• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    华北克拉通孔兹岩带磴口和佘太地区花岗片麻岩和斜长角闪岩变质锆石对其北界位置的再约束

    段瑞涵 刘超辉 施建荣

    段瑞涵, 刘超辉, 施建荣, 2020. 华北克拉通孔兹岩带磴口和佘太地区花岗片麻岩和斜长角闪岩变质锆石对其北界位置的再约束. 地球科学, 45(9): 3386-3402. doi: 10.3799/dqkx.2020.080
    引用本文: 段瑞涵, 刘超辉, 施建荣, 2020. 华北克拉通孔兹岩带磴口和佘太地区花岗片麻岩和斜长角闪岩变质锆石对其北界位置的再约束. 地球科学, 45(9): 3386-3402. doi: 10.3799/dqkx.2020.080
    Duan Ruihan, Liu Chaohui, Shi Jianrong, 2020. Studies on Metamorphic Zircons of Granitic Gneisses and Amphibolites in the Dengkou and Shetai Areas of the Khondalite Belt of the North China Craton: More Constraints on Its Northern Boundary. Earth Science, 45(9): 3386-3402. doi: 10.3799/dqkx.2020.080
    Citation: Duan Ruihan, Liu Chaohui, Shi Jianrong, 2020. Studies on Metamorphic Zircons of Granitic Gneisses and Amphibolites in the Dengkou and Shetai Areas of the Khondalite Belt of the North China Craton: More Constraints on Its Northern Boundary. Earth Science, 45(9): 3386-3402. doi: 10.3799/dqkx.2020.080

    华北克拉通孔兹岩带磴口和佘太地区花岗片麻岩和斜长角闪岩变质锆石对其北界位置的再约束

    doi: 10.3799/dqkx.2020.080
    基金项目: 

    国家自然科学基金委重大项目 41890833

    国家重点研发计划深地专项 2017YFC0601301

    中国地质调查局公益性基础地质调查项目 DD20190003

    详细信息
      作者简介:

      段瑞涵(1995-), 男, 硕士研究生, 研究方向为前寒武纪地质学, ORCID:0000-0003-1294-4474.E-mail:17812085195@163.com

      通讯作者:

      刘超辉, E-mail:denverliu82@gmail.com

    • 中图分类号: P597

    Studies on Metamorphic Zircons of Granitic Gneisses and Amphibolites in the Dengkou and Shetai Areas of the Khondalite Belt of the North China Craton: More Constraints on Its Northern Boundary

    • 摘要: 准确限定古老陆块及其之间造山带或缝合带的位置一直是早前寒武纪研究的难点和热点之一.前人对华北克拉通西部孔兹岩带边界在磴口地区的延伸方向以及在佘太地区的具体位置一直存在着争议.基于此,本次研究对孔兹岩带西部磴口地区的花岗片麻岩和中部佘太地区的斜长角闪岩中的变质锆石进行了矿物包裹体、U-Pb同位素以及微量元素的研究.结果表明磴口地区一个花岗片麻岩岩浆锆石的U-Pb年龄为2 549±14 Ma,变质锆石年龄为1 874±26 Ma,另一个花岗片麻岩变质锆石的U-Pb年龄为1 877±25 Ma,锆石的稀土元素整体呈现出左倾的特征.佘太地区北部一个斜长角闪岩样品变质锆石的U-Pb年龄为2 469±15 Ma,南部两个样品的变质年龄为1 924±25 Ma和1 800±20 Ma,锆石的稀土元素同样表现为左倾的特征.结合岩石组合、新太古代末和古元古代两期变质事件的空间分布及前人的研究成果,表明在磴口地区孔兹岩带与阴山陆块的边界更有可能向西延伸,而非以往认为的向西南方向延伸,而在佘太地区这条边界应沿武川-固阳-佘太分布,而非以往认为的沿武川-固阳-乌拉特后旗分布.

       

    • 图  1  华北克拉通西部陆块的构造划分图(据Zhao et al., 2002修改)

      Fig.  1.  Tectonic division of the western block of the North China Craton (modified after Zhao et al., 2002)

      图  2  磴口地区及佘太地区区域地质简图

      a.据宁夏回族自治区地调局(1980)完成的磴口幅1:20万地质图修改;b.据Jian et al. (2012)修改

      Fig.  2.  Simplified geological map of the Dengkou and Shetai areas

      图  3  花岗片麻岩及斜长角闪岩野外照片

      Fig.  3.  Field photographs of granitic gneiss and amphibolite

      图  4  花岗片麻岩及斜长角闪岩的镜下照片

      Qt.石英;Bi.黑云母;Pl.斜长石;Hb.角闪石;Mi.磁铁矿

      Fig.  4.  Microscope pictures of the granitic gneiss and amphibolite

      图  5  花岗片麻岩变质锆石(13ZB06-1)CL图、年龄谐和图及稀土元素含量图

      红色代表变质锆石;绿色代表约2.5 Ga岩浆锆石

      Fig.  5.  Cathodoluminescence images, concordia diagrams and REE patterns of metamorphic and magmatic zircons from sample 13ZB06-1

      图  6  花岗片麻岩变质锆石(13ZB08-1)CL图、年龄谐和图及稀土元素含量图

      Fig.  6.  Cathodoluminescence images, concordia diagrams and REE patterns of metamorphic and magamatic zircons from sample 13ZB08-1

      图  7  斜长角闪岩变质锆石(13ZB28-1)CL图、年龄谐和图及稀土元素含量图

      Fig.  7.  Cathodoluminescence images, concordia diagrams and REE patterns of metamorphic and magamatic zircons from sample 13ZB28-1

      图  8  斜长角闪岩变质锆石(13ZB28-2)CL图、年龄谐和图及稀土元素含量图

      Fig.  8.  Cathodoluminescence images, concordia diagrams and REE patterns of metamorphic and magamatic zircons from sample 13ZB28-2

      图  9  斜长角闪岩变质锆石(13ZB29-1)CL图、年龄谐和图及稀土元素含量图

      Fig.  9.  Cathodoluminescence images, concordia diagrams and REE patterns of metamorphic and magamatic zircons from sample 13ZB29-1

      图  10  孔兹岩带北界界线及西部陆块前寒武纪变质年代学数据总结(据Zhang et al.2013修改)

      BDS.北大山岩体;LSS.龙首山岩体;DBSG.迭布斯格岩体;BW.巴彦乌拉山岩体;HL.贺兰山岩体;QL.千里山岩体;WD.乌拉山大青山岩体;JN.集宁岩体;GY.固阳地区;WC.武川地区.图中年龄分别来自:1. Li, 2019;2. Li and Wei, 2016;3.蔡佳等,2014;4. Jiao et al., 2013;5. Santosh et al., 2007;6. Santosh, 2010;7.吴昌华等,2007;8. Wan et al., 2006;9.王丹等,2014;10.马铭株等,2013;11. Dong et al., 2012;12.董晓杰等,2012;13. Liu et al., 2017;14.马铭株,2015;15.刘平华等,2013;16. Dong et al., 2014;17. Wan et al.2013;18. Dong et al., 2014;19.董晓杰等,2009;20. Ma et al., 2013;21.马旭东等,2013;22. Jian et al., 2012;23. Qiao et al., 2016;24. Yin et al., 2009;25.宫江华等,2011;26. Gong et al., 2016;27. Zhang et al., 2013;28.耿元生等,2007;29. Dong et al., 2007;30. Yin et al., 2011;31.董春艳等,2007;32.本文

      Fig.  10.  The north boundary of the Khondalite Belt and collation of the Precambrian metamorphic chronology data of the North China Craton (modified after Zhang et al., 2013)

    • [1] Ai, L., Ping, X. Q., Zheng, J. P., et al., 2020. The Chronologic and Geochemical Characteristics of the Paleoproterozoic Granite in Xinyang of the Southern Margin of North China and Their Implications for Crustal Evolution. Earth Science, 45(6):2044-2058 (in Chinese with English abstract).
      [2] Cai, J., Liu, F. L., Liu, P. H., et al., 2014. Metamorphic P-T Conditions and U-Pb Dating of the Sillimanite-Cordierite-Garnet Paragneisses in Sanchakou, Jining Area, Inner Mongolia. Acta Petrology Sinica, 30(2):472-490 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201402012
      [3] Dong, C. Y., Liu, D. Y., Li, J. J., et al., 2007. New Evidence of the Formation Age of the Khondalite Belt in Western North China Craton:Zircon U-Pb Dating and Hf Isotope Composition in Bayan Wula-Helan Mountain Area. Chinese Science Bulletin, 52(16):1913-1922 (in Chinese).
      [4] Dong, C. Y., Liu, D. Y., Li, J. J., et al., 2007. Palaeoproterozoic Khondalite Belt in the Western North China Craton:New Evidence from SHRIMP Dating and Hf Isotope Composition of Zircons from Metamorphic Rocks in the Bayan Ul-Helan Mountains Area. Chinese Science Bulletin, 52(21):2984-2994. https://doi.org/10.1007/s11434-007-0404-9
      [5] Dong, C. Y., Wan, Y. S., Wilde, S. A., et al., 2014. Earliest Paleoproterozoic Supracrustal Rocks in the North China Craton Recognized from the Daqingshan Area of the Khondalite Belt:Constraints on Craton Evolution. Gondwana Research, 25(4):1535-1553. https://doi.org/10.1016/j.gr.2013.05.021
      [6] Dong, X. J., 2009. Metamorphic Characteristics, Age and Tectonic Significance of High-Grade Metamorphic Rocks in the Xiwulanbulang Area, Inner Mongolia (Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      [7] Dong, X. J., Xu, Z. Y., Liu, Z. H., et al., 2012.2.7 Ga Granitic Gneiss in the Northern Foot of Daqingshan Mountain, Central Inner Mongolia, and Its Geological Implications. Earth Science, 37(S1):20-27 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx2012z1003
      [8] Duan, Z. Z., Wei, C. J., Qian, J. H., 2015. Metamorphic P-T Paths and Zircon U-Pb Age Data for the Paleoproterozoic Metabasic Dykes of High-Pressure Granulite Facies from Eastern Hebei, North China Craton. Precambrian Research, 271:295-310. https://doi.org/10.1016/j.precamres.2015.10.015
      [9] Geng, Y. S., Wang, X. S., Shen, Q. H., et al., 2007. Chronology of the Precambrian Metamorphic Series in the Alxa Area, Inner Mongolia. Geology in China, 34(2):251-261 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200702006
      [10] Gong, J. H., Zhang, J. X., Wang, Z. Q., et al., 2016. Origin of the Alxa Block, Western China:New Evidence from Zircon U-Pb Geochronology and Hf Isotopes of the Longshoushan Complex. Gondwana Research, 36:359-375. https://doi.org/10.1016/j.gr.2015.06.014
      [11] Gong, J. H., Zhang, J. X., Yu, S. Y., 2011. The Origin of Longshoushan Group and Associated Rocks in the Southern Part of the Alxa Block:Constraint from LA-ICP-MS U-Pb Zircon Dating. Acta Petrologica et Mineralogica, 30(5):795-818 (in Chinese with English abstract).
      [12] Gou, L. L., Zi, J. W., Dong, Y. P., et al., 2019. Timing of Two Separate Granulite-Facies Metamorphic Events in the Helanshan Complex, North China Craton:Constraints from Monazite and Zircon U-Pb Dating of Pelitic Granulites. Lithos, 350-351:105216. https://doi.org/10.1016/j.lithos.2019.105216
      [13] Guo, J. H., Peng, P., Chen, Y., et al., 2012. UHT Sapphirine Granulite Metamorphism at 1.93-1.92 Ga Caused by Gabbronorite Intrusions:Implications for Tectonic Evolution of the Northern Margin of the North China Craton. Precambrian Research, 222-223:124-142. https://doi.org/10.1016/j.precamres.2011.07.020
      [14] He, X. F., Santosh, M., Bockmann, K., et al., 2016. Petrology, Phase Equilibria and Monazite Geochronology of Granulite-Facies Metapelites from Deep Drill Cores in the Ordos Block of the North China Craton. Lithos, 262:44-57. https://doi.org/10.1016/j.lithos.2016.06.022
      [15] Jian, P., Kröner, A., Windley, B. F., et al., 2012. Episodic Mantle Melting-Crustal Reworking in the Late Neoarchean of the Northwestern North China Craton:Zircon Ages of Magmatic and Metamorphic Rocks from the Yinshan Block. Precambrian Research, 222-223:230-254. https://doi.org/10.1016/j.precamres.2012.03.002
      [16] Jiao, S. J., Guo, J. H., Harley, S. L., et al., 2013. Geochronology and Trace Element Geochemistry of Zircon, Monazite and Garnet from the Garnetite and/or Associated Other High-Grade Rocks:Implications for Palaeoproterozoic Tectonothermal Evolution of the Khondalite Belt, North China Craton. Precambrian Research, 237:78-100. https://doi.org/10.1016/j.precamres.2013.09.008
      [17] Kusky, T. M., Li, J. H., Tucker, R. D., 2001. The Archean Dongwanzi Ophiolite Complex, North China Craton:2.505-Billion-Year-Old Oceanic Crust and Mantle. Science, 292(5519):1142-1145. https://doi.org/10.1126/science.1059426
      [18] Kusky, T. M., Li, J. H., Santosh, M., 2007. The Paleoproterozoic North Hebei Orogen:North China Craton's Collisional Suture with the Columbia Supercontinent. Gondwana Research, 12(1-2):4-28. https://doi.org/10.1016/j.gr.2006.11.012
      [19] Li, X. W., Wei, C. J., 2016. Phase Equilibria Modelling and Zircon Age Dating of Pelitic Granulites in Zhaojiayao, from the Jining Group of the Khondalite Belt, North China Craton. Journal of Metamorphic Geology, 34(6):595-615. https://doi.org/10.1111/jmg.12195
      [20] Li, X. W., White, R. W., Wei, C. J., 2019. Can we Extract Ultrahigh-Temperature Conditions from Fe-Rich Metapelites? An Example from the Khondalite Belt, North China Craton. Lithos, 328-329:228-243. doi: 10.1016/j.lithos.2019.01.032
      [21] Liu, H., Zhang, H. F., 2019. Paleoproterozoic Ophiolite Remnants in the Northern Margin of the North China Craton:Evidence from the Chicheng Peridotite Massif. Lithos, 344-345:311-323. https://doi.org/10.1016/j.lithos.2019.06.025
      [22] Liu, J. H., Liu, F. L., Ding, Z. J., et al., 2017. Late Neoarchean-Paleoproterozoic Arc-Continent Accretion along the Khondalite Belt, Western Block, North China Craton:Insights from Granitoid Rocks of the Daqingshan-Wulashan Area. Precambrian Research, 303:494-519. https://doi.org/10.1016/j.precamres.2017.06.006
      [23] Liu, P. H., Liu, F. L., Cai, J., et al., 2013. Geochronological and Geochemical Study of the Lijiazi Mafic Granulites from the Daqingshan-Wulashan Metamorphic Complex, the Central Khondalite Belt in the North China Craton. Acta Petrologica Sinica, 29(2):462-484 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201302009
      [24] Liu, P. H., Liu, F. L., Liu, C. H., et al., 2014. Multiple Mafic Magmatic and High-Grade Metamorphic Events Revealed by Zircons from Meta-Mafic Rocks in the Daqingshan-Wulashan Complex of the Khondalite Belt, North China Craton. Precambrian Research, 246:334-357. https://doi.org/10.1016/j.precamres.2014.02.015
      [25] Liu, S. J., Tsunogae, T., Li, W. S., et al., 2012. Paleoproterozoic Granulites from Heling'er:Implications for Regional Ultrahigh-Temperature Metamorphism in the North China Craton. Lithos, 148:54-70. https://doi.org/10.1016/j.lithos.2012.05.024
      [26] Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15):1535-1546. https://doi.org/10.1007/s11434-010-3052-4
      [27] Ludwig, K. R., 2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley.
      [28] Ma, M. Z., 2015. Early Precambrian Geological Evolution of Several Typical Areas in Western North China Craton: Geology, SHRIMP Zircon Dating and Geochemistry (Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract).
      [29] Ma, M. Z., Xu, Z. Y., Zhang, L. C., et al., 2013. SHRIMP Dating and Hf Isotope Analysis of Zircons from the Early Precambrian Basement in the Xi Ulanbulang Area, Wuchuan, Inner Mongolia. Acta Petrologica Sinica, 29(2):501-516 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201302011
      [30] Ma, X. D., Fan, H. R., Guo, J. H., 2013. Neoarchean Magmatism, Metamorphism in the Yinshan Block:Implication for the Genesis of BIF and Crustal Evolution. Acta Petrologica Sinica, 29(7):2329-2339 (in Chinese with English abstract).
      [31] Ma, X. D., Guo, J. H., Liu, F., et al., 2013. Zircon U-Pb Ages, Trace Elements and Nd-Hf Isotopic Geochemistry of Guyang Sanukitoids and Related Rocks:Implications for the Archean Crustal Evolution of the Yinshan Block, North China Craton. Precambrian Research, 230:61-78. https://doi.org/10.1016/j.precamres.2013.02.001
      [32] Peng, P., Guo, J. H., Windley, B. F., et al., 2012. Petrogenesis of Late Paleoproterozoic Liangcheng Charnockites and S-Type Granites in the Central-Northern Margin of the North China Craton:Implications for Ridge Subduction. Precambrian Research, 222-223:107-123. https://doi.org/10.1016/j.precamres.2011.06.002
      [33] Qiao, H. Z., Yin, C. Q., Li, Q. L., et al., 2016. Application of the Revised Ti-in-Zircon Thermometer and SIMS Zircon U-Pb Dating of High-Pressure Pelitic Granulites from the Qianlishan-Helanshan Complex of the Khondalite Belt, North China Craton. Precambrian Research, 276:1-13. https://doi.org/10.1016/j.precamres.2016.01.020
      [34] Rogers, J. J. W., Santosh, M., 2002. Configuration of Columbia, a Mesoproterozoic Supercontinent. Gondwana Research, 5(1):5-22. doi: 10.1016/s1342-937x(05)70883-2
      [35] Santosh, M., 2010. Assembling North China Craton within the Columbia Supercontinent:The Role of Double-Sided Subduction. Precambrian Research, 178(1-4):149-167. https://doi.org/10.1016/j.precamres.2010.02.003
      [36] Santosh, M., Wilde, S. A., Li, J. H., 2007. Timing of Paleoproterozoic Ultrahigh-Temperature Metamorphism in the North China Craton:Evidence from SHRIMP U-Pb Zircon Geochronology. Precambrian Research, 159(3-4):178-196. https://doi.org/10.1016/j.precamres.2007.06.006
      [37] Wan, Y. S., Song, B., Liu, D. Y., et al., 2006. SHRIMP U-Pb Zircon Geochronology of Palaeoproterozoic Metasedimentary Rocks in the North China Craton:Evidence for a Major Late Palaeoproterozoic Tectonothermal Event. Precambrian Research, 149(3-4):249-271. https://doi.org/10.1016/j.precamres.2006.06.006
      [38] Wan, Y. S., Xu, Z. Y., Dong, C. Y., et al., 2013. Episodic Paleoproterozoic (∼2.45, ∼1.95 and ∼1.85 Ga) Mafic Magmatism and Associated High Temperature Metamorphism in the Daqingshan Area, North China Craton:SHRIMP Zircon U-Pb Dating and Whole-Rock Geochemistry. Precambrian Research, 224:71-93. https://doi.org/10.1016/j.precamres.2012.09.014
      [39] Wang, D., Guo, J. H., Liu, F., 2014. Geochemistry, Zircon U-Pb Chronology and Hf Isotope Characteristics of Late Archean Metamorphic Volcanic Rocks in Xiwulanbulang Area, Neimeng: the Formation and Evolution of North China Craton Mountain Massif Instructions. 2014 Annual Meeting of Chinese Geoscience Union, Beijing (in Chinese).
      [40] Whitney, D. L., Evans, B. W., 2010. Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 95(1):185-187. https://doi.org/10.2138/am.2010.3371
      [41] Wu, C. H., 2007. Meta-Sedimentary Rocks and Tectonic Division of the North China Craton. Geological Journal of China Universities, 13(3):442-457 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200703013
      [42] Wu, C. H., Sun, M., Li, H. M., et al., 2006. LA-ICP-MS U-Pb Zircon Ages of the Khondalites from the Wulashan and Jining High-Grade Terrain in Northern Margin of the North China Craton:Constraints on Sedimentary Age of the Khondalite. Acta Petrologica Sinica, 22(11):2639-2654 (in Chinese with English abstract).
      [43] Wu, J. S., Geng, Y. S., Shen, Q. H., et al., 1998. Geological Features and Tectonic Evolution of the Archean in the Chinese and Korean Paleozoic Continents. Geological Publishing House, Beijing (in Chinese).
      [44] Xu, C., Kynický, J., Song, W. L., et al., 2018. Cold Deep Subduction Recorded by Remnants of a Paleoproterozoic Carbonated Slab. Nature Communications, 9(1):2790. https://doi.org/10.1038/s41467-018-05140-5
      [45] Yin, C. Q., Zhao, G. C., Guo, J. H., et al., 2011. U-Pb and Hf Isotopic Study of Zircons of the Helanshan Complex:Constrains on the Evolution of the Khondalite Belt in the Western Block of the North China Craton. Lithos, 122(1):25-38. https://doi.org/10.1016/j.lithos.2010.11.010
      [46] Yin, C. Q., Zhao, G. C., Sun, M., et al., 2009. LA-ICP-MS U-Pb Zircon Ages of the Qianlishan Complex:Constrains on the Evolution of the Khondalite Belt in the Western Block of the North China Craton. Precambrian Research, 174(1-2):78-94. https://doi.org/10.1016/j.precamres.2009.06.008
      [47] Yin, C. Q., Zhao, G. C., Wei, C. J., et al., 2014. Metamorphism and Partial Melting of High-Pressure Pelitic Granulites from the Qianlishan Complex:Constraints on the Tectonic Evolution of the Khondalite Belt in the North China Craton. Precambrian Research, 242:172-186. https://doi.org/10.1016/j.precamres.2013.12.025
      [48] Zhai, M. G., Bian, A. G., Zhao, T. P., 2000. The Late Supercontinent of North China Craton and the Late and Middle Paleoproterozoic Breakup. Science in China (Series D), 30(S1):129-137 (in Chinese).
      [49] Zhai, M. G., Zhao, G. C., Zhang, Q., 2002. Is the Dongwanzi Complex an Archean Ophiolite?. Science, 295(5557):923. https://doi.org/10.1126/science.295.5557.923a
      [50] Zhang, C. L., Gou, L. L., Diwu, C. R., et al., 2018. Early Precambrian Geological Events of the Basement in Western Block of North China Craton and Their Properties and Geological Significance. Acta Petrologica Sinica, 34(4):981-998 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201804008
      [51] Zhang, J. X., Gong, J. H., Yu, S. Y., et al., 2013. Neoarchean-Paleoproterozoic Multiple Tectonothermal Events in the Western Alxa Block, North China Craton and Their Geological Implication:Evidence from Zircon U-Pb Ages and Hf Isotopic Composition. Precambrian Research, 235:36-57. https://doi.org/10.1016/j.precamres.2013.05.002
      [52] Zhao, G. C., 2009. Metamorphic Evolution of the Main Tectonic Units in the Basement of the North China Craton and Its Problems. Acta Petrologica Sinica, 25(8):1772-1792 (in Chinese with English abstract).
      [53] Zhao, G. C., Cawood, P. A., Wilde, S. A., et al., 2002. Review of Global 2.1-1.8 Ga Orogens:Implications for a Pre-Rodinia Supercontinent. Earth-Science Reviews, 59(1-4):125-162. https://doi.org/10.1016/S0012-8252(02)00073-9
      [54] Zhao, G. C., Sun, M., Wilde, S. A., 2002. Characteristics of the Basement Tectonic Unit of the Craton in North China and Early Paleoproterozoic Assemblage. Science in China (Series D), 32(7):538-549 (in Chinese).
      [55] Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton:Key Issues Revisited. Precambrian Research, 136(2):177-202. https://doi.org/10.1016/j.precamres.2004.10.002
      [56] Zhao, G. C., Wilde, S. A., Cawood, P. A., et al., 2001. Archean Blocks and Their Boundaries in the North China Craton:Lithological, Geochemical, Structural and P-T Path Constraints and Tectonic Evolution. Precambrian Research, 107(1-2):45-73. https://doi.org/10.1016/S0301-9268(00)00154-6
      [57] Zhao, Y., Kou, L. L., Zhang, P., et al., 2019. Geochemistry and Hf Isotope Study of~2113 Ma Gabbro in Longchang Area of Liaodong Peninsula:Constraints on Tectonic Evolution of Jiaoliaoji Orogenic Belt. Earth Science, 44(10):3333-3345 (in Chinese with English abstract).
      [58] Zhong, C. T., 2006. Paleoproterozoic Granite Geochemistry, Chronology and Tectonic Significance in the Middle Part of North Margin of North China Craton (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      [59] 艾磊, 平先权, 郑建平, 等, 2020.华北南缘信阳古元古代花岗岩的年代学和地球化学特征及其对地壳演化的启示.地球科学, 45(6):2044-2058. doi: 10.3799/dqkx.2019.277
      [60] 蔡佳, 刘福来, 刘平华, 等, 2014.内蒙古集宁三岔口夕线堇青石榴二长片麻岩变质作用及年代学研究.岩石学报, 30(2):472-490. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201402012
      [61] 董春艳, 刘敦一, 李俊建, 等, 2007.华北克拉通西部孔兹岩带形成时代新证据:巴彦乌拉-贺兰山地区锆石SHRIMP定年和Hf同位素组成.科学通报, 52(16):1913-1922. http://www.cnki.com.cn/Article/CJFDTotal-KXTB200716012.htm
      [62] 董晓杰, 2009.内蒙古西乌兰不浪地区高级变质岩的变质作用特征、时代及其构造意义(硕士学位论文).长春: 吉林大学.
      [63] 董晓杰, 徐仲元, 刘正宏, 等, 2012.内蒙古大青山北麓2.7Ga花岗质片麻岩的发现及其地质意义.地球科学, 31(S1):20-27. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx2012z1003
      [64] 耿元生, 王新社, 沈其韩, 等, 2007.内蒙古阿拉善地区前寒武纪变质岩系形成时代的初步研究.中国地质, 34(2):251-261. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200702006
      [65] 宫江华, 张建新, 于胜尧, 2011.阿拉善地块南缘龙首山岩群及相关岩石的起源和归属:来自LA-ICP-MS锆石U-Pb年龄的制约.岩石矿物学杂志, 30(5):795-818. http://www.cnki.com.cn/Article/CJFDTotal-YSKW201105006.htm
      [66] 刘平华, 刘福来, 蔡佳, 等, 2013.华北克拉通孔兹岩带中段大青山-乌拉山变质杂岩立甲子基性麻粒岩年代学及地球化学研究.岩石学报, 29(2):462-484. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201302009
      [67] 马铭株, 2015.华北克拉通西部典型地区早前寒武纪地质演化——地质、SHRIMP年代学及地球化学研究(博士学位论文).北京: 中国地质科学院.
      [68] 马铭株, 徐仲元, 张连昌, 等, 2013.内蒙古武川西乌兰不浪地区早前寒武纪变质基底锆石SHRIMP定年及Hf同位素组成.岩石学报, 29(2):501-516. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201302011
      [69] 马旭东, 范宏瑞, 郭敬辉, 2013.阴山地块晚太古代岩浆作用、变质作用对地壳演化及BIF成因的启示.岩石学报, 29(7):2329-2339. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201307005
      [70] 王丹, 郭敬辉, 刘富, 2014.内蒙武川西乌兰不浪地区晚太古代变质火山岩的地球化学、锆石U-Pb年代学及Hf同位素特征: 对华北克拉通阴山地块形成与演化的指示.北京: 2014年中国地球科学联合学术年会.
      [71] 吴昌华, 2007.华北克拉通的变质沉积岩及其克拉通的构造划分.高校地质学报, 13(3):442-457. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200703013
      [72] 吴昌华, 孙敏, 李惠民, 等, 2006.乌拉山-集宁孔兹岩锆石激光探针等离子质谱(LA-ICP-MS)年龄——孔兹岩沉积时限的年代学研究.岩石学报, 22(11):2639-2654. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200611003
      [73] 伍家善, 耿元生, 沈其韩, 等, 1998.中朝古大陆太古宙地质特征及构造演化.北京:地质出版社.
      [74] 翟明国, 卞爱国, 赵太平, 2000.华北克拉通新太古代末超大陆拼合及古元古代末-中元古代裂解.中国科学(D辑), 30(S1):129-137. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd2000Z1017
      [75] 张成立, 苟龙龙, 第五春荣, 等, 2018.华北克拉通西部基底早前寒武纪地质事件、性质及其地质意义.岩石学报, 34(4):981-998. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201804008
      [76] 赵国春, 2009.华北克拉通基底主要构造单元变质作用演化及其若干问题讨论.岩石学报, 25(8):1772-1792. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200908004
      [77] 赵国春, 孙敏, Wilde, S. A., 2002.华北克拉通基底构造单元特征及早元古代拼合.中国科学(D辑), 32(7):538-549. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200207002
      [78] 赵岩, 寇林林, 张朋, 等, 2019.辽东半岛隆昌地区~2 113 Ma变辉长岩地球化学与Hf同位素研究:对胶辽吉造山带构造演化的制约.地球科学, 44(10):3333-3345. doi: 10.3799/dqkx.2019.185
      [79] 钟长汀, 2006.华北克拉通北缘中段古元古代花岗岩类地球化学、年代学与构造意义(博士学位论文).北京: 中国地质大学.
    • 加载中
    图(10)
    计量
    • 文章访问数:  722
    • HTML全文浏览量:  267
    • PDF下载量:  59
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-03-10
    • 刊出日期:  2020-09-15

    目录

      /

      返回文章
      返回