Late Quaternary Slip along Yangguan Fault at Northeastern Section of Altyn Tagh Fault and Implications for Seismic Risk
-
摘要: 阿尔金断裂系东北段阳关断裂的晚第四纪活动性与强震危险性关系到敦煌地区及相关文物古迹的防震减灾问题.基于高分辨率卫星影像对阳关断裂几何展布特征进行解译,采用差分GPS、无人机航空摄影测量方法、古地震探槽方法以及OSL测年方法对两个研究点进行了详细研究,对其定量活动参数进行了初步限定.结果显示,阳关断裂东段运动形式主要表现为挤压逆冲,最新的一次地震事件可能发生在距今43.5~12.1 ka之间,表明阳关断裂东段至少在晚更新世以来有过活动,并且具有发生Mw6.6强震的潜能及危险性.如果发生类似强度的地震,敦煌主城区的烈度至少在Ⅵ以上,阳关土遗址地区则会达到Ⅸ.因此,阳关断裂应该是该区防震减灾重点关注的发震断层之一.Abstract: The Yangguan Fault is located on northwestern section of the Altyn Tagh Fault, which is a large strike slip fault and seismotectonic in Northeast Tibet Plateau, which poses potential seismic hazard to city development and culture relics in Dunhuang area. In this study it focuses on characterizing activity of the Yangguan Fault, using high resolution satellite imagery to map faults in space. At two study sites, it made detailed investigation by methods of difference GPS, aerial photogrammetry with unmanned aerial vehicle, paleoseismical trench and Optically Stimulated Luminescence dating. The preliminary results are that the Yangguan Fault is a thrust fault trending NEE with high dipping angle; its latest event likely occurred between 43.5 ka and 12.1 ka. The results imply that the eastern section of the Yangguan Fault ruptured at least during Late Pleistocene. It is proposed that the eastern section rupture will cause an earthquake of Mw 6.6, shaking the nearby area strongly, and the seismic intensity in the Dunhuang downtown will be more than Ⅵ, reaching up to Ⅸ at Yangguan relic site. Therefore, the Yangguan Fault is an important seismic fault in West Hexi Corridor. This study provides critical data for seismic prevention and disaster mitigation for city development and culture relic protection in Dunhuang area.
-
图 4 阳关断裂东段断错地貌
a. 被断错的Q1冲积扇面;b.晚第四纪扇面上发育两期近平行分布的小陡坎;c.基岩区残留的裂点;d.错动扇面的陡坎,高约3 m.照片位置见图 2
Fig. 4. Faulted feature along the eastern section of the Yangguan Fault
表 1 OSL样品测试结果
Table 1. Analytical result of OSL samples
样品编号 深度(m) 含水率(%) Ua (10-6) Th a (10-6) K a (%) 剂量率b (Ga/ka) 等效剂量c (Ga) 年代c (ka) YG1701 0.4 1.1 2.92±0.11 18.40±0.50 1.52±0.05 3.7±0.2 162±14 43.5±4.2 YG1702 0.4 1.9 2.37±0.09 6.17±0.21 1.36±0.05 2.6±0.1 30.9±3.0 12.1±1.3 YG1710 0.8 2.9 1.90±0.08 7.18±0.24 1.54±0.05 2.7±0.1 162±17 60.5±6.9 注:a. U、Th和K元素的含量在中国原子能科学研究院使用中子活化法(NAA)测试;b. 测试矿物为石英,样品测试粒级为90~125 µm,剂量率和年代计算参考“DRAC”;c.使用三参数最小年代模型MAM-3计算的等效剂量及其年代. -
[1] Aitken, M. J. , 1998. An Introduction to Optical Dating: The Dating of Quaternary Sediments by the Use of Photon-Stimulated Luminescence. Oxford University Press, London. [2] Bemis, S. P. , Micklethwaite, S. , Turner, D. , et al. , 2014. Ground-Based and UAV-Based Photogrammetry: A Multi-Scale, High-Resolution Mapping Tool for Structural Geology and Paleoseismology. Journal of Structural Geology, 69: 163-178. https://doi.org/10.1016/j.jsg.2014.10.007 [3] Cunningham, D. , Zhang, J. , Li, Y. F. , 2016. Late Cenozoic Transpressional Mountain Building Directly North of the Altyn Tagh Fault in the Sanweishan and Nanjieshan, North Tibetan Foreland, China. Tectonophysics, 687: 111-128. https://doi.org/10.1016/j.tecto.2016.09.010 [4] Cowgill, E. , Yin, A. , Arrowsmith, J. R. , et al. , 2004. The AkatoTagh Bend along the Altyn Tagh Fault, Northwest Tibet 1: Smoothing by Vertical-Axis Rotation and the Effect of Topographic Stresses on Bend-Flanking Faults. Geological Society of America Bulletin, 116(11-12): 1423-1442. https://doi.org/10.1130/b25359.1 [5] Cowgill, E. , Yin, A. , Feng, W. X. , et al. , 2000. Is the North Altyn Fault Part of a Strike-Slip Duplex along the Altyn Tagh Fault System? Geology, 28(3): 255-258. https://doi.org/10.1130/0091-7613(2000)28255:itnafp>2.0.co;2 doi: 10.1130/0091-7613(2000)28255:itnafp>2.0.co;2 [6] Deng, Q. D. , Chen, L. C. , Ran, Y. K. , 2004. Quantitative Studies and Applications of Active Tectonics. Earth Science Frontiers, 11(4): 383-392(in Chinese with English abstract). http://www.researchgate.net/publication/304335743_Quantitative_studies_and_applications_of_active_tectonics [7] Galbraith, R. F. , Roberts, R. G. , 2012. Statistical Aspects of Equivalent Dose and Error Calculation and Display in OSL Dating: An Overview and Some Recommendations. Quaternary Geochronology, 11: 1-27. https://doi.org/10.1016/j.quageo.2012.04.020 [8] Hetzel, R. , Hampel, A. , Gebbeken, P. , et al. , 2019. A Constant Slip Rate for the Western Qilian Shan Frontal Thrust during the Last 200 ka Consistent with GPS-Derived and Geological Shortening Rates. Earth and Planetary Science Letters, 509: 100-113. https://doi.org/10.1016/j.epsl.2018.12.032 [9] Li, H. B. , Pan, J. W. , Lin, A. M. , et al. , 2016. Coseismic Surface Ruptures Associated with the 2014 Mw 6.9 Yutian Earthquake on the Altyn Tagh Fault, Tibetan Plateau. Bulletin of the Seismological Society of America, 106(2): 595-608. https://doi.org/10.1785/0120150136 [10] Liu, X. W. , Yuan, D. Y. , Su, Q. , 2019. Late Pleistocene Slip Rate on a Blind Thrust in the Western Qilian Shan, NW China. Geomorphology, 345: 106841. https://doi.org/10.1016/j.geomorph.2019.106841 [11] Liu, X. W. , Yuan, D. Y. , Su, Q. , et al. , 2020. Late Quaternary Tectonic Activity and Slip Rates of Active Faults in the Western Hexi Corridor, NW China. Journal of Earth Science, 31(5): 968-977. https://doi.org/10.1007/s12583-020-1287-9 [12] Liu, X. W. , Yuan, D. Y. , Zou, X. B. , et al. , 2018. Active Characteristics of the Sanweishan Fault in the Northern Margin of the Tibetan Plateau during Late Pleistocene. Seismology and Geology, 40(1): 121-132(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_seismology-geology_thesis/0201253220867.html [13] Meyer, B. , Tapponnier, P. , Gaudemer, Y. , et al. , 1996. Rate of Left-Lateral Movement along the Easternmost Segment of the Altyn Tagh Fault, East of 96°E (China). Geophysical Journal International, 124(1): 29-44. https://doi.org/10.1111/j.1365-246x.1996.tb06350.x [14] Molnar, P. , Tapponnier, P. , 1975. Cenozoic Tectonics of Asia: Effects of a Continental Collision. Science, 189(4201): 419-426. https://doi.org/10.1126/science.189.4201.419 [15] Ran, Y. K. , Chen, L. C. , Chen, W. S. , et al. , 2012. Key Techniques and Several Cases Analysis in Paleoseismic Studies in Mainland China(2): Surface Deformation Characteristics of Wenchuan Earthquake and Paleoseismic Indicators on Fold-Reverse Fault. Seismology and Geology, 34(3): 385-400(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZDZ201404001.htm [16] Ran, Y. K. , Chen, L. C. , Shen, J. , et al. , 2007. Xishan Fault Group near Urumqi City and Paleoearthquake Identification on Reverse Fault. Seismology and Geology, 29(2): 218-235(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_seismology-geology_thesis/0201253224705.html [17] Shao, Y. X. , Yuan, D. Y. , Oskin, M. E. , et al. , 2017. Historical (Yuan Dynasty) Earthquake on the North Danghe Nanshan Thrust, Western Qilian Shan, China. Bulletin of the Seismological Society of America, 107(3): 1175-1184. https://doi.org/10.1785/0120160289 [18] Tapponnier, P. , Molnar, P. , 1977. Active Faulting and Tectonics in China. Journal of Geophysical Research, 82(20): 2905-2930. https://doi.org/10.1029/jb082i020p02905 [19] Tapponnier, P. , Xu, Z, Q. , Roger, F. , et al. , 2001. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 294(5547): 1671-1677. https://doi.org/10.1126/science.105978 [20] van der Woerd, J. , Xu, X. W. , Li, H. B. , et al. , 2001. Rapid Active Thrusting along the Northwestern Range Front of the Tanghe Nan Shan (Western Gansu, China). Journal of Geophysical Research: Solid Earth, 106(B12): 30475-30504. https://doi.org/10.1029/2001JB000583 [21] Wang, P. T. , Shao, Y. X. , Zhang, H. P. , et al. , 2016. The Application of sUAV Photogrammetry in Active Tections: Shanmagou Site of Haiyuan Fault, for Example. Quaternary Sciences, 36(2): 433-442(in Chinese with English abstract). http://www.dsjyj.com.cn/EN/Y2016/V36/I2/433 [22] Wells, D. L. , Coppersmith, K. J. , 1994. Updated Empirical Relationships between Magnitude, Rupture Length, Rupture Area and Surface Displacement. Bulletin of the Seismological Society of America, 84(4): 972-1002. http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=ssabull&resid=84/4/974 [23] Wintle, A. G. , 2008. Luminescence Dating: Where It has been and Where It is Going. Boreas, 37(4): 471-482. https://doi.org/10.1111/j.1502-3885.2008.00059.x [24] Wu, Y. , Chen, Z. L. , Chen, B. L. , et al. , 2019. Early Paleozoic Tectonic Deformation in Qiashenkansayigou Area, North Altun, and Implication for Tectonic Evolution. Journal of Geomechanics, 25(3): 301-312(in Chinese with English abstract). [25] Wu, Z. H. , 2019. The Definition and Classification of Active Faults: History, Current Status and Progress. Acta Geoscientica Sinica, 40(5): 661-697(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-geoscientica-sinica_thesis/0201273307896.html [26] Wu, Z. H. , Hu, M. M. , 2019. Neotectonics, Active Tectonics and Earthquake Geology: Terminology, Applications and Advances. Journal of Geodynamics, 127: 1-15. https://doi.org/10.1016/j.jog.2019.01.007 [27] Xiao, Q. B. , Shao, G. H. , Jing, L. Z. , et al. , 2015. Eastern Termination of the Altyn Tagh Fault, Western China: Constraints from a Magnetotelluric Survey. Journal of Geophysical Research: Solid Earth, 120(5): 2838-2858. https://doi.org/10.1002/2014jb011363 [28] Xu, X. W. , Tan, X. B. , Yu, G. H. , et al. , 2013. Normal- and Oblique-Slip of the 2008 Yutian Earthquake: Evidence for Eastward Block Motion, Northern Tibetan Plateau. Tectonophysics, 584: 152-165. https://doi.org/10.1016/j.tecto.2012.08.007 [29] Xu, X. W. , Yu, G. H. , Ran, Y. K. , et al. , 2015. Introduction on Urban Active Faults in China: Surveying Outcomes from 20 Chinese Mega-Cities. Seismological Press, Beijing (in Chinese). [30] Yang, H. B. , Yang, X. P. , Cunningham, D. , et al. , 2020. A Regionally Evolving Transpressional Duplex along the Northern Margin of the Altyn Tagh Fault: New Kinematic and Timing Constraints from the Sanweishan and Nanjieshan, China. Tectonics, 39(2): e2019tc005749. https://doi.org/10.1029/2019TC005749 [31] Yuan, D. Y. , Shi, Y. C. , Wang, X. D. , 2000. The Features of New Activity and Influence to Grottoes in Dunhuang Mogao Grott Oes Region. Dunhuang Research, (1): 56-64(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DHYJ200001011.htm [32] Yun, L. , Yang, X. P. , Song, F. M. , et al. , 2016a. Late Quaternary Sinistral Strike-Slip Activities of Sanwei Shan Fault in the North of Tibetan Plateau. Seismology and Geology, 38(2): 434-446(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZDZ201602016.htm [33] Yun, L. , Yang, X. P. , Wang, J. , et al. , 2016b. Paleo-Earthquake Events along Northeastern Segment of the Sanweishan Mountain Fault, Northern Tibetan Plateau. Technology for Earthquake Disaster Prevention, 11(2): 186-198(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZZFY201602002.htm [34] Yun, L. , Zhang, J. , Wang, J. , et al. , 2020. Active Deformation to the North of the Altyn Tagh Fault: Constraints on the Northward Growth of the Northern Tibetan Plateau. Journal of Asian Earth Sciences, 198: 104312. https://doi.org/10.1016/j.jseaes.2020.104312 [35] Yun, L. , Zhang, J. , Xiao, Q. B. , et al. , 2019. Thrust Movement and Deep Structural Characteristic of the Sanweishan Fault in the Northern Margin of the Tibetan Plateau since the Late Quaternary. Acta Geologica Sinica, 93(9): 2107-2122(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201909001.htm [36] Zhang, P. Z. , Molnar, P. , Xu, X. W. , 2007. Late Quaternary and Present-Day Rates of Slip along the Altyn Tagh Fault, Northern Margin of the Tibetan Plateau. Tectonics, 26(5): TC5010. https://doi.org/10.1029/2006tc002014 [37] Zhang, Y. M. , Liu, T. Z. , 1989. The Sanweishan Fault: A Quaternary Active Fault without Large Earthquakes. Earthquake Research in China, 5(3): 37-48(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGZD198903004.htm [38] Zhou, Z. H. , He, S. L. , Chen, W. K. , et al. , 2011. Parameters in Seismic Intensity Affecting Field Model of Gansu Area. Technology for Earthquake Disaster Prevention, 6(2): 180-189(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZZFY201102012.htm [39] 邓起东, 陈立春, 冉勇康, 2004. 活动构造定量研究与应用. 地学前缘, 11(4): 383-392. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200404006.htm [40] 刘兴旺, 袁道阳, 邹小波, 等, 2018. 青藏高原北缘三危山断裂晚更新世活动特征. 地震地质, 40(1): 121-132. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201801010.htm [41] 冉勇康, 陈立春, 陈文山, 等, 2012. 中国大陆古地震研究的关键技术与案例解析(2): 汶川地震地表变形特征与褶皱逆断层古地震识别. 地震地质, 34(3): 385-400. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201203003.htm [42] 冉勇康, 陈立春, 沈军, 等, 2007. 乌鲁木齐西山断裂组与地表破裂型逆断层古地震识别标志. 地震地质, 29(2): 218-235. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200702002.htm [43] 王朋涛, 邵延秀, 张会平, 等, 2016. sUAV摄影技术在活动构造研究中的应用: 以海原断裂骟马沟为例. 第四纪研究, 36(2): 433-442. http://d.wanfangdata.com.cn/Periodical/dsjyj201602018 [44] 吴玉, 陈正乐, 陈柏林, 等, 2019. 北阿尔金恰什坎萨依沟地区早古生代构造变形特征及构造演化启示. 地质力学学报, 25(3): 301-312. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201903016.htm [45] 吴中海, 2019. 活断层的定义与分类: 历史、现状和进展. 地球学报, 40(5): 661-697. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201905003.htm [46] 徐锡伟, 于贵华, 冉勇康, 等, 2015. 中国城市活动断层概论: 20个城市活动断层探测成果. 北京: 地震出版社. [47] 袁道阳, 石玉成, 王旭东, 2000. 敦煌莫高窟地区断裂新活动特征及其对石窟的影响. 敦煌研究, (1): 56-64. https://www.cnki.com.cn/Article/CJFDTOTAL-DHYJ200001011.htm [48] 云龙, 杨晓平, 宋方敏, 等, 2016a. 青藏高原北缘三危山断裂晚第四纪以来的左旋走滑活动. 地震地质, 38(2): 434-446. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201602016.htm [49] 云龙, 杨晓平, 王驹, 等, 2016b. 青藏高原北缘三危山断裂东北段的古地震事件. 震灾防御技术, 11(2): 186-198. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY201602002.htm [50] 云龙, 张进, 肖骑斌, 等, 2019. 青藏高原北缘三危山断裂晚第四纪以来的逆冲运动及其深部构造特征. 地质学报, 93(9): 2107-2122. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201909001.htm [51] 张裕明, 柳覃卓, 1989. 敦煌三危山断层: 一条无强震的第四纪活动断层. 中国地震, 5(3): 37-48. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD198903004.htm [52] 周中红, 何少林, 陈文凯, 等, 2011. 甘肃地区地震烈度影响场计算模型参数的改进研究与应用. 震灾防御技术, 6(2): 180-189. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY201102012.htm