• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    桂东北茅安塘伟晶岩中石榴子石的特征及对岩浆演化的指示意义

    陈欢 冯梦 康志强 付伟 冯佐海

    陈欢, 冯梦, 康志强, 付伟, 冯佐海, 2020. 桂东北茅安塘伟晶岩中石榴子石的特征及对岩浆演化的指示意义. 地球科学, 45(6): 2059-2076. doi: 10.3799/dqkx.2020.084
    引用本文: 陈欢, 冯梦, 康志强, 付伟, 冯佐海, 2020. 桂东北茅安塘伟晶岩中石榴子石的特征及对岩浆演化的指示意义. 地球科学, 45(6): 2059-2076. doi: 10.3799/dqkx.2020.084
    Chen Huan, Feng Meng, Kang Zhiqiang, Fu Wei, Feng Zuohai, 2020. Characteristics of Garnets in Pegmatites of Mao'antang, Northeast Guangxi, and Their Implications for Magmatic Evolution. Earth Science, 45(6): 2059-2076. doi: 10.3799/dqkx.2020.084
    Citation: Chen Huan, Feng Meng, Kang Zhiqiang, Fu Wei, Feng Zuohai, 2020. Characteristics of Garnets in Pegmatites of Mao'antang, Northeast Guangxi, and Their Implications for Magmatic Evolution. Earth Science, 45(6): 2059-2076. doi: 10.3799/dqkx.2020.084

    桂东北茅安塘伟晶岩中石榴子石的特征及对岩浆演化的指示意义

    doi: 10.3799/dqkx.2020.084
    基金项目: 

    国家自然科学基金项目 41802104

    国家自然科学基金项目 41572191

    广西地质矿产勘查开发局部门预算前期工作经费项目 桂地矿综研[2018]20号

    广西科技基地和人才专项 桂科AD19110049

    广西自然科学基金重点项目 桂科2019GXNSFDA245009

    详细信息
      作者简介:

      陈欢(1994-), 男, 硕士研究生, 矿物学、岩石学、矿床学专业.ORCID:0000-0002-1049-0758.E-mail:1346926354@qq.com

      通讯作者:

      冯梦, E-mail:1401110535@pku.edu.cn

    • 中图分类号: P571;P588.13+1;P578.94+7

    Characteristics of Garnets in Pegmatites of Mao'antang, Northeast Guangxi, and Their Implications for Magmatic Evolution

    • 摘要: 为了解桂东北伟晶岩岩浆的形成环境及演化过程,对桂东北茅安塘Nb-Ta-Be-Rb稀有金属矿床周围伟晶岩中的石榴子石进行了镜下观察、电子探针(EPMA)和LA-ICP-MS原位微区主微量元素研究,探讨石榴子石的成因及其对成岩及成矿作用的指示.结果表明,桂东北茅安塘地区伟晶岩中的石榴子石为岩浆成因石榴子石,属于铁铝榴石-锰铝榴石(平均Alm49.28-Sps47.09)固溶体系列,可分为早期形成的Ⅰ型石榴子石(GrtⅠ)和晚期形成的Ⅱ型子石(GrtⅡ).两期石榴子石均以富集重稀土(HREE)、高场强元素(HFSE),亏损轻稀土(LREE)和缺乏大离子亲石元素(LILE)为特征,∑REE配分模式呈明显左倾趋势,显著的Eu负异常.石榴子石生长过程中的界面反应速率小于物质迁移速率,水岩作用较弱,∑REE主要以表面吸附或吸收的形式进入石榴子石中,是导致其重稀土(HREE)元素富集,轻稀土元素亏损的主要原因.随着岩浆分异演化程度的不断提高,∑REE逐渐进入并赋存于石榴子石中,促进岩浆从早期的低分馏(未分馏)的岩浆熔体逐渐向晚期的高分馏的岩浆熔体演化.石榴子石中HREE含量随岩浆演化程度逐渐增加表明,晚期分异演化的岩浆-热液中逐渐富集稀土及稀有金属元素.这些晚期富含成矿元素的热液流体交代原生矿物,导致外侧带及核部花岗伟晶岩中发育大量交代成因的稀土和稀有金属矿物.

       

    • 图  1  桂北苗儿山-越城岭地区地质简图

      1.白垩系砂砾岩;2.新元古界;3.震旦系砂岩、页岩;4.印支期花岗岩;5.加里东期花岗岩;6.断层;7.(花岗)伟晶岩脉;8.省界;9.采样点;据陈文迪等(2016)修改

      Fig.  1.  Simplified geological map of the Miaoershan-Yuechengling batholiths

      图  2  桂东北茅安塘地区伟晶岩的野外及手标本照片

      a, b.电气石-石榴子石伟晶岩中粒状的Ⅰ型石榴子石(GrtⅠ)(18YCL-10);c, d.粗粒白云母-电气石伟晶岩中细粒状的Ⅰ型石榴子石(GrtⅠ)(18YCL-02);e, f.铁锂云母-电气石伟晶岩中细粒状的Ⅱ型子石(GrtⅡ)(MAT-01);Fsp.长石;Grt.石榴子石;Q.石英;Ms.白云母;Tur.电气石;Zwd.铁锂云母

      Fig.  2.  Field and hand specimen photos of pegmatite in Mao'antang area from Northeast Guangxi

      图  3  桂东北茅安塘地区石榴子石手标本和显微照片

      a.18YCL-02样品中细粒状的Ⅰ型石榴子石(GrtⅠ) (EPMA图);b.细粒状的Ⅰ型石榴子石(GrtⅠ)(单偏光);c.18YCL-10样品中粒状的Ⅰ型石榴子石(GrtⅠ)(EPMA图);d.粒状的Ⅰ型石榴子石(GrtⅠ)(单偏光);e.MAT-01样品中细粒状的Ⅱ型子石(GrtⅡ)(EPMA图);f.细粒状的Ⅱ型子石(GrtⅡ)(正偏光);Ab.钠长石;Bt.黑云母;Grt.石榴子石;Kfs.钾长石;Q.石英;Tur.电气石;Y-rich.稀土矿化;Zwd.铁锂云母

      Fig.  3.  Hand specimen and Micrographs of garnet in Mao'antang area from Northeast Guangxi

      图  4  石榴子石三角分类图解

      底图据Lovering and White(1969);Alm.铁铝榴石;Sps.锰铝榴石;Grs.钙铝榴石;Prp.镁铝榴石

      Fig.  4.  Triangle classification diagram of garnet

      图  5  石榴子石原始地幔标准化微量元素蛛网图解和稀土元素球粒陨石标准化图解

      a、b.18YCL-10样品中Ⅰ型石榴子石(GrtⅠ);c、d.18YCL-02样品中的Ⅰ型石榴子石(GrtⅠ);e、f.MAT-01样品中的Ⅱ型子石(GrtⅡ);标准化值据Sun and McDonough(1989)

      Fig.  5.  Primitive-mantle-normalized trace element patterns and chondrite-normalized REE

      图  6  石榴子石CaO-MnO成分图解

      数据引用自Leake(1967)Whitworth(1992)Muller et al.(2012)Samadi(2014)王冉等(2015)

      Fig.  6.  CaO-MnO composition diagram of garnet

      图  7  石榴子石Alm-Sps图解(a)和Mg-Mn/(Mn+Fe)演化图解(b)

      底图据李乐广等(2019)

      Fig.  7.  Alm-Sps diagram (a) and Mg-Mn/(Mn+Fe) evolutionary diagram (b) of garnet

      图  8  石榴子石MgO-CaO成分图解(a)和Y2O3-MnO/(MnO+FeO)图解(b)

      Fig.  8.  MgO-CaO composition diagram (a) and Y2O3-MnO/(MnO+FeO) diagram (b) of garnet

      图  9  石榴子石颗粒(rim-core-rim)横截面中的微量元素浓度

      a、b.MAT-01样品中的Ⅱ型子石(GrtⅡ);c、d.18YCL-02样品中的Ⅰ型石榴子石(GrtⅠ);e、f.18YCL-10样品中Ⅰ型石榴子石(GrtⅠ)

      Fig.  9.  Element concentration in the cross section of garnet particles (rim-core-rim)

      图  10  HREE-Sc图解

      Fig.  10.  HREE-Sc diagram of garnets

      图  11  REE-Y图解(a)和(Gd/Yb)N-Y/Yb图解(b)

      Fig.  11.  REE-Y diagram (a) and (Gd/Yb)N-Y/Yb diagram (b) of garnets

      表  1  桂东北茅安塘地区石榴子石LA-ICP-MS原位微区分析微量元素成分(×10-6)

      Table  1.   Trace element compositions of garnets by LA-ICP-MS in situ analyses in Maoantang area from the north-eastern Guangxi

      样品 MAT-01(GrtⅡ) 18YCL-02(GrtⅠ) 18YCL-10(GrtⅠ)
      1-Rim 2-Mid 3-Core 4-Mid 5-Rim 1-Rim 2-Mid 3-Core 4-Mid 5-Rim 1-Rim 2-Mid 3-Core 4-Mid 5-Rim
      Li 142.41 121.48 139.72 122.32 152.61 80.92 157.44 157.53 141.80 127.70 45.76 61.70 70.15 67.74 42.61
      Be 0.03 0.14 0.87 0.41 0.06 0.23 0.20 0.00 0.43 0.57 0.00 0.00 0.00 0.00 0.16
      Sc 120.78 164.91 161.84 158.59 143.51 26.56 46.47 59.28 43.32 26.62 32.13 36.84 47.35 40.98 25.50
      V 0.00 0.00 0.00 0.00 0.00 1.25 1.78 2.09 1.50 2.82 0.73 0.07 0.51 0.27 0.53
      Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.00 6.23 3.05 0.00 1.12 2.25 1.98 0.00
      Co 0.00 0.06 0.00 0.31 0.04 2.78 2.69 2.62 2.82 2.90 3.72 3.59 1.71 4.21 3.32
      Ni 0.15 0.35 0.17 0.00 0.16 0.00 0.20 0.18 0.00 0.38 0.54 0.16 0.29 0.00 0.28
      Ga 35.62 39.46 39.97 38.41 38.26 21.31 28.08 28.05 26.67 24.95 14.37 16.55 18.89 15.04 12.37
      Rb 0.00 0.00 0.00 0.26 0.00 0.00 0.78 0.38 0.46 0.00 0.61 0.04 0.00 0.28 0.18
      Sr 0.08 0.05 0.18 0.11 0.02 0.04 0.51 0.55 0.30 0.22 0.05 0.28 0.04 0.27 0.00
      Y 570.49 889.41 1217.62 943.52 550.07 603.65 1 587.32 1 594.62 1 497.63 1 423.78 510.00 802.41 128.93 803.50 526.54
      Zr 16.38 26.71 29.69 28.59 20.16 8.38 17.49 18.51 13.56 10.29 6.25 4.14 11.98 4.18 3.12
      Nb 29.04 66.16 93.70 75.64 37.47 0.30 2.04 1.20 0.82 0.46 0.07 0.03 1.01 0.03 0.02
      Mo 1.65 1.62 2.03 1.94 1.71 1.16 1.05 1.15 1.33 1.03 0.85 0.55 0.93 0.62 0.94
      Sn 185.81 213.16 217.88 217.50 205.64 34.71 87.98 85.83 65.96 45.51 3.40 3.08 14.23 3.95 2.51
      Sb 0.04 0.08 0.00 0.15 0.00 0.00 0.15 0.01 0.13 0.00 0.12 0.00 0.06 0.00 0.07
      Cs 0.11 0.00 0.00 0.00 0.01 0.05 0.00 0.00 0.10 0.00 0.02 0.00 0.02 0.00 0.00
      Ba 0.00 0.00 0.00 0.15 0.04 0.21 0.00 0.21 0.09 0.00 0.33 0.00 0.04 0.00 0.00
      La 0.00 0.03 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.01
      Ce 0.02 0.05 0.08 0.04 0.02 0.01 0.03 0.03 0.00 0.01 0.01 0.00 bdl 0.00 0.02
      Pr 0.00 0.03 0.02 0.04 0.04 0.01 0.02 0.00 0.00 0.01 0.00 0.01 bdl 0.00 bdl
      Nd 0.18 0.48 0.66 0.63 0.52 0.32 0.54 0.30 0.00 0.21 0.04 0.11 0.01 0.11 0.08
      Sm 2.79 5.17 6.16 5.56 4.43 2.57 3.79 3.32 3.04 3.32 0.51 0.51 2.27 0.41 0.70
      Eu 0.00 0.00 0.00 0.02 0.03 0.05 0.08 0.11 0.06 0.12 0.07 0.01 0.06 0.01 0.05
      Gd 15.26 23.27 25.53 23.93 14.48 15.91 19.22 19.03 18.54 17.88 5.02 5.22 10.00 5.13 7.43
      Tb 9.97 14.71 16.49 15.56 9.43 9.47 13.76 13.28 12.95 13.52 4.16 4.51 3.65 4.73 5.16
      Dy 80.25 120.25 151.11 123.15 74.12 86.96 171.20 168.60 159.12 162.49 53.63 75.55 19.91 81.71 58.19
      Ho 10.80 18.36 26.79 18.83 10.29 14.27 46.86 47.57 42.49 40.28 13.94 33.96 2.27 34.03 12.86
      Er 27.75 49.30 89.61 55.17 26.85 40.49 237.18 244.62 205.89 162.33 55.06 194.77 4.38 190.89 39.26
      Tm 5.46 10.19 21.23 10.97 5.25 6.56 66.43 69.98 52.38 36.86 10.90 46.10 0.53 47.36 6.14
      Yb 42.69 85.64 202.57 98.38 44.02 46.34 721.00 775.79 546.23 335.71 79.72 427.03 2.99 436.40 39.27
      Lu 5.28 10.45 28.67 12.42 5.52 4.82 125.57 140.36 89.69 52.67 11.20 84.67 0.20 88.54 3.61
      Hf 1.21 2.09 2.41 1.89 1.39 0.39 0.68 1.01 0.86 0.38 0.90 0.14 0.12 0.00 0.08
      Ta 16.20 32.92 43.57 37.34 18.45 0.34 2.13 1.95 1.07 0.46 1.46 0.00 1.71 0.00 0.11
      Pb 0.00 0.00 0.02 0.07 0.07 0.02 0.01 0.00 0.00 0.00 0.07 0.00 0.01 0.05 0.06
      Th 0.01 0.03 0.05 0.03 bdl 0.00 0.01 0.01 0.01 0.00 bdl 0.01 bdl 0.01 0.01
      U 0.58 1.96 3.35 2.45 0.81 0.09 0.31 0.29 0.19 0.10 0.02 0.02 0.17 0.01 0.01
      ∑LREE 2.99 5.75 6.92 6.28 5.04 2.97 4.46 3.76 3.12 3.67 0.64 0.64 2.35 0.54 0.86
      ∑HREE 888.74 1 386.49 1 941.46 1 460.51 883.54 855.04 3 035.01 3 133.14 2 668.23 2 272.13 775.76 1 711.07 220.21 1 733.27 723.96
      ∑REE 891.73 1 392.24 1 948.39 1 466.79 888.57 858.01 3 039.46 3 136.90 2 671.36 2 275.80 776.40 1 711.71 222.56 1 733.81 724.82
      Eu* 0.00 0.00 0.00 bdl bdl 0.01 0.01 0.01 0.01 0.02 0.05 0.01 0.01 0.01 0.02
      (Gd/Yb)N 0.36 0.27 0.13 0.24 0.33 0.34 0.03 0.02 0.03 0.05 0.06 0.01 3.34 0.01 0.19
      Y/Yb 13.36 10.39 6.01 9.59 12.50 13.03 2.20 2.06 2.74 4.24 6.40 1.88 43.05 1.84 13.41
      注:bdl.低于检测限,标准化值据Sun and McDonough(1989).
      下载: 导出CSV
    • [1] Abbott, R.N., 1981.The Role of Manganese in the Paragenesis of Magmatic Garnet:An Example from the Old Woman-Piute Range.California:A Discussion.The Journal of Geology, 89(6):767-769. http://cn.bing.com/academic/profile?id=404252be22170677a381e0566616cb5a&encoded=0&v=paper_preview&mkt=zh-cn
      [2] Allan, B.D., Clarke, D.B., 1981.Occurrence and Origin of Garnets in the South Mountain Batholith, Nova Scotia.The Canadian Mineralogist, 19(1):19-24. http://cn.bing.com/academic/profile?id=d7a90c21108e5955bc37ef4b1faed682&encoded=0&v=paper_preview&mkt=zh-cn
      [3] Allen, D.E., Seyfried, W.E., 2005.REE Controls in Ultramafic Hosted MOR Hydrothermal Systems:An Experimental Study at Elevated Temperature and Pressure.Geochimica et Cosmochimica Acta, 69(3):675-683. https://doi.org/10.1016/j.gca.2004.07.016
      [4] Bai, D.Y., Zhong, X., Jia, P.Y., et al., 2014.Zircon SHRIMP U-Pb Dating and Geochemistry of Caledonian Miao'ershan Pluton in the Western Part of the Nanling Mountains and Their Tectonic Significance.Acta Petrologica et Mineralogica, 33(3):407-423(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201403001
      [5] Bai, D.Y., Zhong, X., Jia, P.Y., et al., 2015a.The Zircon SHRIMP U-Pb Dating, Geochemical Characteristics and Tectonic Setting of Caledonian Yuechengling Pluton in the Western Segment of the Nanling Mountains.Geochimica, 44(1):27-42(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx201501003
      [6] Bai, D.Y., Zhong, X., Jia, P.Y., et al., 2015b.Geochemistry and Tectonic Setting of the Early Yanshanian Granites in the Miao'ershan Area, Southwest Hunan Province.Resources Survey and Environment, 36(4):235-243(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-HSDZ201504002.htm
      [7] Cerný, P., Meintzer, R.E., Anderson, A.J., 1985.Extreme Fractionation in Rare-Element Granitic Pegmatites:Selected Examples of Data and Mechanisms.The Canadian Mineralogist, 23(3):381-421. http://cn.bing.com/academic/profile?id=deef607f982f584ecd9aaaa4cd975a5a&encoded=0&v=paper_preview&mkt=zh-cn
      [8] Chen, W.D., Zhang, W.L., Wang, R.C., et al., 2016.A Study on the Dushiling Tungsten-Copper Deposit in the Miao'ershan-Yuechengling Area, Northern Guangxi, China:Implications for Variations in the Mineralization of Multi-aged Composite Granite Plutons.Science:Earth Sciences, 46(12):1602-1625(in Chinese). http://cn.bing.com/academic/profile?id=a596574c294d438f0e4e5a041e70b04b&encoded=0&v=paper_preview&mkt=zh-cn
      [9] Chen, Y.C., Pei, R.F., Zhang, H.L., et al., 1990.The Geology of Nonferrous and Rary Metal Deposits Related to Mesozoic Granitoids in the Nanling Gegion, China.Bulletin of the Chinese Academy of Geological Sciences, 11(1):79-85(in Chinese with English abstract).
      [10] Cheng, S.B., Fu, J.M., Cui, S., et al., 2018.Zircon U-Pb Chronology, Geochemistry of the Indonesian Granitic Rocks from Northern Yuechengling Batholith in Guangxi-Hunan Junction.Earth Science, 43(7):2330-2349(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201807010
      [11] Cheng, S.B., Fu, J.M., Ma, L.Y., et al., 2013.Indosinian Metallogentic Activity in Yuechengling-Miaoershan Area, Northeastern Guangxi:Implications from Zircon U-Pb Ages and Hf Isotopic Constraint on Ore-forming Granites in Youmaling and Jiepai Deposits.Geology in China, 40(4):1189-1201(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=2c073693ae47935831df78a28881719a&encoded=0&v=paper_preview&mkt=zh-cn
      [12] Cheng, S.B., Fu, J.M., Ma, L.Y., et al., 2016.Origin of the Yuechengling Caledonian Granitic Batholith, Northeastern Guangxi:Constraint from Zircon U-Pb Geochronology, Geochemistry and Nd-Hf Isotopes.Geotectonica et Metallogenia, 40(4):853-872(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=5933bed5289a07b9618a26107dae1218&encoded=0&v=paper_preview&mkt=zh-cn
      [13] du Bray, E.A., 1988.Garnet Compositions and Their Use as Indicators of Peraluminous Granitoid Petrogenesis:Southeastern Arabian Shield.Contributions to Mineralogy and Petrology, 100 (2):205-212.https://doi.org/10.1007/bf00373586 doi: 10.1007/BF00373586
      [14] Du, Y., Luo, X.Y., Huang, G.F., 2017.Petrological, Geochemical Characteristics and Formation Tectonic Setting of Neoproterozoic Jinning Granite in the Northern Section of Miaoershan Pluton in Southwestern Hunan.Geological Science and Technology Information, 36(6):136-147(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201706014
      [15] Fang, R.H., 2014.Emplacement Mechanism of Yuechengling Granite in Northeast Guangxi (Dissertation).Guilin University of Technology, Guilin(in Chinese with English abstract).
      [16] Gao, L.E., Zeng, L.S., Shi, W.G., et al., 2012.Two Types of Garnets in the Cenozoic Granites from the Himayalan Orogenic Belt:Geochemical Characteristics and Implications for Crustal Anatexis.Acta Petrologica Sinica, 28(9):2963-2980(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=df81927629a3f33487f42b9524aa5633&encoded=0&v=paper_preview&mkt=zh-cn
      [17] Gao, L.E., Zeng, L.S., Zhao, L.H., et al., 2017.Multiphase growth of garnet in gneisses from the Himalayan orogenic belt.Acta Petrologica Sinica, 33(12):3729-3740(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201712003
      [18] Gaspar, M., Knaack, C., Meinert, L.D., et al., 2008.REE in Skarn Systems:A LA-ICP-MS Study of Garnets from the Crown Jewel Gold Deposit.Geochimica et Cosmochimica Acta, 72(1):185-205. https://doi.org/10.1016/j.gca.2007.09.033
      [19] Guangxi Nonferrous Geological Prospecting Bureau Team No.271., 1991.Geological Report of General Prospecting Ore Deposits in Maoantang Granitic Pegmatite Tantalum, Niobium and Beryllium Mining Area, Meixi Township, Resources County, Guangxi(in Chinese).
      [20] Guo, C.L., Zeng, L.S., Gao, L.E., et al., 2017.Highly Fractionated Grantitic Minerals and Whole-rock Geochemistry Prospecting Markers in Hetian, Fujian Province.Acta Geologica Sinica, 91(8):1796-1817(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201708010
      [21] Guo, L., Su, J.H., Li, L., et al., 2018.To Explore the Relationship between the Yuechengling Rock Characteristics of the Ductile Shear Zone and the Western Belt and Rare Metal Mineralization.World Nonferrous Metals, (2):123-124(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjysjs201802068
      [22] Hu, H., Wang, R.C., Chen, W.F., et al., 2012.Study on Uranium Resource Minerals of Douzhashan Uranium-Bearing Granite, Northeastern Guangxi.Geological Review, 58(6):1056-1068(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201206006
      [23] Hu, Z., Liu, Y., Gao, S., et al., 2012.A"Wire"Signal Smoothing Device for Laser Ablation Inductively Coupled Plasma Mass Spectrometry Analysis.Spectrochimica Acta Part B:Atomic Spectroscopy, 78:50-57. https://doi.org/10.1016/j.sab.2012.09.007
      [24] Hu, Z.C., Gao, S., Liu, Y.S., et al., 2008.Signal Enhancement in Laser Ablation ICP-MS by Addition of Nitrogen in the Central Channel Gas.Journal of Analytical Atomic Spectrometry, 23(8):1093-1101. https://doi.org/10.1039/b804760j
      [25] Hua, R.M., Chen, P.R., Zhang, W.L., et al., 2005.Three Major Metallogenic Events in Mesozoic in South China.Mineral Deposits, 24(2):99-107(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200502002
      [26] Hua, R.M., Li, G.L., Zhang, W.L., et al., 2010.A Tentative Discussion on Differences between Large-Scale Tungsten and Tin Mineralizations in South China.Mineral Deposits, 29(1):9-23(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201001003
      [27] Hua, R.M., Zhang, W.L., Chen, P.R., et al., 2013.Relationship between Caledonian Granitoids and Large-Scale Mineralization in South China.Geological Journal of China Universities, 19(1):1-11(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb201301003
      [28] Ji, M., Zhao, X.F., Zeng, L.P., et al., 2018.Microtexture and Geochemistry of Garnets from Tonglushan Skarn Cu-Fe Deposit in the Southeastern Hubei Metallogenic Province:Implications for Ore-forming Process.Acta Petrologica Sinica, 34(9):2716-2732(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201809014.htm
      [29] Leake, B.E., 1967.Zoned Garnets from the Galway Granite and Its Aplites.Earth and Planetary Science Letters, 3:311-316.https://doi.org/10.1016/0012-821x(67)90052-0 doi: 10.1016/0012-821X(67)90052-0
      [30] Li, L.G., Wang, L.X., Tian, Y., et al., 2019.Mineral Chemistry and Indication Significance of the Mufushan Granitic Pegmatite, South China.Earth Science, 4(7):2532-2560(in Chinese with English abstract).
      [31] Li, X.F., Feng, Z.H., Xiao, R., et al., 2012.Spatial and Temporal Distributions and the Geological Setting of the W-Sn-Mo-Nb-Ta Deposits at the Northeast Guangxi, Southe China.Acta Geologica Sinica, 86(11):1713-1725(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201211001
      [32] Li, X.H., Li, W.X., Li, Z.X., et al., 2007.The Genetic Type and Tectonic Significance of Early Yanshan Granites in Nanling are Discussed.Chinese Science Bulletin, 52(9):981-991(in Chinese). doi: 10.1360/csb2007-52-9-981
      [33] Lin, S.P., Wu, J., Huang, W.T., et al., 2017.Zircon U-Pb Ages of Ore-Bearing Intrusions in Jiepai W-Cu Deposit Northeastern Guangxi and Implication on Caledonian Mineralization in South China.Geotectonica et Metallogenia, 41(6):1116-1127(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201706009
      [34] Liu, X.F., Yuan, S.D., Shuang, Y., et al., 2014.In Situ LA-ICP-MS REE Analyses of the Skarn Garnets from the Jinchuantang Tin-Bismuth Deposit in Hunan Province, and Their Significance.Acta Petrologica Sinica, 30(1):163-177(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201401012
      [35] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology, 257(1):34-43. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=babd721ac13e2675d9485b52683be64c
      [36] Liu, Y.S., Hu, Z.C., Zong, K.Q., et al., 2010.Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS.Chinese Science Bulletin, 55(15):1535-1546. https://doi.org/10.1007/s11434-010-3052-4
      [37] Locock, A.J., 2008.An Excel Spreadsheet to Recast Analyses of Garnet into End-Member Components, and a Synopsis of the Crystal Chemistry of Natural Silicate Garnets.Computers & Geosciences, 34(12):1769-1780.https://doi.org/10.1016/j.cageo.2007.12.013 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e92277de5b8302af70d7ca6496780abf
      [38] Lovering, J.F., White, A.J.R., 1969.Granulitic and Eclogitic Inclusions from Basic Pipes at Delegate, Australia.Contributions to Mineralogy and Petrology, 21(1):9-52. doi: 10.1007/BF00377416
      [39] Manning, D.A.C., 1983.Chemical Variation in Garnets from Aplites and Pegmatites, Penin-Sular Thailand.Mineralogical Magazine, 47(344):353-358. doi: 10.1180/minmag.1983.047.344.10
      [40] Mao, J.W., Xie, G.Q., Guo, C.L., et al., 2007.Large-Scale Tungten-Tin Mineralization in the Nanling Region, South China:Metallogenic Ages and Corresponding Geodynamic Processes.Acta Petrologica Sinica, 23(10):2329-2338(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200710003.htm
      [41] Mao, J.W., Xie, G.Q., Guo, C.L., et al., 2008.Spatial-Temporal Distribution of Mesozoic Ore Deposits in South China and Their Metallogenic Settings.Geological Journal of China Universities, 14(4):510-526(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200804005
      [42] Mayanovic, R.A., Anderson, A.J., Bassett, W.A., et al., 2006.On the Formation and Structure of Rare-Earth Element Complexes in Aqueous Solutions under Hydrothermal Conditions with New Data on Gadolinium Aqua and Chloro Complexes.Chemical Geology, 239(3):266-283. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=69b24f96826196f38c66a43b9c4019f3
      [43] Miller, C.F., Stoddard, E.F., 1981.The Role of Manganese in the Paragenesis of Magmatic Garnet:An Example from the Old Woman-Piute Range, California.The Journal of Geology, 89(2):233-246. doi: 10.1086/628582
      [44] Muller, A., Kearsley, A., Spratt, J., et al., 2012.Petrogenetic Implications of Magmatic Garnet in Granitic Pegmatites from Southern Norway.The Canadian Mineralogist, 50(4):1095-1115. doi: 10.3749/canmin.50.4.1095
      [45] Samadi, R., 2014.Chemistry and Origin of Garnet in the Granitoids and Metamorphic Rocks in the South of Mashhad (Khajeh Morad, Khalaj and Dehnow)(Dissertation).Department of Geology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
      [46] Samadi, R., Miller, N.R., Mirnejad, H., et al., 2014.Origin of Garnet in Aplite and Pegmatite from Khajeh Morad in Northeastern Iran:A Major, Trace Element, and Oxygen Isotope Approach.Lithos, 208-209:378-392. doi: 10.1016/j.lithos.2014.08.023
      [47] Smith, M.P., Henderson, P., Jeffries, T.E.R., et al.2004.The Rare Earth Elements and Uranium in Garnets from the Beinn and Dubhaich Aureole, Skye, Scotland, UK:Constraints on Processes in a Dynamic Hydrothermal System.J. Petrol., 45(3):457-484. doi: 10.1093/petrology/egg087
      [48] Spear, F.S., Kohn, M.J., 1996.Trace Element Zoning in Garnet as a Monitor of Crustal Melting.Geology, 24(12):1099-1102. doi: 10.1130/0091-7613(1996)024<1099:TEZIGA>2.3.CO;2
      [49] Stevens, G., Villaros, A., Moyen, J.F., 2007.Selective Peritectic Garnet Entrainment as the Origin of Geochemical Diversity in S-Type Granites.Geology, 35(1):9-12.https://doi.org/10.1130/g22959a.1 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d19de893f2ad98fa7f0078ea5a2c4e04
      [50] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society London Special Publications, 42(1):313-345.https://doi.org/10.1144/gsl.sp.1989.042.01.19 doi: 10.1144/GSL.SP.1989.042.01.19
      [51] Villaros, A., Stevens, G., Moyen, J.F., et al., 2009.The Trace Element Compositions of S-Type Granites:Evidence for Disequilibrium Melting and Accessory Phase Entrainment in the Source.Contributions to Mineralogy and Petrology, 158(4):543-561. https://doi.org/10.1007/s00410-009-0396-3
      [52] Wang, R., Zhang, S.L., 2015.The Discovery of Garnet from Yuyitalepenketi Granite Porphyry in Western Junggar and Its Geological Significances.Bulletin of Mineralogy, Petrology and Geochemistry, 34(6):1254-1261(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201506020
      [53] Whitworth, M.P., 1992.Petrogenetic Implications of Garnets Associated with Lithium Pegmatites from SE Ireland.Mineralogical Magazine, 56(382):75-83. https://doi.org/10.1180/minmag.1992.056.382.10
      [54] Whitworth, M.P., Feely, M., 1994.The Compositional Range of Magmatic Mn-Garnets in the Galway Granite, Connemara, Ireland.Mineralogical Magazine, 58(390):163-168. https://doi.org/10.1180/minmag.1994.058.390.16
      [55] Wu, J., Liang, H.Y., Huang, W.T., et al., 2012.Indosinian Isotope Ages of Plutons and Deposits in Southwestern Miaoershan-Yuechengling, Northeastern Guangxi and Implications on Indosinian Mineralization in South China.Chinese Science Bulletin, 57(13):1126-1136(in Chinese). doi: 10.1360/csb2012-57-13-1126
      [56] Xie, X.H., Chen, W.F., Zhao, K.D., et al., 2008.Geochemical Characteristics and Geochronology of the Douzhashan Garniet, Northeastern Guangxi Province, China.Acta Petrologica Sinica, 24(6):1302-1312(in Chinese with English abstract). doi: 10.1016/j.sedgeo.2008.03.008
      [57] Yang, J.H., Peng, T.T., Hu, R.Z., et al., 2013.Garnet Geochemistry of Tungsten-Mineralized Xihuashan Granites in South China.Lithos, 177:79-90. https://doi.org/10.1016/j.lithos.2013.06.008
      [58] Yang, Z., 2012.Pre-Yanshanian Magmatism and Mineralization in the Miaoershan-Yuechengling Area, Northern Guangxi Province (Dissertation).Nanjing University, Nanjing(in Chinese with English abstract).
      [59] Zeng, L.S., Gao, L.E., 2017.Cenozoic Crustal Anatexis and the Leucogranites in the Himalayan Collisional Orogenic Belt.Acta Petrologica Sinica, 33(5):1420-1444(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201705004
      [60] Zeng, L.S., Zhao, L.H., Gao, L.E., et al., 2019.Magmatic Garnet from Mid-Miocene Co-Genetic High Sr/Y Granite and Leucogranite from the Himalayan Orogenic Belt, Southern Tibet.Acta Petrologica Sinica, 35(6):1599-1626(in Chinese with English abstract). doi: 10.18654/1000-0569/2019.06.01
      [61] Zhang, R.X., Yang, S.Y., 2016.A Mathematical Model for Determining Carbon Coating Thickness and Its Application in Electron Probe Microanalysis. Microscopy & Microanalysis, 22(6):1374-1380. https://doi.org/10.1017/s143192761601182x http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7ed4e34dd2194f0497295ad43e8a20af
      [62] Zhang, D., Zhang, W.L., Wang, L.C., et al., 2015.Quartz-Vein Type Tungsten Mineralization Associated with the Indosinian (Triassic) Gaoling Granite, Miao'ershan Area, Northern Guangxi.Geological Review, 61(4):817-834(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201504010
      [63] Zhao, K.D., Jiang, S.Y., Sun, T., et al., 2013.Zircon U-Pb Dating, Trace Element and Sr-Nd-Hf Isotope Geochemistry of Paleozoic Granites in the Miao'ershan-Yuechengling Batholith, South China:Implication for Petrogenesis and Tectonic-Magmatic Evolution.Journal of Asian Earth Sciences, 74:244-264. https://doi.org/10.1016/j.jseaes.2012.12.026
      [64] Zhao, P.L., Yuan, S.D., Yuan, Y.B., 2018.Geochemical Characteristics of Garnet in the Huangshaping Polymetallic Deposit, Southern Hunan:Implications for the Genesis of Cu and W-Sn Mineralization.Acta Petrologica Sinica, 34(9):2581-2597(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201809006.htm
      [65] 柏道远, 钟响, 贾朋远, 等, 2014.南岭西段加里东期苗儿山岩体锆石SHRIMP U-Pb年龄、地球化学特征及其构造意义.岩石矿物学杂志, 33(3):407-423. doi: 10.3969/j.issn.1000-6524.2014.03.001
      [66] 柏道远, 钟响, 贾朋远, 等, 2015a.南岭西段加里东期越城岭岩体锆石SHRIMP U-Pb年龄、地质地球化学特征及其形成构造背景.地球化学, 44(1):27-42. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx201501003
      [67] 柏道远, 钟响, 贾朋远, 等, 2015b.湘西南苗儿山地区早燕山期花岗岩地球化学特征及形成环境.资源调查与环境, 36(4):235-243. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hsdzykc201504001
      [68] 陈文迪, 张文兰, 王汝成, 等, 2016.桂北苗儿山-越城岭地区独石岭钨(铜)矿床研究:对复式岩体多时代差异性成矿的启示.中国科学:地球科学, 46(12):1602-1625. doi: 10.1007/N072015-00360
      [69] 陈毓川, 裴荣富, 张宏良, 等, 1990.南岭地区与中生代花岗岩类有关的有色、稀有金属矿床地质.中国地质科学院院报, 11(1):79-85. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HY000001777806
      [70] 程顺波, 付建明, 崔森, 等, 2018.湘桂边界越城岭岩基北部印支期花岗岩锆石U-Pb年代学和地球化学特征.地球科学, 43(7):2330-2349. doi: 10.3799/dqkx.2018.178
      [71] 程顺波, 付建明, 马丽艳, 等, 2013.桂东北越城岭-苗儿山地区印支期成矿作用:油麻岭和界牌矿区成矿花岗岩锆石U-Pb年龄和Hf同位素制约.中国地质, 40(4):1189-1201. doi: 10.3969/j.issn.1000-3657.2013.04.017
      [72] 程顺波, 付建明, 马丽艳, 等, 2016.桂东北越城岭岩体加里东期成岩作用:锆石U-Pb年代学、地球化学和Nd-Hf同位素制约.大地构造与成矿学, 40(4):853-872. doi: 10.16539/j.ddgzyckx.2016.04.017
      [73] 杜云, 罗小亚, 黄革非, 2017.湘西南苗儿山岩体北段新元古代晋宁期花岗岩岩石学、地球化学特征及其形成构造背景.地质科技情报, 36(6):136-147. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201706014
      [74] 范汝海, 2014.桂东北越城岭花岗岩体侵位机制(硕士学位论文).桂林: 桂林理工大学.
      [75] 高利娥, 曾令森, 石卫刚, 等, 2012.喜马拉雅造山带新生代花岗岩中两类石榴石的地球化学特征及其在地壳深熔作用中的意义.岩石学报, 28(9):2963-2980. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201209023
      [76] 高利娥, 曾令森, 赵令浩, 等, 2017.喜马拉雅造山带片麻岩中石榴石的多期生长.岩石学报, 33(12):3729-3740. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201712003.htm
      [77] 广西有色地质勘查局二七一队, 1991.广西资源县梅溪乡茅安塘花岗伟晶岩型钽铌铍矿区普查找矿地质报告.广西: 广西有色地质勘查局.
      [78] 郭春丽, 曾令森, 高利娥, 等, 2017.福建河田高分异花岗岩的矿物和全岩地球化学找矿标志研究.地质学报, 91(8):1796-1817. doi: 10.3969/j.issn.0001-5717.2017.08.010
      [79] 郭磊, 苏佳虎, 李礼, 等, 2018.越城岭岩体西部韧性剪切带特征及各带与稀有金属成矿关系探讨.世界有色金属, (2):123-124. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjysjs201802068
      [80] 胡欢, 王汝成, 陈卫锋, 等, 2012.桂东北豆乍山产铀花岗岩的铀源矿物研究.地质论评, 58(6):1056-1068. doi: 10.3969/j.issn.0371-5736.2012.06.006
      [81] 华仁民, 陈培荣, 张文兰, 等, 2005.论华南地区中生代3次大规模成矿作用.矿床地质, 24(2):99-107. doi: 10.3969/j.issn.0258-7106.2005.02.002
      [82] 华仁民, 李光来, 张文兰, 等, 2010.华南钨和锡大规模成矿作用的差异及其原因初探.矿床地质, 29(1):9-23. doi: 10.3969/j.issn.0258-7106.2010.01.003
      [83] 华仁民, 张文兰, 陈培荣, 等, 2013.初论华南加里东花岗岩与大规模成矿作用的关系.高校地质学报, 19(1):1-11. doi: 10.3969/j.issn.1006-7493.2013.01.003
      [84] 纪敏, 赵新福, 曾丽平, 等, 2018.鄂东南铜绿山矿床石榴子石显微结构及微区成分对成矿过程的指示.岩石学报, 34(9):2716-2732. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201809014
      [85] 李乐广, 王连训, 田洋, 等, 2019.华南幕阜山花岗伟晶岩的矿物化学特征及指示意义.地球科学, 44(7):2532-2560. doi: 10.3799/dqkx.2018.378
      [86] 李献华, 李武显, 李正祥, 2007.再论南岭燕山早期花岗岩的成因类型与构造意义.科学通报, 52(9):981-991. doi: 10.3321/j.issn:0023-074X.2007.09.001
      [87] 李晓峰, 冯佐海, 肖荣, 等, 2012.桂东北钨锡稀有金属矿床的成矿类型、成矿时代及其地质背景.地质学报, 86(11):1713-1725. doi: 10.3969/j.issn.0001-5717.2012.11.001
      [88] 林书平, 伍静, 黄文婷, 等, 2017.桂东北苗儿山-越城岭东北部界牌钨-铜矿区成矿岩体锆石U-Pb年龄及华南加里东期成矿分析.大地构造与成矿学, 41(6):1116-1127. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201706009
      [89] 刘晓菲, 袁顺达, 双燕, 等, 2014.湖南金船塘锡铋矿床石榴子石原位LA-ICP-MS稀土元素分析及其意义.岩石学报, 30(1):163-177. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201401012
      [90] 毛景文, 谢桂青, 郭春丽, 等, 2007.南岭地区大规模钨锡多金属成矿作用:成矿时限及地球动力学背景.岩石学报, 23(10):2329-2338. doi: 10.3969/j.issn.1000-0569.2007.10.002
      [91] 毛景文, 谢桂青, 郭春丽, 等, 2008.华南地区中生代主要金属矿床时空分布规律和成矿环境.高校地质学报, 14(4):510-526. doi: 10.3969/j.issn.1006-7493.2008.04.005
      [92] 王冉, 张胜龙, 2015.西准噶尔玉依塔勒盆克提斑岩体中石榴子石的发现及地质意义.矿物岩石地球化学通报, 34(6):1254-1261. doi: 10.3969/j.issn.1007-2802.2015.06.018
      [93] 伍静, 梁华英, 黄文婷, 等, 2012.桂东北苗儿山-越城岭南西部岩体和矿床同位素年龄及华南印支期成矿分析.科学通报, 57(13):1126-1136. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201213007
      [94] 谢晓华, 陈卫锋, 赵葵东, 等, 2008.桂东北豆乍山花岗岩年代学与地球化学特征.岩石学报, 24(6):1302-1312. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200806013
      [95] 杨振, 2012.桂北苗儿山-越城岭地区前燕山期岩浆活动及其成矿作用的研究(硕士学位论文).南京: 南京大学.
      [96] 曾令森, 高利娥, 2017.喜马拉雅碰撞造山带新生代地壳深熔作用与淡色花岗岩.岩石学报, 33(5):1420-1444 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201705004
      [97] 曾令森, 赵令浩, 高利娥, 等, 2019.喜马拉雅造山带中新世岩浆型石榴子石的矿物化学特征:从高Sr/Y花岗岩到淡色花岗岩.岩石学报, 35(6):1599-1626. doi: 10.18654/1000-0569/2019.06.01
      [98] 张迪, 张文兰, 王汝成, 等, 2015.桂北苗儿山地区高岭印支期花岗岩及石英脉型钨成矿作用.地质论评, 61(4):817-834. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201504010
      [99] 赵盼捞, 袁顺达, 原垭斌, 2018.湘南黄沙坪多金属矿床石榴子石地球化学特征及其对Cu与W-Sn复合成矿机理的指示.岩石学报, 34(9):2581-2597. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201809006
    • dqkx-45-6-2059-Table1.pdf
    • 加载中
    图(11) / 表(1)
    计量
    • 文章访问数:  817
    • HTML全文浏览量:  175
    • PDF下载量:  64
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-12-30
    • 刊出日期:  2020-06-15

    目录

      /

      返回文章
      返回