• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    渤海海域环渤中地区沙一二段混积岩优质储层差异及成因

    庞小军 牛成民 杜晓峰 王清斌 代黎明

    庞小军, 牛成民, 杜晓峰, 王清斌, 代黎明, 2020. 渤海海域环渤中地区沙一二段混积岩优质储层差异及成因. 地球科学, 45(10): 3853-3869. doi: 10.3799/dqkx.2020.078
    引用本文: 庞小军, 牛成民, 杜晓峰, 王清斌, 代黎明, 2020. 渤海海域环渤中地区沙一二段混积岩优质储层差异及成因. 地球科学, 45(10): 3853-3869. doi: 10.3799/dqkx.2020.078
    Pang Xiaojun, Niu Chengmin, Du Xiaofeng, Wang Qingbin, Dai Liming, 2020. Differences and Genesis of High-Quality Reservoirs of Mixed Siliciclastic-Carbonate Rocks in the Es12 around Bozhong Depression, Bohai Sea. Earth Science, 45(10): 3853-3869. doi: 10.3799/dqkx.2020.078
    Citation: Pang Xiaojun, Niu Chengmin, Du Xiaofeng, Wang Qingbin, Dai Liming, 2020. Differences and Genesis of High-Quality Reservoirs of Mixed Siliciclastic-Carbonate Rocks in the Es12 around Bozhong Depression, Bohai Sea. Earth Science, 45(10): 3853-3869. doi: 10.3799/dqkx.2020.078

    渤海海域环渤中地区沙一二段混积岩优质储层差异及成因

    doi: 10.3799/dqkx.2020.078
    基金项目: 

    国家科技重大专项 2016ZX05024-003

    详细信息
      作者简介:

      庞小军(1985-), 男, 高级工程师, 硕士, 从事石油地质综合研究工作.ORCID:0000-0002-6095-2332.E-mail:pangxj@cnooc.com.cn

    • 中图分类号: P618.13

    Differences and Genesis of High-Quality Reservoirs of Mixed Siliciclastic-Carbonate Rocks in the Es12 around Bozhong Depression, Bohai Sea

    • 摘要: 渤海海域环渤中地区沙一二段发育混积岩储层,其中发现了大量的油气,但储层物性差异较大,非均质性较强,其差异及成因方面的研究较少,严重制约了该类型储层的进一步勘探评价.利用钻井及常规物性、铸体薄片、全岩、黏土矿物等分析化验资料,探讨了环渤中地区沙一二段混积岩优质储层的差异及成因.研究结果表明:(1)环渤中地区沙一二段发育以生物碎屑为主的混积岩、以陆源碎屑为主的混积岩和以化学沉淀碳酸盐为主的混积岩储层,前2类储层中发育大量的螺壳和介壳.其中,生物碎屑为主的混积岩储层以生物体腔孔为主,白云石化作用强,物性最好;陆源碎屑为主的混积岩储层以溶蚀孔为主,生物体腔孔和原生孔次之,泥晶包壳发育、白云石化作用强、含大量中酸性火山岩岩屑、埋藏浅的储层物性好;化学沉淀碳酸盐为主的混积岩储层方解石胶结作用强,物性较差.不同构造混积岩储层类型及物性具有明显的差异性.(2)研究区混积岩储层差异主要受母岩类型、基底岩性、沉积水体环境、沉积相、大气淡水淋滤、埋深压实作用、胶结作用、溶解作用以及构造作用的共同控制,但每个构造的优质储层均具有独特的控制因素组合.非碳酸盐岩母岩区,原生沉积期-火成岩基底、含大量生物碎屑混积岩,准同生期-大气淡水淋滤、早期白云石化,以及深埋藏期-强溶解、裂缝发育是环渤中坳陷沙一二段混积岩优质储层形成的共性.混积岩优质储层差异及成因分析为陆相断陷湖盆中深部油气勘探和评价过程中优质储层的预测具有重要的借鉴意义.

       

    • 图  1  研究区位置(a)及地层综合柱状图(b)

      Fig.  1.  Location and stratigraphic histogram of the study area

      图  2  研究区混积岩岩石学特征

      Fig.  2.  Petrological characteristics of mixed siliciclastic-carbonate rocks in the study area

      图  3  混积岩储层物性特征

      a.孔隙度与渗透率交会图;b.孔隙度与深度关系图;c.渗透率与深度关系图;d.孔隙度分布频率直方图;e.渗透率分布频率直方图

      Fig.  3.  Physical properties of mixed siliciclastic-carbonate rock reservoirs

      图  4  研究区混积岩储层储集空间微观特征

      a.生屑质砾岩,砾间发育生物体腔孔(原生和溶解形成),QHD29-1井,3 311.50 m,单偏光;b.含生屑砂质砾岩,岩屑边缘溶蚀,长石内部溶蚀形成溶蚀孔、铸模孔,QHD29-1井,3 331.50 m,单偏光;c.含生屑砾质砂岩,原生孔、铸模孔、生物体腔孔、溶蚀孔,QHD29-2井,3 362.00 m,单偏光;d.含生屑砂岩,溶蚀孔,QHD29-1井,3 406.00 m,单偏光;e.生屑白云岩,生物体腔孔(包括原生和溶解形成),BZ13-c井,4 095.90 m,单偏光;f.含陆屑生屑白云岩,粒间白云石溶解,粒间溶蚀孔,BZ13-c井,4 095.90 m,单偏光;g.含陆屑生屑白云岩,生物体腔孔,岩屑溶蚀孔,QHD29-2井,3 433.00 m;h.陆屑质白云岩,岩屑、长石、白云石等溶解形成的溶蚀孔(粒内、粒间),QHD29-2井,3 375.37 m,单偏光

      Fig.  4.  Microscopic characteristics of reservoir space in mixed siliciclastic-carbonate rock reservoirs in the study area

      图  5  研究区基底性质与混积岩优质储层的关系

      Fig.  5.  Relationship between basement properties of the study area and high-quality reservoirs of mixed rocks

      图  6  研究区母岩类型与混积岩储层物性的关系

      a.火山岩岩屑含量与面孔率的关系;b.长石含量与溶蚀孔的关系;c.火山岩岩屑被强烈溶蚀,长石溶蚀呈蜂窝状,溶蚀孔大量发育;d.碳酸盐岩岩屑含量与胶结物的关系;e.碳酸盐岩岩屑含量与面孔率的关系;f.碳酸盐岩岩屑为主,粒间被方解石大量充填,孔隙不发育

      Fig.  6.  Relationship between parent rock types and physical properties of mixed rock reservoirs in the study area

      图  7  研究区沉积作用与混积岩储层的关系

      a.微量元素分析,参考张藜等(2019);b.泥晶包壳与压实孔隙度的关系, 参考解习农等(2018);c.沉积微相、岩性、杂基与物性的关系

      Fig.  7.  Relationship between sedimentation in the study area and the reservoir of the mixed rock

      图  8  研究区大气淡水淋滤特征

      a.长石溶蚀形成的铸模孔,QHD29-1井,3 406.00 m;b.扫描电镜下长石沿解理缝溶蚀,形成粒内溶蚀孔,QHD29-2井,3 325.00 m;c.阴极发光下颗粒间充填大量的高岭石(靛蓝色),QHD29-2井,3 375.08 m;d.镜下钟乳状胶结,胶结物具单向加厚的特点,QHD29-2井,3 382.34 m,单偏光;e.岩心上发育明显的淋滤缝,缝中充填渗滤黏土,砾石周围被高岭石充填,QHD29-2井,3 375.45~3 375.60 m;f.砾石边缘被蚀变高岭石充填,边缘不完整,自形差,碎片状,晶粒小,QHD29-2井,3 374.31 m;g.白云石被高岭石包裹,表明粒间高岭石形成时间晚于白云石,QHD29-2井,3 372.95 m,扫描电镜;h.不同构造碳、氧同位素分布特征

      Fig.  8.  Atmospheric freshwater leaching characteristics in the study area

      图  9  研究区成岩作用特征

      a.生屑云岩,螺壳保存完整,抗压实能力强,体腔孔发育,BZ13-b井,4 096.00 m,单偏光;b.生屑云岩,介壳保存完整,抗压实能力强,体腔孔发育,BZ13-b井,4 095.90 m,单偏光;c.含云砂砾岩,泥晶白云石包壳具有抗压实作用,颗粒点-凹凸接触,保留部分原生孔隙,BZ13-b井,4 103.60 m,单偏光;d.铁白云石胶结,孔隙被充填,BZ27-2井,3 792.45 m,单偏光;e.铁方解石胶结,充填孔隙或交代颗粒,BZ27-2井,3 782.22 m,单偏光;f.方解石和白云石胶结,方解石和白云石充填孔隙,QHD29-1井,3 387.00 m,正交光;g.黏土矿物胶结,粒间被丝片状伊利石充填,BZ27-2井,3 789.95 m,扫描电镜;h.黏土矿物胶结,粒间充填白云石和高岭石,QHD29-2井,3 340.78 m,扫描电镜;i.黄铁矿胶结,白云石充填孔隙,QHD29-2井,3 371.93 m,扫描电镜;j.泥晶白云石包壳,环绕砾石及砾间碎屑颗粒,抗压实作用明显,QHD29-2井,3 377.33 m,阴极发光;k.白云石胶结及溶解,白云石呈泥晶包壳环绕颗粒并呈亮晶充填孔隙,并发生溶蚀,QHD29-2井,3 453.00 m,正交光;l.微裂缝,靠近微裂缝的位置溶蚀现象明显,BZ27-2井,3 788.01 m,单偏光

      Fig.  9.  Diagenesis characteristics of the study area

      图  10  研究区混积岩储层中胶结物与物性的关系

      a.白云石与孔隙度的关系;b.方解石与孔隙度的关系;c.铁白云石与面孔率的关系;d.铁方解石与面孔率的关系;e.黄铁矿与面孔率的关系;f.黏土矿物与孔隙度的关系

      Fig.  10.  Relationship between cement and physical properties in mixed rock reservoirs in the study area

      表  1  研究区混积岩储层埋深、厚度、基岩、古地貌、母岩、物性统计

      Table  1.   Statistics of buried depth, thickness, bedrock, paleogeomorphology, parent rock and physical properties of mixed rock reservoirs in the study area

      位置 埋深(m) 厚度(m) 基底岩性 古地貌 母岩类型 孔隙度/平均值(%) 渗透率/平均值(10-3μm2)
      秦皇岛29 3 212~3 501 298 砂砾岩 陡坡带、断层下降盘 中酸性火山岩 0.5~34.6/17.1 0.1~767.5/24.4
      渤中27 3 690~3 938 248 砂砾岩 陡坡带断层下降盘 花岗岩、中酸性火山岩、碳酸盐岩 0.5~32.7/9.0 0.1~4.3/0.2
      渤中29 2 354~2 381 27 砂砾岩 陡坡带断层下降盘 碳酸盐岩为主 0.4~36.9/14.2 0~1 038.2/64.7
      秦皇岛36 3 759~3 833 74 泥岩 局部隆起 中酸性火山岩 2.3~40.1/26.5 0.02~2 350.2/410.5
      渤中13 4 095~4 111 16 砂砾岩与火山岩 局部隆起叠合缓坡带 中酸性火山岩 4.1~37.5/22.3 0.02~992.8/176.5
      下载: 导出CSV

      表  2  研究区混积岩储层中胶结物和方解石脉的碳、氧同位素统计

      Table  2.   Carbon and oxygen isotope statistics of cement and calcite veins in the mixed rock reservoirs of the study area

      构造 井号 深度(m) 岩性 测试位置 δ13CPDB(‰) δ18OPDB(‰) 古温度(℃)
      秦皇岛29 QHD29-1 3 451.00 亮晶生屑白云岩 胶结物 -2.40 -15.20 92.10
      QHD29-1 3 457.20 亮晶生屑白云岩 胶结物 -3.30 -14.10 85.82
      QHD29-2 3 368.41a 细砂岩 胶结物 2.00 -0.50 16.13
      QHD29-2 3 368.41b 细砂岩 方解石脉 0.30 -15.80 95.57
      QHD29-2 3 368.42a 细砂岩 方解石脉 2.00 -0.70 17.05
      QHD29-2 3 368.42b 细砂岩 胶结物 0.70 -15.30 92.68
      QHD29-2 3 368.43a 细砂岩 方解石脉 2.10 -0.40 15.67
      QHD29-2 3 368.43b 细砂岩 胶结物 0.60 -16.20 97.90
      QHD29-2 3 369.57a 含生屑砂岩 胶结物 1.40 -2.20 24.03
      QHD29-2 3 369.57b 含生屑砂岩 方解石脉 0.60 -15.50 93.83
      QHD29-2 3 373.68 含生屑粗砂岩 胶结物 1.90 -1.10 18.89
      QHD29-2 3 375.87 含生屑粗砂岩 胶结物 0.90 -4.20 33.62
      QHD29-2 3 380.55 含生屑粗砂岩 胶结物 -0.20 -7.60 50.66
      QHD29-2 3 381.94 含生屑粗砂岩 胶结物 -0.30 -10.00 63.25
      QHD29-2 3 382.34 含生屑粗砂岩 胶结物 -0.60 -10.40 65.39
      QHD29-2 3 383.17 含生屑粗砂岩 胶结物 0.60 -8.50 55.33
      QHD29-2 3 385.17 含生屑砂砾岩 胶结物 -1.10 -11.30 70.26
      QHD29-2 3 385.20 含生屑砾岩 胶结物 -1.40 -11.10 69.17
      渤中13 BZ13-b 4 095.07a 生屑白云岩 生物体腔内充填物 -2.54 -18.15 109.40
      BZ13-b 4 095.07b 生屑白云岩 生物体腔内充填物 -0.50 -13.32 81.43
      BZ13-b 4 095.07c 生屑白云岩 生物体腔 1.34 -10.82 67.65
      BZ13-b 4 105.75a 生屑白云岩 粒间孔隙充填物 -4.14 -6.36 44.33
      BZ13-b 4 105.75b 生屑白云岩 颗粒外包壳 1.60 -4.74 36.26
      BZ13-b 4 105.75c 生屑白云岩 生物从内至外不同圈层 -0.39 -8.59 55.78
      BZ13-b 4 105.75d 生屑白云岩 生物从内至外不同圈层 0.72 -6.49 45.02
      BZ13-b 4 105.75e 生屑白云岩 生物从内至外不同圈层 -0.14 -8.90 57.43
      BZ13-b 4 105.75f 生屑白云岩 生物从内至外不同圈层 0.42 -6.82 46.67
      BZ13-b 4 105.75g 生屑白云岩 生物从内至外不同圈层 0.95 -0.54 16.29
      BZ13-b 4 105.75h 生屑白云岩 生物从内至外不同圈层 1.00 -0.52 16.24
      秦皇岛36 QHD36-1 3 766.50 生屑白云岩 胶结物 4.00 -3.10 28.31
      QHD36-1 3 766.75 生屑白云岩 胶结物 4.00 -3.00 27.83
      QHD36-1 3 766.90 生屑白云岩 胶结物 4.30 -3.00 27.83
      QHD36-1 3 767.06 生屑白云岩 胶结物 4.40 -3.10 28.31
      QHD36-1 3 767.38 生屑白云岩 胶结物 4.00 -2.90 27.35
      QHD36-1 3 676.50 生屑白云岩 胶结物 4.00 -2.60 25.92
      QHD36-1 3 676.70 生屑白云岩 胶结物 4.00 -3.20 28.79
      QHD36-1 3 768.03 生屑白云岩 胶结物 3.70 -2.70 26.40
      注:古温度T=13.85-4.54×δ18OPDF+0.04×(δ18OPDF)2;据Keith and Weber(1964);表中上标a~h是指不同测试位置.
      下载: 导出CSV

      表  3  研究区混积岩储层成岩作用强度统计(单位:%)

      Table  3.   Diagenesis intensity of mixed rock reservoirs in the study area (%)

      位置 初始孔隙度/平均值 压实作用 胶结作用 溶解作用
      损失孔隙度/平均值 损孔率/平均值 损失孔隙度/平均值 损孔率/平均值 增加孔隙度/平均值 增孔率/平均值
      秦皇岛29 25.1~34.1/30.0 0.2~28.4/10.1 0.5~96.6/35.8 1.1~28.0/15.0 3.7~99.4/53.0 0.0~18.1/7.0 0.0~66.5/26.0
      渤中27 27.1~36.0/30.2 0.5~31.9/17.5 2.1~99.5/57.6 0.2~31.5/13.4 0.1~92.7/44.0 1.8~13.1/7.0 7.5~45.4/25.0
      下载: 导出CSV

      表  4  研究区混积岩储层胶结物含量、孔隙度统计(单位:%)

      Table  4.   Cement content and porosity of mixed rock reservoir in research area (%)

      位置 方解石/平均值 白云石/平均值 铁白云石/平均值 黏土矿物/平均值 黄铁矿/平均值 孔隙度/平均值
      秦皇岛29 0~69.0/4.0 0~86/42.8 0 2.0~76.0/9.9 0~26.0/2.9 0.5~34.6/17.1
      渤中27 0~59.0/13.1 0~66/6.1 0~63.0/10.2 2.0~28.0/10.8 0~3.0/0.5 0.5~32.7/9.0
      渤中29 0~90.0/26.3 3.0~95.0/36.0 0 / 0 0.4~36.9/14.2
      秦皇岛36 1.0~73.0/9.7 4.0~89.0/63.4 0 2.0~27.0/6.0 0 2.3~40.1/26.5
      渤中13 0 88.0~96.0/91.0 0 1.0~2.0/1.6 0~2.0/0.4 4.1~37.5/22.3
      下载: 导出CSV
    • [1] Deng, Y., Pu, X.G., Chen, S.Y., et al., 2019. Characteristics and Controlling Factors of Fine-Grained Mixed Sedimentary Rocks Reservoir:A Case Study of the 2nd Member of Kongdian Formation in Cangdong Depression, Bohai Bay Basin. Journal of China University of Mining & Technology, 48(6):1-16 (in Chinese with English abstract).
      [2] Du, X.F., Pang, X.J., Wang, Q.B., et al., 2017. Restoration of the Paleo-Provenance of the Es12 in the Eastern of Shijiutuo Uplift and Its Control on Reservoir. Earth Science, 42(11):1897-1909 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201711004
      [3] Ding, X.Q., Han, M.M., Zhang, S.N., et al., 2014. Roles of Meteoric Water on Secondary Porosity of Siliciclastic Reservoirs. Geological Review, 60(1):145-158 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201401014
      [4] Dong, Y.L., Zhu, X.M., Hua, S.J., et al., 2011. Genetic Types and Evolutionary Model of Mixed Clastic-Carbonate Deposits in the Lower Part of the Sha-1 Formation, the Huanghua Depression. Oil & Gas Geology, 32(1):98-107 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYYT201101014.htm
      [5] Huo, S.J., Yang, X.H., Wang, Q.B., et al., 2015. Controlling Factors on Diamictite Reservoir in Shahejie Formation, H-1 Structure, Huanghekou Depression. Geoscience, 29(6):1348-1359 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201506009
      [6] Keith, M.L., Weber, J.N., 1964. Carbon and Oxygen Isotopic Composition of Selected Limestones and Fossils. Geochimica et Cosmochimica Acta, 28(10-11):1787-1816. https://doi.org/10.1016/0016-7037(64)90022-5
      [7] Liu, X.X., Zhang, Y., Pu, B.Y., et al., 2019. Meteoric Water Dissolution in Deepwater Tight Sandstone of Yanchang Formation in Ordos Basin and Its Geological Significance. Natural Gas Exploration and Development, 42(2):48-55 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqktykf201902007
      [8] Lü, Z.X., Song, X.Z., Zhang, J., et al., 2016. Characteristics and Genesis of Paleogene Deeply-Buried High-Porosity Lacustrine Dolomite Reservoirs in the Central Bohai Sea Area. Natural Gas Industry, 36(12):10-17 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201612002
      [9] Mount, J.F., 1984. Mixing of Siliciclastic and Carbonate Sediments in Shallow Shelf Environments. Geology, 12(7):432-435. https://doi.org/10.1130/0091-7613(1984)12432:mosacs>2.0.co; 2 doi: 10.1130/0091-7613(1984)12<432:MOSACS>2.0.CO;2
      [10] Pang, X.J., Wang, Q.B., Wan, L., et al., 2018. Quality Differences and Its Influence on Glutenite Reservoirs in the Ed3 of the Northeast Margin, Shanan Sag, Bohai Sea. Journal of China University of Mining & Technology, 47(3):615-630 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkydxxb201803016
      [11] Song, Z.Q., Chen, Y.F., Du, X.F., et al., 2013. Study on Sedimentary Characteristics and Reservoir of Second Member of Shahejie Formation, a Structural Area, Bohai Sea. Offshore Oil, 33 (4):13-18 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hysy201304003
      [12] Su, A., Chen, H.H., Wang, C.W., et al., 2016. Densification Mechanism and Diagenesis Fluid Evolution of Low-Porosity and Low-Permeability Tight Sandstone Reservoir:An Example from Huagang Formation in the Northern of the Central Anticlinal Zone in Xihu Depression, East China Sea. Journal of China University of Mining & Technology, 45(5):972-981, 1029 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZGKD201605016.htm
      [13] Thompson, D.L., Stilwell, J.D., Hall, M., 2015. Lacustrine Carbonate Reservoirs from Early Cretaceous Rift Lakes of Western Gondwana:Pre-Salt Coquinas of Brazil and West Africa. Gondwana Research, 28(1):26-51. https://doi.org/10.1016/j.gr.2014.12.005
      [14] Wang, G.M., Zhang, J., Wang, Q.B., et al., 2018. Factors Controlling Medium-to-Deep Coarse Siliciclastic Reservoirs of High Quality at the Southeastern Margin of Qinnan Sag, Bohai Bay Basin, China. Oil & Gas Geology, 39(2):330-339 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201802012
      [15] Wang, Q.B., Liu, L., Niu, C.M., et al., 2018. Impacts of the Freshwater Diagenetic Environment to the Mix-Deposition of Lacustrine Carbonate and Clastic at the Steep Slope of Shijiutuo Uplift, Bohai Bay Basin. Earth Science, 43(Suppl.2):234-242 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX2018S2019.htm
      [16] Wang, Q.B., Liu, L., Niu, C.M., et al., 2019. The Geological Evidences and Impacts of Deep Thermal Fluid on Lacustrine Carbonate Reservoir in the Actic Area of the North Part of Bozhong Depression, Bohai Bay Basin. Earth Science, 44 (8):2751-2760 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201908019
      [17] Wang, Y., Wu, H.J., Liu, H.Z., et al., 2018. Bioclastic Dolomite Reservoir Characteristics and Controlling Factors in S1 Formation of BZ13-1 Oilfield in Bohai Bay. Journal of Chongqing University of Science and Technology(Natural Science Edition), 20(5):11-16 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cqsygdzkxxxb201805004
      [18] Wang, Y.Z., Cao, Y.C., Xi, K.L., et al., 2013. A Recovery Method for Porosity Evolution of Clastic Reservoirs with Geological Time:A Case Study from the Upper Submember of Es4 in the Dongying Depression, Jiyang Subbasin. Acta Petrolei Sinica, 34(6):1100-1111 (in Chinese with English abstract).
      [19] Warren, J., 2000. Dolomite:Occurrence, Evolution and Economically Important Associations. Earth-Science Reviews, 52(1/2/3):1-81. https://doi.org/10.1016/s0012-8252(00)00022-2 http://www.onacademic.com/detail/journal_1000035098918910_5445.html
      [20] Xie, X.N., Ye, M.S., Xu, C.G., et al., 2018. High Quality Reservoirs Characteristics and Forming Mechanisms of Mixed Siliciclastic-Carbonate Sediments in the Bozhong Sag, Bohai Bay Basin. Earth Science, 43 (10):3526-3539 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201810015
      [21] Xu, C.G., Jia, D.H., Wan, L.W., 2017. Control of the Strike-Slip Fault to the Source-to-Sink System of the Paleogene in Bohai Sea Area. Earth Science, 42(11):1871-1882 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201711002
      [22] Yang, C.Q., Sha, Q.A., 1990. Sedimentary Environment of the Middle Devonian Qujing Formation, Qujing, Yunnan Province:A Kind of Mixing Sedimentation of Terrigenous Clastics and Carbonate. Acta Sedimentologica Sinica, 8(2):59-66 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB199002008.htm
      [23] Yang, H.F., Wei, G., Wang, D.Y., et al., 2011. Oil Sources and Exploration Significance of Qinhuangdao 29-2 Oil-Gas Field. Petroleum Geology and Recovery Efficiency, 18(6):28-31 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YQCS201106011.htm
      [24] Ye, M.S., Xie, X.N., Xu, C.G., et al., 2018. Discussion for Classification-Designation System of Mixed Siliciclastic-Carbonate Sediments and the Implication for Their Reservoir Prediction:A Case Study of Mixed Sediments from Bohai Sea Area. Geological Review, 64(5):1118-1131 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZLP201805007.htm
      [25] Yu, Y.X., Zhou, X.H., Xu, C.G., et al., 2011. Characteristics and Formation Mechanisms of the Cenozoic Faults in the Bohai Sea Waters. Oil & Gas Geology, 32(2):273-279 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201102016
      [26] Zhang, L., Wang, D.Y., Zhang, X.T., et al., 2019. The Controlling Factors of the High-Quality Mixed Reservoirs in QHD29-2E Structure, Bohai Sea. Acta Sedimentologica Sinica, 37(1):200-211 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201901019
      [27] Zhang, L., Zou, H.Y., Hao, F., et al., 2017.Characteristics and Densification Causes and of Highly-Tight Sandstone of the Xujiahe Formation(T3x2) in the Yuanba Area, NorthEastern Sichuan Basin. Acta Geologica Sinica, 91(9):2105-2118 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201709013
      [28] Zhang, L.J., Zhu, G.H., Wei, Y.P., et al., 2010. Characteristics of Cretaceous Reservoir in Shenmu-1 Well by Microscopic Chips Observation. China Petroleum Exploration, 15(3):22-24, 29 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsykt201003005
      [29] Zhao, K., Song, Z.Q., Du, X.B., et al., 2018. Dolomitization Genetic Mechanism of Carbonate-Siliciclastic Mixed Rock Reservoir in CFD-A Tectonic Belt, Bohai Sea. Petroleum Geology and Experiment, 40(2):218-225 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201802012
      [30] Zhou, Y.Y., Yang, H.F., Liu, Q.S., et al., 2019. Relationship between Sandstone Reservoir Densification and Hydrocarbon Charging in the Shahejie Formation of the BZ27 Structure in Huanghekou Depression. Geological Science and Technology Information, 38 (1):168-175 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201901018
      [31] 邓远, 蒲秀刚, 陈世悦, 等, 2019.细粒混积岩储层特征与主控因素分析——以渤海湾盆地沧东凹陷孔二段为例.中国矿业大学学报, 48 (6):1-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkydxxb201906015
      [32] 杜晓峰, 庞小军, 王清斌, 等, 2017.石臼坨凸起东段围区沙一二段古物源恢复及其对储层的控制.地球科学, 42(11):1897-1909. doi: 10.3799/dqkx.2017.120
      [33] 丁晓琪, 韩玫梅, 张哨楠, 等, 2014.大气淡水在碎屑岩次生孔隙中的作用.地质论评, 60(1):145-158. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201401014
      [34] 董艳蕾, 朱筱敏, 滑双君, 等, 2011.黄骅坳陷沙河街组一段下亚段混合沉积成因类型及演化模式.石油与天然气地质, 32(1):98-107. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201101012
      [35] 霍沈君, 杨香华, 王清斌, 等, 2015.黄河口凹陷H-1构造沙河街组混积岩储层控制因素.现代地质, 29(6):1348-1359. http://d.wanfangdata.com.cn/Periodical/xddz201506009
      [36] 刘曦翔, 张宇, 蒲柏宇, 等, 2019.鄂尔多斯盆地延长组深水致密砂岩大气淡水溶蚀及其油气地质意义.天然气勘探与开发, 42(2):48-55. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqktykf201902007
      [37] 吕正祥, 宋修章, 张健, 等, 2016.渤海海域中部古近系深埋藏湖相高孔隙度白云岩储层特征及其成因.天然气工业, 36(12):10-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201612002
      [38] 庞小军, 王清斌, 万琳, 等, 2018.沙南凹陷东北缘东三段储层差异及其成因.中国矿业大学学报, 47(3):615-630. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkydxxb201803016
      [39] 宋章强, 陈延芳, 杜晓峰, 等, 2013.渤海海域A构造区沙二段混合沉积特征及储层研究.海洋石油, 33(4):13-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hysy201304003
      [40] 苏奥, 陈红汉, 王存武, 等, 2016.低渗致密砂岩储层的致密化机理与成岩流体演化:以东海西湖凹陷中央背斜带北部花港组为例.中国矿业大学学报, 45(5):972-981, 1029. http://www.cnki.com.cn/Article/CJFDTotal-ZGKD201605016.htm
      [41] 王冠民, 张婕, 王清斌, 等, 2018.渤海湾盆地秦南凹陷东南缘中深层砂砾岩优质储层发育的控制因素.石油与天然气地质, 39(2):330-339. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201802012
      [42] 王清斌, 刘立, 牛成民, 等, 2018.石臼坨凸起陡坡带大气淡水成岩环境对湖相混积岩储层的影响.地球科学, 43(S2):234-242. doi: 10.3799/dqkx.2018.138
      [43] 王清斌, 刘立, 牛成民, 等, 2019.渤中凹陷北部陡坡带热液活动及其对湖相碳酸盐岩储层的影响.地球科学, 44 (8):2751-2760. doi: 10.3799/dqkx.2018.347
      [44] 王艳忠, 操应长, 葸克来, 等, 2013.碎屑岩储层地质历史时期孔隙度演化恢复方法:以济阳坳陷东营凹陷沙河街组四段上亚段为例.石油学报, 34(6):1100-1111. http://d.wanfangdata.com.cn/Periodical/syxb201306008
      [45] 汪跃, 吴浩君, 刘洪洲, 等, 2018.渤中13-1油田沙一段生屑云岩储层特征及控制因素.重庆科技学院学报(自然科学版), 20(5):11-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cqsygdzkxxxb201805004
      [46] 解习农, 叶茂松, 徐长贵, 等, 2018.渤海湾盆地渤中凹陷混积岩优质储层特征及成因机理.地球科学, 43 (10):3526-3539. doi: 10.3799/dqkx.2018.277
      [47] 徐长贵, 加东辉, 宛良伟, 2017.渤海走滑断裂对古近系源-汇体系的控制作用.地球科学, 42(11):1871-1882. doi: 10.3799/dqkx.2017.118
      [48] 杨朝青, 沙庆安, 1990.云南曲靖中泥盆统曲靖组的沉积环境一种陆源碎屑.沉积学报, 8(2):59-66. http://www.cqvip.com/QK/95994X/19902/221837.html
      [49] 杨海风, 魏刚, 王德英, 等, 2011.秦南凹陷秦皇岛29-2油气田原油来源及其勘探意义.油气地质与采收率, 18(6):28-31. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yqdzycsl201106007
      [50] 叶茂松, 解习农, 徐长贵, 等, 2018.混积岩分类命名体系探讨及对混积岩储层评价的启示:以渤海海域混积岩研究为例.地质论评, 64(5):1118-1131. http://www.cnki.com.cn/Article/CJFDTotal-DZLP201805007.htm
      [51] 余一欣, 周心怀, 徐长贵, 等, 2011.渤海海域新生代断裂发育特征及形成机制.石油与天然气地质, 32(2):273-279. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201102016
      [52] 张藜, 王德英, 张新涛, 等, 2019.渤海海域秦皇岛29-2东构造优质混积储层主控因素.沉积学报, 37(1):200-211. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201901019
      [53] 张丽娟, 朱国华, 魏燕萍, 等, 2010.乌什凹陷神木1井白垩系储层微观特征.中国石油勘探, 15(3):22-24, 29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsykt201003005
      [54] 张莉, 邹华耀, 郝芳, 等, 2017.川东北元坝地区须家河组储层特征与超致密成因探讨.地质学报, 91(9):2105-2118. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201709013
      [55] 赵珂, 宋章强, 杜学斌, 等, 2018.渤海海域曹妃甸A构造带混积岩储层白云岩化成因机理分析.石油实验地质, 40(2):218-225. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201802012
      [56] 周园园, 杨海风, 刘庆顺, 等, 2019.黄河口凹陷BZ27构造沙河街组砂岩储层致密化与油气充注关系.地质科技情报, 38(1):168-175. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201901018
    • 加载中
    图(10) / 表(4)
    计量
    • 文章访问数:  806
    • HTML全文浏览量:  196
    • PDF下载量:  48
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-03-06
    • 刊出日期:  2020-11-17

    目录

      /

      返回文章
      返回