalibration with Ammonoid-Based Stages and a Comparison with Other North American Olenekian Faunas. Polar Research, 27(3):393-412. https://doi.org/10.1111/j.1751-8369.2008.00072.x [19] Pan, G.T., Wang, L.Q., Ding, J., et al., 2013.1: 1 500 000 Geological Maps and Brochures of the Qinghai-Tibet Plateau and Adjacent Areas. Geological Publishing House, Beijing (in Chinese). [20] Payne, J. L., 2004. Large Perturbations of the Carbon Cycle during Recovery from the End-Permian Extinction. Science, 305(5683):506-509. https://doi.org/10.1126/science.1097023 [21] Roghi, G., Gianolla, P., Minarelli, L., et al., 2010. Palynological Correlation of Carnian Humid Pulses throughout Western Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 290(1-4):89-106. https://doi.org/10.1016/j.palaeo.2009.11.006 [22] Schneebeli-Hermann, E., Hochuli, P. A., Bucher, H., et al., 2012. Palynology of the Lower Triassic Succession of Tulong, South Tibet:Evidence for Early Recovery of Gymnosperms. Palaeogeography, Palaeoclimatology, Palaeoecology, 339-341:12-24. https://doi.org/10.1016/j.palaeo.2012.04.010 [23] Shen, S. Z., Cao, C. Q., Henderson, C. M., et al., 2006. End-Permian Mass Extinction Pattern in the Northern Peri-Gondwanan Region. Palaeoworld, 15(1):3-30. https://doi.org/10.1016/j.palwor.2006.03.005 [24] Shi, Z.Q., Ou, L.H., Luo, F.Z., et al., 2009. Black Shale Event during the Late Triassic Carnian Age:Implications from Sedimentary and Palaeontological Records in Longmen Mountains Region. Journal of Palaeogeography, 11(4):375-383 (in Chinese with English abstract). [25] Shi, Z.Q., Qian, L.J., Xiong, Z.J., et al., 2010a. Carnian Crisis Occurring in SW China and Its Ideational Origin. Bulletin of Mineralogy, Petrology and Geochemistry, 29(3):227-232 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201003002 [26] Shi, Z.Q., Qian, L.J., Zeng, D.Y., et al., 2010b. Geological Records of Late Triassic Carnian Carbonate Productivity Crisis in Eastern Tethys Region (SW China). Geological Review, 56(3):321-328 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201003003 [27] Simms, M. J., Ruffell, A. H., 1989. Synchroneity of Climatic Change and Extinctions in the Late Triassic. Geology, 17(3):265-268. https://doi.org/10.1130/0091-7613(1989)0170265:soccae > 2.3.co; 2 doi: 10.1130/0091-7613(1989)0170265:soccae>2.3.co;2 [28] Song, H. Y., Tong, J. N., Algeo, T. J., et al., 2013. Large Vertical δ13C Gradients in Early Triassic Seas of the South China Craton:Implications for Oceanographic Changes Related to Siberian Traps Volcanism. Global and Planetary Change, 105:7-20. https://doi.org/10.1016/j.gloplacha.2012.10.023 [29] Song, H.Y., Tong, J.N., Du, Y., et al., 2018. Large Perturbed Marine Carbon-Nitrogen-Sulfur Isotopes during Early Triassic. Earth Science, 43(11):3922-3931 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201811010 [30] Sun, Y.D., Joachimski, M. M., Wignall, P. B., et al., 2012. Lethally Hot Temperatures during the Early Triassic Greenhouse. Science, 338(6105):366-370. https://doi.org/10.1126/science.1224126 [31] Sun, Y. D., Wignall, P. B., Joachimski, M. M., et al., 2016. Climate Warming, Euxinia and Carbon Isotope Perturbations during the Carnian (Triassic) Crisis in South China. Earth and Planetary Science Letters, 444:88-100. https://doi.org/10.1016/j.epsl.2016.03.037 [32] Tian, C. R., 1982. Triassic Condonts in the Tulong Section from Nyalam County, Xizang (Tibet), China. Anthology of the Qinghai-Tibet Plateau, 153-165 (in Chinese). http://www.researchgate.net/publication/285467488_Triassic_conodonts_in_the_Tulong_section_from_Nyalam_County_Xizang_Tibet_China [33] Tong, J. N., Chu, D. L., Liang, L., et al., 2019. Triassic Integrative Stratigraphy and Timescale of China. Scientia Sinica Terrae, 49(1):194-226 (in Chinese). doi: 10.1360/N072018-00012 [34] Tong, J.N., Huang, Y.F., Liang, L., 2014. Early Triassic Biological-Environmental-Chronological Stratigraphy. Earth Science Frontiers, 21(2):144-156 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201402012 [35] Tong, J. N., Zakharov, Y. D., 2004. Lower Triassic Ammonoid Zonation in Chaohu, Anhui Province, China. Albertiana, 31:65-69. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6f77ec3b57a32880da859465ffe90cf0 [36] Tong, J. N., Zakharov, Y. D., Orchard, M. J., et al., 2003. A Candidate of the Induan-Olenekian Boundary Stratotype in the Tethyan Region. Science China Earth Sciences, 46(11):1182-1200. https://doi.org/10.1360/03yd0295 [37] Tong, J. N., Zuo, J. X., 2007. Early Triassic Carbon Isotope Excursions from South China:Proxies for Devastation and Restoration of Marine Ecosystems Following the End-Permian Mass Extinction. Geological Journal, 42(3-4):371-389. https://doi.org/10.1002/gj.1084 [38] Trotter, J., Williams, I. S., Nicora, A., et al., 2015. Long-Term Cycles of Triassic Climate Change:A New δ18O Record from Conodont Apatite. Earth and Planetary Science Letters, 415:165-174. https://doi.org/10.1016/j.epsl.2015.01.038 [39] Wang, W., Shen, S. Z., Zhu, Z. L., 1997. Carbon Isotope Characteristics and Its Significance of the Permian-Triassic Boundary Profile of the Selong, Tibet, China. Chinese Science Bulletin, 42(4):406-408 (in Chinese). doi: 10.1360/csb1997-42-4-406 [40] Wang, Y.Y., Zhang, B., Shi, Z.Q., et al., 2012. Oxygen and Carbon Isotopic Records of the Late Triassic Carnian Pluvial Event Deposits in Northwestern Sichuan Province. Journal of Palaeogeography, 14(3):375-382 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb201203011 [41] Wang, Z.H., Wang, Y.G, 1995. Permian-Lower Triassic Conodonts from Selong Xishan of Nyalam, S.Tibet, China. Acta Micropalaeontologica Sinica, 12(4):333-348 (in Chinese with English abstract). http://europepmc.org/abstract/cba/283338 [42] Xu, J.L., Chu, D.R., Xia, J., et al., 2017. Discussions on the Relationship between the Middle-Late Triassic Sedimentary Evolution and the Early Indosinian Jinzi Movement along the Yangtze River Area in Anhui. Sedimentary Geology and Tethyan Geology, 37(3):1-12 (in Chinese with English abstract). [43] Yan, C. B., Jiang, H. S., Lai, X. L., et al., 2015. The Relationship between the "Green-Bean Rock" Layers and Conodont Chiosella Timorensis and Implications on Defining the Early-Middle Triassic Boundary in the Nanpanjiang Basin, South China. Journal of Earth Science, 26(2):236-245. https://doi.org/10.1007/s12583-015-0535-x [44] Zhang, J.D., Fan, Y.G., Sun, X., et al., 2016. Middle-Late Triassic Radiolarian Fossils from the Zhongba Region, Xizang and Their Geological Implications. Sedimentary Geology and Tethyan Geology, 36(4):1-6 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxgdl201604001 [45] Zhang, L., Orchard, M. J., Brayard, A., et al., 2019. The Smithian/Spathian Boundary (Late Early Triassic):A Review of Ammonoid, Conodont, and Carbon-Isotopic Criteria. Earth-Science Reviews, 195:7-36. https://doi.org/10.1016/j.earscirev.2019.02.014 [46] Zhang, L., Zhao, L.S., Chen, Z. Q., et al., 2015. Amelioration of Marine Environments at the Smithian-Spathian Boundary, Early Triassic. Biogeosciences, 12(5):1597-1613. https://doi.org/10.5194/bg-12-1597-2015 [47] Zhao, L. S., Orchard, M. J., Tong, J. N., 2004. Lower Triassic Conodont Biostratigraphy and Speciation of Neospathodus waageni around the Induan-Olenekian Boundary of Chaohu, Anhui Province, China. Albertiana, 29:41-43. http://www.researchgate.net/publication/267726629_Albertiana_29_Lower_Triassic_conodont_biostratigraphy_and_speciation_of_Neospathodus_waageni_around_the_Induan-Olenekian_boundary_of_Chaohu_Anhui_Province_China [48] Zhao, L. S., Tong, J. N., Sun, Z. M., et al., 2008. A Detailed Lower Triassic Conodont Biostratigraphy and Its Implications for the GSSP Candidate of the Induan-Olenekian Boundary in Chaohu, Anhui Province. Progress in Natural Science, 18(1):79-90. https://doi.org/10.1016/j.pnsc.2007.07.001 [49] Zhu, T. X., Zhou, M. K., Feng, X. T., et al., 2005. Phanerozoic Multiple Strata and Basin Evolution on the Northern Slope of Himalaya, Tibet. Geological Publishing House, Beijing (in Chinese). [50] Zou, G.F., Mao, Q., Chen, Y.M., et al., 2006. A Research into Triassic Biostratigraphy of the Qomolongma Area in Southern Xizang (Tibet). Geological Review, 52(3):386-395 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp200603021 [51] Zuo, J.X., Tong, J.N., Qiu, H.O., et al., 2004. Carbon and Oxygen Isotope Stratigraphy of the Lower Triassic at Northern Pingdingshan Section of Chaohu, Anhui Province, China. Journal of Stratigraphy, 28(1):35-40 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcxzz200401004 [52] 安显银, 张予杰, 朱同兴, 等, 2018.西藏色龙西山二叠系-三叠系界线剖面稳定碳同位素特征.地球科学, 43(8):2848-2857. doi: 10.3799/dqkx.2018.103 [53] 程国繁, 何英, 周金伟, 等, 2017.贵州册亨达秧中三叠统浊积岩中大型滑移变形层理的发现及其意义.沉积与特提斯地质, 37(3):42-49. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxgdl201703005 [54] 胡修棉, 王成善, 李祥辉, 2001.大洋缺氧事件的碳稳定同位素响应.成都理工学院学报, 28(1):1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb200101001 [55] 黄可可, 黄思静, 胡作维, 等, 2016.四川盆地宣汉渡口和重庆北碚下三叠统海相碳酸盐碳同位素组成与演化.古地理学报, 18(1):101-114. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb201601008 [56] 黄思静, 黄可可, 钟怡江, 等, 2017.四川广安龙门峡南剖面下三叠统海相碳酸盐岩的碳同位素组成与对比.中国科学:地球科学, 47(1):57-71. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201701004 [57] 金鑫, 时志强, 王艳艳, 等, 2015.晚三叠世中卡尼期极端气候事件:研究进展及存在问题.沉积学报, 33(1):105-115. [58] 梁丹, 童金南, 赵来时, 2011.安徽巢湖平顶山西坡剖面早三叠世Smithian-Spathian界线地层研究.中国科学:地球科学, 41(2):149-157. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201102002 [59] 潘桂棠, 王立全, 丁俊, 等, 2013.青藏高原及邻区1:150万地质图及说明书.北京:地质出版社. [60] 时志强, 欧莉华, 罗凤姿, 等, 2009.晚三叠世卡尼期黑色页岩事件在龙门山地区的沉积学和古生物学响应.古地理学报, 11(4):375-383. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb200904002 [61] 时志强, 钱利军, 熊兆军, 等, 2010a.中国西南部地区卡尼期危机及其成因探讨.矿物岩石地球化学通报, 29(3):227-232. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201003002 [62] 时志强, 钱利军, 曾德勇, 等, 2010b.晚三叠世卡尼期碳酸盐生产危机在东特提斯地区的地质记录.地质论评, 56(3):321-328. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201003003 [63] 宋虎跃, 童金南, 杜勇, 等, 2018.早三叠世海洋异常的碳-氮-硫同位素记录.地球科学, 43(11):3922-3931. doi: 10.3799/dqkx.2018.334 [64] 田传荣, 1982.西藏聂拉木县土隆村三叠纪牙形石.青藏高原地质文集, 153-165. [65] 童金南, 楚道亮, 梁蕾, 等, 2019.中国三叠纪综合地层和时间框架.中国科学:地球科学, 49(1):194-226. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201901010 [66] 童金南, 黄云飞, 梁蕾, 2014.早三叠世生物-环境-年代地层研究.地学前缘, 21(2):144-156. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8237661 [67] 王伟, 沈树忠, 朱自力, 1997.中国西藏色龙二叠系-三叠系界线剖面的碳同位素特征及其意义.科学通报, 42(4):406-408. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb199704022 [68] 王艳艳, 张彪, 时志强, 等, 2012.川西北地区晚三叠世卡尼期洪水事件沉积的碳、氧同位素记录.古地理学报, 14(3):375-382. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb201203011 [69] 王志浩, 王义刚, 1995.中国西藏聂拉木色龙西山二叠系-下三叠统牙形刺.微体古生物学报, 12(4):333-348. [70] 徐锦龙, 储东如, 夏军, 等, 2017.安徽沿江地区中晚三叠世沉积演化及其与印支早期金子运动关系的探讨.沉积与特提斯地质, 37(3):1-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxgdl201703001 [71] 张计东, 范永贵, 孙肖, 等, 2016.西藏仲巴中-晚三叠世放射虫化石特征及其地质意义.沉积与特提斯地质, 36(4):1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxgdl201604001 [72] 朱同兴, 周铭魁, 冯心涛, 等, 2005.西藏喜马拉雅北坡显生宙多重地层与盆地演化.北京:地质出版社. [73] 邹光富, 毛琼, 陈永明, 等, 2006.西藏南部珠穆朗玛峰地区三叠纪生物地层研究.地质论评, 52(3):386-395. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp200603021 [74] 左景勋, 童金南, 邱海鸥, 等, 2004.巢湖平顶山北坡剖面早三叠世碳、氧同位素地层学研究.地层学杂志, 28(1):35-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcxzz200401004