Mineralization Characteristics and Mechanism of Foraminifera in Mixed Siliciclastic-Carbonate Sediments in Zhujiang Formation of Pearl River Mouth Basin
-
摘要: 珠江口盆地白云凹陷是我国现今深水油气勘探的重要地区,在其南侧的荔湾X构造的珠江组在3 000~3 281 m以混积岩沉积为主.以荔湾X构造内含有孔虫混积岩为研究对象,通过开展岩石学和同位素地球化学研究,确定了有孔虫宿主岩石类型以及有孔虫矿化的岩相学特征,重点探讨了有孔虫的矿化机制,并最终建立了有孔虫的矿化模式.荔湾X构造珠江组混积岩的生物碎屑以有孔虫碎屑为主,有孔虫壳由刃状、等径状方解石或铁方解石组成.有孔虫的房室可分为未充填、半充填和全充填3种类型.根据有孔虫房室充填的主要自生矿物类型、产状及相互关系,可将有孔虫矿化按其形成的先后分为黄铁矿化、铁方解石化、片钠铝石化和铁白云石化4种类型,其中黄铁矿的形成可能与有孔虫软体组织的生物降解有关,铁方解石可能与有机质热脱羧作用有关,片钠铝石和铁白云石中的“碳”有深部来源的岩浆成因CO2的贡献.Abstract: The Pearl River Mouth basin is an important area for deep water petroleum exploration in China,within which,the Liwan X structure is mainly composed of mixed siliciclastic-carbonate sediments at the depths between 3 000 m and 3 281 m. Petrologic and isotopic geochemical characteristics were investigated by polarizing microscope and carbon-oxygen isotopic analysis. The host rock type of foraminifera and the petrographic characteristics of foraminifera mineralization were determined,and the mineralization mechanism of foraminifera was discussed,and finally the mineralization model of foraminifera was established. The bioclast of Zhujiang Formation is mainly composed of foraminiferal clasts,while the foraminiferal shell is composed of blade-,equal diameter calcite or ferrocalcite. There are mainly three filling patterns for the foraminifera's chamber:unfilled,half-filled and full-filled pattern. According to the types and the occurrences of the main authigenic minerals,the foraminiferal mineralization can be divided into four types,including pyritization,ferrocalcitization,dawsonitization and ankeritization,among which the formation of pyritization may be related to the biodegradation of foraminiferal soft tissue,and the ferrocalcitization may be related to the thermal decarboxylation of organic matter,while the magmatic CO2 provided the carbon sources for the precipitation of dawsonite and ankerite.
-
图 3 混积岩三端元图及岩石类型投点
底图据解习农等(2018)
Fig. 3. Composition diagram for mixed siliciclastic-carbonate sediment samples
图 4 自生矿物典型镜下照片
a.有孔虫体腔被黄铁矿部分充填,3 164.0 m,铸体薄片,单偏光;b.黄铁矿被放射状片钠铝石交代,二者共同填满有孔虫体腔,菱铁矿围绕有孔虫体腔外壁生长,染色后有孔虫体腔呈淡紫色,代表其主要成分为铁方解石,3 180.4 m,单偏光,染色薄片;c.有孔虫体腔内的铁方解石,3 226.3 m,染色薄片,单偏光;d.经染色后紫红色的铁方解石填满有孔虫体腔,3 101.0 m,染色薄片,单偏光;e.染色后呈淡紫色的铁方解石被不变色的菱形白云石交代,二者共同填满有孔虫体腔,另可见一有孔虫体腔被放射状的片钠铝石填满且完全交代,其原始体腔已消失不见,3 226.3 m;f.经染色后有孔虫体腔呈粉色,说明其成分为方解石,有孔虫体腔被铁白云石部分充填,3 164.0 m,染色薄片,单偏光;g.放射状的片钠铝石被自形的铁白云石交代,二者共同填满有孔虫体腔,注意有孔虫体腔已被片钠铝石完全交代,3 226.3 m,染色薄片,单偏光;h.同g,正交偏光.Pore.孔隙;Py.黄铁矿;Sd.菱铁矿;Fora.有孔虫;Daw.片钠铝石;FeC.铁方解石;Dol.白云石;Ank.铁白云石
Fig. 4. Micrographs of diagenetic minerals
图 5 片钠铝石典型镜下照片
a.放射状片钠铝石填满有孔虫体腔,经染色后体腔呈粉色,表示体腔成分为方解石,体腔壁由粒状方解石(蓝色箭头)和纤维状方解石(红色箭头)共同组成,3 213.8 m,染色薄片,单偏光;b.有孔虫体腔被放射状片钠铝石部分充填,3 180.0 m,染色薄片,单偏光;c.有孔虫体腔壁被放射状片钠铝石完全交代,3 226.3 m,正交偏光;d.有孔虫体腔被片钠铝石和铁白云石填满,二者分隔在相邻体腔内,3 164.0 m染色薄片,单偏光;e.多个有孔虫体腔被片钠铝石和铁白云石分别填满,注意被片钠铝石充填的有孔虫,其体腔壁已消失不见,3 226.3 m,染色薄片,单偏光;f.同g,正交偏光.Pore.孔隙;Fora.有孔虫;Daw.片钠铝石;Ank.铁白云石
Fig. 5. Micrographs of dawsonite in mixed siliciclastic-carbonate sediments
图 6 荔湾X构造珠江组片钠铝石碳、氧同位素特征
①本次研究;②Baker et al.(1995), Uysal et al.(2011);③Golab et al.(2006);④Ferrini et al.(2003);⑤Zhao et al.(2018);⑥Liu et al.(2011);⑦Ming et al.(2017);⑧Gao et al.(2009);⑨董林森等(2011);⑩Zalba et al.(2011)
Fig. 6. Plot of δ13C versus δ18O values for dawsonite of Zhujiang Formation in Liwan X
表 1 荔湾X构造珠江组方解石、铁白云石、片钠铝石碳、氧同位素特征
Table 1. Carbon and oxygen isotopic compositions for calcite, ankerite and dawsonite of Zhujiang Formation in Liwan X
埋深(m) 矿物 δ13C(‰, VPDB) δ18O(‰, VPDB) δ18O(‰, SMOW) 平衡的δ13CCO2(‰, VPDB) 3 202 方解石 -3.8 -6.4 24.3 / 3 277 方解石 -5.7 -8.6 22.1 / 3 157 铁白云石 -1.1 -5.9 24.9 / 3 202 铁白云石 -2.0 -4.9 25.9 / 3 277 铁白云石 -4.6 -7.6 23.1 / 3 424 铁白云石 -2.5 -8.1 22.6 / 3 157 片钠铝石 -0.1 -4.9 25.8 -5.4 3 277 片钠铝石 -4.7 -8.4 22.2 -9.1 3 424 片钠铝石 -2.3 -8.4 22.2 -6.4 注:与片钠铝石平衡的δ13CCO2 (‰,PDB)数据系根据实测值和方解石-CO2分馏方程(Ohmoto and Rye, 1979)及相关参数计算. -
[1] Baker, J.C., Bai, G.P., Hamilton, P.J., et al., 1995. Continental-Scale Magmatic Carbon Dioxide Seepage Recorded by Dawsonite in the Bowen-Gunnedah-Sydney Basin System, Eastern Australia. SEPM Journal of Sedimentary Research, 65:522-530. https://doi.org/10.1306/d4268117-2b26-11d7-8648000102c1865d [2] Chang, J.B., Zou, X.P., Yu, G.D., et al., 2017. Mixed Clastic and Carbonate Deposits of Zhujiang Formation in the Southern Huizhou Depression, Zhujiangkou Basin. Marine Origin Petroleum Geology, 22(4): 19-26(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxyqdz201704004 [3] Cózar, P., 2003. Taphonomical Analysis of the Infilling and Early Mineralization in Endothyroids (Foraminiferida, Mississippian). Palaeogeography, Palaeoclimatology, Palaeoecology, 193(3-4): 561-574. https://doi.org/10.1016/s0031-0182(03)00266-9 [4] Dai, J.X., 1995. Abiogenic Gas in Oil-Gas Bearing Basins in China and Its Reserviors. Natural Gas Industry, 15(3): 22-27(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500775122 [5] Dong, L.S., Liu, L., Meng, Q.A., et al., 2011. Generation of Dawsonite Cement of Pyroclastic Rocks in Tongbomiao Formation in Tanan Sag of Tamtsag Basin in Mongolia. Journal of Jilin University (Earth Science Edition), 41(2): 421-431(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb201102012 [6] Elmore, R. D., Engel, M. H., Crawford, L., et al., 1987. Evidence for a Relationship between Hydrocarbons and Authigenic Magnetite. Nature, 325(6103): 428-430. https://doi.org/10.1038/325428a0 [7] Feng, Z.C., Zheng, W.J., 1982. Tectonic Evolution of Zhujiangkou (Pearl-River-Mouth) Basin and Origin of South China Sea. Acta Geologica Sinica, 56(3): 212-222. [8] Ferrini, V., Martarelli, L., de Vito, C., et al., 2003. The Koman Dawsonite and Realgar Orpiment Deposit, Northern Albania: Inferences on Processes of Formation. The Canadian Mineralogist, 41(2): 413-427. https://doi.org/10.2113/gscanmin.41.2.413. [9] Gao, Y. Q., Liu, L., Hu, W. X., 2009. Petrology and Isotopic Geochemistry of Dawsonite-Bearing Sandstones in Hailaer Basin, Northeastern China. Applied Geochemistry, 24(9): 1724-1738. https://doi.org/10.1016/j.apgeochem.2009.05.002 [10] Golab, A. N., Carr, P. F., Palamara, D. R., 2006. Influence of Localised Igneous Activity on Cleat Dawsonite Formation in Late Permian Coal Measures, Upper Hunter Valley, Australia. International Journal of Coal Geology, 66(4): 296-304. https://doi.org/10.1016/j.coal.2005.08.001 [11] Li, P.L., 1993. Cenozoic Tectonic Movement in the Pearl River Mouth Basin. China Offshore Oil and Gas (Geology), 7(6):11-17 (in Chinese with English abstract). [12] Li, Y., 2012. Deep-Water Sedimentology of the Miocene Zhujiang Formation in Baiyun Sag, Pearl River Mouth Basin(Dissertation). Chengdu University of Technology, Chengdu(in Chinese with English abstract). [13] Liu, N., Liu, L., Qu, X. Y., et al., 2011. Genesis of Authigene Carbonate Minerals in the Upper Cretaceous Reservoir, Honggang Anticline, Songliao Basin: A Natural Analog for Mineral Trapping of Natural CO2 Storage. Sedimentary Geology, 237(3-4): 166-178. https://doi.org/10.1016/j.sedgeo.2011.02.012 [14] Liu, N., Wu, K.Q., Liu, L., et al., 2019. Dawsonite Characteristics and Its Implication on the CO2 in Yinggehai-Huangliu Formation of Ledong Area, Yinggehai Basin. Earth Science, 44(8):2695-2703 (in Chinese with English abstract). [15] Love, L. G., 1967. Early Diagenetic Iron Sulphide in Recent Sediments of the Wash (England). Sedimentology, 9(4): 327-352. https://doi.org/10.1111/j.1365-3091.1967.tb01339.x [16] Ma, B.J., Qin, Z.L., Wu, S.G., et al., 2018. Types and Genesis of the Mixed Deposits in the Pearl River Mouth Basin of South China Sea. Marine Geology & Quaternary Geology, 38(6): 149-158(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201806015 [17] Mazzullo, S. J., 2000. Organogenic Dolomitization in Peritidal to Deep-Sea Sediments. Journal of Sedimentary Research, 70(1): 10-23. https://doi.org/10.1306/2dc408f9-0e47-11d7-8643000102c1865d [18] Ming, X. R., Liu, L., Yu, L., et al., 2017. Thin-Film Dawsonite in Jurassic Coal Measure Strata of the Yaojie Coalfield, Minhe Basin, China: A Natural Analogue for Mineral Carbon Storage in Wet Supercritical CO2. International Journal of Coal Geology, 180: 83-99. https://doi.org/10.1016/j.coal.2017.07.007 [19] Morad, S., 1998. Carbonate Cementation in Sandstones: Distribution Patterns and Geochemical Evolution. In: Morad, S., ed., Carbonate Cementation in Sandstones. International Association of Sedimentologists. [20] Ohmoto, H., Rye, R.O., 1979. Isotopes of Sulfur and Carbon. In: Barnes, H.L., ed., Geochemistry of Hydrothermal Ore Deposits(2nd Edition). Wiley Press, New York, 509-567. [21] Pang, J., 2018. Formation Mechanism and Vertical Distribution of Ankerite in Tertiary Reservoir and the Relationship to the CO2 Fluid Activities, Baiyun Sag, the Pearl River Mouth Basin (Dissertation). Northwest Uinversity, Xi'an (in Chinese with English abstract). [22] Pang, J., Luo, J.L., Ma, Y.K., et al., 2019. Forming Mechanism of Ankerite in Tertiary Reservoir of the Baiyun Sag, Pearl River Mouth Basin, and Its Relationship to CO2-Bearing Fluid Activity. Acta Geologica Sinica, 93(3): 724-737(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201903016 [23] Pang, X., Chen, C. M., Peng, D. J., et al., 2007. Sequence Stratigraphy of Deep-Water Fan System of Pearl River, South China Sea. Earth Science Frontiers, 14(1): 220-229. https://doi.org/10.1016/s1872-5791(07)60010-4 [24] Rollinson, H. R., 1993. A Terrane Interpretation of the Archaean Limpopo Belt. Geological Magazine, 130(6): 755-765. https://doi.org/10.1017/s001675680002313x [25] Uysal, I. T., Golding, S. D., Bolhar, R., et al., 2011. CO2 Degassing and Trapping during Hydrothermal Cycles Related to Gondwana Rifting in Eastern Australia. Geochimica et Cosmochimica Acta, 75(19): 5444-5466. https://doi.org/10.1016/j.gca.2011.07.018 [26] Wang, D.F., Luo, J.L., Chen, S.H., et al., 2017. Carbonate Cementation and Origin Analysis of Deep Sandstone Reservoirs in the Baiyun Sag, Pearl River Mouth Basin. Acta Geologica Sinica, 91(9): 2079-2090(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201709011 [27] Wang, D.R., 2000. Stable Isotope Geochemistry of Oil and Gas. Geological Publishing House, Beijing, 17-18, 49-53 (in Chinese). [28] Wang, J.L., Zhang, X.B., Wu, J.S., et al., 2002. Integrated Geophysical Researches on Base Texture of Zhujiang River Mouth Basin. Journal of Tropical Oceanography, 21(2): 13-22(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rdhy200202002 [29] Wang, Y., 2012. Genetic Model and Hydrocarbon Exploration Potential of Mixed Sediment in Liwan Area of Baiyun Sag, Pearl River Mouth Basin (Dissertation). Institute of Oceanology, Chinese Academy of Sciences, Qingdao (in Chinese with English abstract). [30] Watson, M.N., Zwingmann, N., Lemon, N. M., 2004. The Ladbroke Grove-Katnook Carbon Dioxide Natural Laboratory: A Recent CO2 Accumulation in a Lithic Sandstone Reservoir. Energy, 29(9-10): 1457-1466. https://doi.org/10.1016/j.energy.2004.03.079 [31] Worden, R. H., 2006. Dawsonite Cement in the Triassic Lam Formation, Shabwa Basin, Yemen: A Natural Analogue for a Potential Mineral Product of Subsurface CO2 Storage for Greenhouse Gas Reduction. Marine and Petroleum Geology, 23(1): 61-77. https://doi.org/10.1016/j.marpetgeo.2005.07.001 [32] Worden, R.H., Burley, S.D., 2003. Sandstone Diagenesis: The Evolution of Sand to Stone. In: Burley, S.D., Worden, R.H., eds., Sandstone Diagenesis: Recent and Ancient. International Association of Sedimentologists, Reprint Series, 3-44. [33] Xie, X.N., Ye, M.S., Xu, C.G., et al., 2018. High Quality Reservoirs Characteristics and Forming Mechanisms of Mixed Siliciclastic-Carbonate Sediments in the Bozhong Sag, Bohai Bay Basin. Earth Science, 43(10): 3526-3539 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201810015 [34] Xu, L., Xie, Q.Q., Chen, T.H., et al., 2017. Mineralogical Characteristics of Colloform Pyrite Siderite Ore from the Xinqiao Deposit and Its Role in Mineralization of the Stratabound Sulfide Deposit in Tongling Ore District, Eastern China. Geological Review, 63(6): 1523-1534(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201706009 [35] Ye, M.S., Xie, X.N., Xu, C.G., et al., 2018. Discussion for Classification-Designation System of Mixed Siliciclastic-Carbonate Sediments and the Implication for Their Reservoir Prediction: A Case Study of Mixed Sediments from Bohai Sea Area. Geological Review, 64(5): 1118-1131(in Chinese with English abstract). [36] Yuan, Y.S., Ding, M.G., 2008. Characteristics and Geodynamic Setting of the Basins in Deepwater Area of the Northern South China Sea Margin. Marine Sciences, 32(12): 102-110(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hykx200812018 [37] Zalba, P. E., Conconi, M. S., Morosi, M., et al., 2011. Dawsonite in Tuffs and Litharenites of the Cerro Castano Member, Cerro Barcino Formation, Chubut Group (Cenomanian), Los Altares, Patagonia, Argentina. The Canadian Mineralogist, 49(2): 503-520. https://doi.org/10.3749/canmin.49.2.503 [38] Zhao, S., Liu, L., Liu, N., 2018. Petrographic and Stable Isotopic Evidences of CO2-Induced Alterations in Sandstones in the Lishui Sag, East China Sea Basin, China. Applied Geochemistry, 90: 115-128. https://doi.org/10.1016/j.apgeochem.2018.01.004 [39] Zhou, D., Sun, Z., Chen, H. Z., et al., 2008. Mesozoic Paleogeography and Tectonic Evolution of South China Sea and Adjacent Areas in the Context of Tethyan and Paleo-Pacific Interconnections. Island Arc, 17(2): 186-207. https://doi.org/10.1111/j.1440-1738.2008.00611.x [40] Zou, H.P., Li, P.L., Rao, C.T., 1995. Geochemistry of Cenozoic Volcanic Rocks in Zhujiangkou Basin and Its Geodynamic Significance. Geochimica, 24(Suppl.): 33-45(in Chinese with English abstract). [41] 昌建波, 邹晓萍, 余国达, 等, 2017.珠江口盆地惠州凹陷南部珠江组混合沉积作用.海相油气地质, 22(4): 19-26. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxyqdz201704004 [42] 戴金星, 1995.中国含油气盆地的无机成因气及其气藏.天然气工业, 15(3): 22-27. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500775122 [43] 董林森, 刘立, 蒙启安, 等, 2011.蒙古国塔木察格盆地塔南凹陷铜钵庙组火山碎屑岩中片钠铝石胶结物的成因.吉林大学学报(地球科学版), 41(2): 421-431. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb201102012 [44] 李平鲁, 1993.珠江口盆地新生代构造运动.中国海上油气(地质), 7(6):11-17. [45] 李云, 2012.珠江口盆地白云凹陷中新统珠江组深水沉积学(博士学位论文).成都: 成都理工大学. [46] 刘娜, 吴克强, 刘立, 等, 2019.莺歌海盆地乐东区片钠铝石特征及其对浅层CO2充注的指示.地球科学, 44(8):2695-2703. doi: 10.3799/dqkx.2019.106 [47] 马本俊, 秦志亮, 吴时国, 等, 2018.南海珠江口盆地深水区混合沉积类型及其形成机制.海洋地质与第四纪地质, 38(6): 149-158. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201806015 [48] 庞江, 2018.白云凹陷第三系储层中铁白云石的分布特征、成因机理及其与CO2活动的关系(硕士学位论文).西安: 西北大学. [49] 庞江, 罗静兰, 马永坤, 等, 2019.白云凹陷第三系储层中铁白云石的成因机理及与CO2活动的关系.地质学报, 93(3): 724-737. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201903016 [50] 王大锐, 2000.油气稳定同位素地球化学.北京: 地质出版社, 17-18, 49-53. [51] 王代富, 罗静兰, 陈淑慧, 等, 2017.珠江口盆地白云凹陷深层砂岩储层中碳酸盐胶结作用及成因探讨.地质学报, 91(9): 2079-2090. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201709011 [52] 王家林, 张新兵, 吴健生, 等, 2002.珠江口盆地基底结构的综合地球物理研究.热带海洋学报, 21(2): 13-22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rdhy200202002 [53] 王莹, 2012.珠江口盆地白云凹陷荔湾井区珠海组混合沉积成因模式及其油气勘探前景(硕士学位论文).青岛: 中国科学院海洋研究所. [54] 解习农, 叶茂松, 徐长贵, 等. 2018.渤海湾盆地渤中凹陷混积岩优质储层特征及成因机理.地球科学, 43(10): 3526-3539. doi: 10.3799/dqkx.2018.277 [55] 徐亮, 谢巧勤, 陈天虎, 等, 2017.铜陵矿集区层状硫化物矿床成因:来自胶状黄铁矿-菱铁矿型矿石矿物学制约.地质论评, 63(6): 1523-1534. [56] 叶茂松, 解习农, 徐长贵, 等, 2018.混积岩分类命名体系探讨及对混积岩储层评价的启示:以渤海海域混积岩研究为例.地质论评, 64(5): 1118-1131. [57] 袁玉松, 丁玫瑰, 2008.南海北部深水区盆地特征及其动力学背景.海洋科学, 32(12): 102-110. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hykx200812018 [58] 邹和平, 李平鲁, 饶春涛, 1995.珠江口盆地新生代火山岩地球化学特征及其动力学意义.地球化学, 24(增刊): 33-45.