Complex Evolution of Metamorphic Rocks from Lower Part of Akeyazi Valley, SW Tianshan: Implications from Thermometry Based on Raman Spectroscopy of Carbonaceous Material
-
摘要: 西南天山造山带是塔里木板块和伊犁-中天山板块聚合碰撞的产物,经历了长期复杂的演化.伊犁-中天山陆块南缘的变质作用研究对于揭示西南天山的地质演化历史具有重要意义.这一地区变质岩分布广泛,但目前的变质作用研究主要集中于木扎尔特的高级变质岩,位于同一构造带上其他变质岩的演化和分布特点缺少详细的研究,尚不清楚它们是作为高温变质带的一部分还是来自造山带的其他构造单元.针对该问题,在详细的岩相学分析基础上,利用碳质拉曼光谱(Raman spectroscopy of carbonaceous material,RSCM)温度计对木扎尔特东侧的阿克牙孜河下游地区多个剖面开展了变质温度研究.根据结构构造特征将这些岩石分为具有变余沉积结构构造且发生不同程度糜棱岩化的浅变质碎屑岩-碳酸盐岩系列和具有变质结晶结构的片岩-变粒岩系列.RSCM温度计显示前者经历的峰期温度为465~597℃,原岩很可能为卷入造山带的石炭纪地层,抬升过程中局部发生糜棱岩化.后者峰期温度为552~617℃,绿片岩相叠加期间发生C-O-H流体活动,可能属于伊犁-中天山的变质基底那拉提岩群.研究表明,伊犁-中天山南缘的阿克牙孜下游一带的变质岩具有不同的变质演化历史,它们来自不同的构造单元,并不是木扎尔特高温变质带的延续.Abstract: As a result of the collision between the Tarim plate and the Yili-Central Tianshan plate, the orogenic belt of Southwest Tianshan has experienced secular complex evolution. Metamorphic studies at the southern margin of the Yili-Central Tianshan plate are significant in deciphering the geological history of this orogenic belt. Although metamorphic rocks are widely distributed in this region, study focuses are mainly on the Muzhaerte high-grade rocks. The spatial distribution and tectono-metamorphic evolution of other metamorphic rock types from the same tectonic belt are poorly known. Whether they occur as part of a coherent high-temperature terrane or any other tectonic nappes is fundamental to reconstruct the orogeny of Southwest Tianshan. To resolve this issue, we carry out detailed petrography and temperature estimates using the RSCM (Raman spectroscopy of carbonaceous material, RSCM) thermometry for metamorphic rocks from several sections of the lower part of the Akeyazi valley. Based on textural and structural observations, two types of metamorphic rocks are grouped. Type 1 rocks consist of meta-sedimentary rocks (i.e., meta-siliciclastic and meta-carbonate rocks), with rounded detrital minerals (e.g., quartz and feldspar) and bedding structure locally modified by strong shearing. Type 2 rocks include mica schists and quartzofeldsparthic rocks, uniformly consisting of metamorphic minerals with lepidoblastic to granoblastic texture and well-developed schistosity. The RSCM thermometry suggests that peak temperatures of the former group are 465-597 ℃. They were probably derived from the Carboniferous strata and were locally subjected to mylonitization. Peak temperatures of the latter group are 552-617 ℃, probably as part of the pre-Cambrian basement (the Nalati Group) and they were infiltrated by C-O-H fluids during shearing at shallower levels. This study suggests that the metamorphic rocks of the Lower Akeyazi River have contrasting metamorphic histories and come from different tectonic units, not as an eastern extension of the Muzhaerte high-temperature belt.
-
Key words:
- carbonaceous material /
- Raman spectroscopy /
- thermometry /
- graphitization /
- metamorphic unit /
- Southwest Tianshan /
- petrology
-
图 2 西南天山阿克牙孜流域及邻区地质简图(a)及采样位置(b)
修改自新疆地质矿产局(1993)和Gou and Zhang(2016);图中标注了研究区花岗岩体的锆石年龄(据Gao et al.,2009;Gou and Zhang, 2016;李平,2011)
Fig. 2. Geological sketch of the Akeyazi valley and adjacent area, southwestern Tianshan (a), showing sample localities (b)
图 3 阿克牙孜河下游地区变质岩的显微结构
a.变质砂岩,粗碎屑具有一定定向性,石英碎屑被溶蚀,软弱的碳质泥岩岩屑(MF)虽被压扁拉长但边缘呈港湾状,剪切作用不强烈(单偏光);b.长英质初糜棱岩,单晶石英拉长呈条带状,长石表现为书斜式构造(右侧为单偏光,左侧为插入石膏试板后的正交偏光),基质由绢云母和微晶石英组成;c.板状碳质千糜岩,局部发育透镜状绿泥石和黑云母集合体,线理由浅色矿物集合体和碳质条带组成(单偏光);d.石英大理岩,发育变余碎屑结构,砂级碎屑主要为石英(单偏光);e.板状千糜岩,结构上与Q194-4不同的是重结晶作用使碳质条带发生不规则弯曲,局部发育粗粒方解石-石英脉,脉体和围岩的黑云母粒度差别明显(单偏光);f.黑云母片岩;g.二云母石英片岩,发育显微褶皱(单偏光);h.片岩中的透镜状大理岩(单偏光).矿物缩写:Pl.斜长石,Ksp.钾长石,Bi.黑云母,Qz.石英,Ms.白云母,Cal.方解石,CM.碳质,M.基质(主要由微晶石英和绢云母构成).虚线表示面理方向
Fig. 3. Photomicrographs of the metamorphic rocks from the lower part of the Akeyazi valley
图 4 阿克牙孜下游地区变质岩碳质的产状(单偏光)
a.绿泥石集合体中密集的碳质;b.平行面理的长束状白云母(单颗粒长度超过1 mm)中的细脉状和散点状碳质;c.长束状交织在一起的绿泥石、白云母和黑云母中的碳质;d.白云母中的团块状碳质集合体.内置的BSE图像显示钛铁矿呈板条状,周边为碳质、金红石和榍石;Ttn.榍石;Ilm.钛铁矿;Rt.金红石.其他矿物缩写与图 3相同
Fig. 4. Textures of CM in the metamorphic rocks from the lower part of the Akeyazi valley
图 7 阿克牙孜下游地区变质岩退变质阶段RSCM温度直方图
该阶段的碳质多与交代黑云母形成的绿泥石和白云母等退变质含水矿物共生(见图 4),很可能与C-O-H流体活动有关
Fig. 7. Histograms showing frequency distribution of the RSCM thermometry for retrograde temperatures of some metamorphic rocks from the lower part of the Akeyazi valley
表 1 阿克牙孜下游地区的主要含碳质变质岩类型及其矿物组成
Table 1. Main CM-bearing rock types and their mineral modes from the lower part of the Akeyazi valley
采样位置 岩石类型 样品编号 碳酸盐矿物 碳质 黑云母 斜长石 石英 钾长石 白云母 绿泥石 基质* 点位1 二云母石英片岩 A192-5 + + 7% 10% 65% - 15% 3% - 点位2 长英质初糜棱岩** Q194-1 + + - 25% 45% 10% - + 20% 板状碳质千糜岩 Q194-4 1% + 2% + 1% 96% 石英大理岩*** Q194-5 75% + - 5% 15% - 5% + - 点位3 千糜岩 Q193-24 + 2% + 10% + 88% 点位4 石英大理岩*** A193-9 72% + - 1% 8% - 3% 16% - 点位5 黑云母片岩 A191-15 + + 20% 10% 60% + 3% 7% - 注:*对于糜棱岩类岩石,只统计矿物斑晶(包括脉体矿物)含量,难以辨别的细小(粒径 < 0.1 mm)矿物集合体包括碳质、微晶石英和针状云母类矿物等均划为基质,不单独统计基质矿物的各自含量(表中以空格表示).**原岩很可能为杂砂岩; ***原岩为砂质灰岩; +.含量低于1%;-.不存在. 表 2 阿克牙孜河下游地区变质岩的碳质有序度参数及不同RSCM温度计结果对比
Table 2. Comparison of ordering parameters and RSCM thermometry for CM in the metamorphic rocks from the lower part of the Akeyazi valley
样品编号 碳质成因 R1 R2 RSCM温度(℃) Beyssac et al. (2002) Rahl et al.(2005) Aoya et al.(2010) A192-5 变质
流体0.013~0.465
0.187~1.2520.022~0.304
0.264~0.561578±24
471±40617±41
462±32587±31
462±41Q194-4 变质 0.484~0.659 0.360~0.438 464±8 465±11 454±9 Q194-5 变质 0.006~0.923 0.107~0.485 485±36 497±40 477±40 Q193-24 变质 0.122~0.766 0.167~0.461 501±30 525±37 495±33 A193-9 变质
流体0.042~0.244
0.060~0.4730.046~0.291
0.092~0.476566±28
513±39597±49
509±65572±35
509±45A191-15 变质 0.060~0.551 0.098~0.438 540±28 552±45 540±33 -
[1] Aoya, M., Kouketsu, Y., Endo, S., et al., 2010.Extending the Applicability of the Raman Carbonaceous-Material Geothermometer Using Data from Contact Metamorphic Rocks.Journal of Metamorphic Geology, 28(9):895-914. https://doi.org/10.1111/j.1525-1314.2010.00896.x [2] Beyssac, O., Goffé, B., Chopin, C., et al., 2002.Raman Spectra of Carbonaceous Material in Metasediments:A New Geothermometer.Journal of Metamorphic Geology, 20(9):859-871. https://doi.org/10.1046/j.1525-1314.2002.00408.x [3] Beyssac, O., Goffé, B., Petitet, J.P., et al., 2003.On the Characterization of Disordered and Heterogeneous Carbonaceous Materials by Raman Spectroscopy.Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 59(10):2267-2276. https://doi.org/10.1016/s1386-1425(03)00070-2 [4] Bureau of Geological and Mineral Resources, Xinjiang Province, 1993.Regional Geology of Xinjiang Province.Geological Publishing House, Beijing(in Chinese). [5] Chen, X.Y., Wang, Y.J., Sun, L.H., et al., 2009.Zircon SHRIMP U-Pb Dating of the Granitic Gneisses from Bingdaban and Laerdundaban (Tianshan Orogen) and Their Geological Significances.Geochimica, 38(5):424-431(in Chinese with English abstract). http://www.researchgate.net/publication/284907490_Zircon_SHRIMP_U-Pb_dating_of_the_granitic_gneisses_from_Bingdaban_and_Laerdundaban_Tianshan_Orogen_and_their_geological_significances [6] Compagnini, G., Puglisi, O., Foti, G., 1997.Raman Spectra of Virgin and Damaged Graphite Edge Planes.Carbon, 35(12):1793-1797. https://doi.org/10.1016/s0008-6223(97)00141-3 [7] Delchini, S., Lahfid, A., Plunder, A., et al., 2016.Applicability of the RSCM Geothermometry Approach in a Complex Tectono-Metamorphic Context:The Jebilet Massif Case Study (Variscan Belt, Morocco).Lithos, 256-257:1-12. https://doi.org/10.1016/j.lithos.2016.04.007 [8] Gao, J., Long, L.L., Klemd, R., et al., 2009.Tectonic Evolution of the South Tianshan Orogen and Adjacent Regions, NW China:Geochemical and Age Constraints of Granitoid Rocks.International Journal of Earth Sciences, 98(6):1221-1238. https://doi.org/10.1007/s00531-008-0370-8 [9] Geological Survey of Shanxi Province, 2010.Kongguerbulake Geological Map (Sheet K44E009013), Scale 1:50 000.Geological Survey of Shanxi Province, Taiyuan(in Chinese). [10] Gou, L.L., Zhang, L.F., 2016.Geochronology and Petrogenesis of Granitoids and Associated Mafic Enclaves from Xiate in Chinese Southwest Tianshan:Implications for Early Paleozoic Tectonic Evolution.Journal of Asian Earth Sciences, 115:40-61. https://doi.org/10.1016/j.jseaes.2015.09.024 [11] Gou, L.L., Zhang, L.F., 2009.Petrology and U-Th-Pb Chemical Monazite Dating of the Low-P Metapelitic Granulites at the Region of Muzhaerte River in Southwestern Tianshan, NW China, and Their Geological Implications.Acta Petrologica Sinica, 25(9):2271-2280(in Chinese with English abstract). http://www.oalib.com/paper/1470791 [12] Han, B.F., He, G.Q., Wang, X.C., et al., 2011.Late Carboniferous Collision between the Tarim and Kazakhstan-Yili Terranes in the Western Segment of the South Tian Shan Orogen, Central Asia, and Implications for the Northern Xinjiang, Western China.Earth-Science Reviews, 109(3-4):74-93. https://doi.org/10.1016/j.earscirev.2011.09.001 [13] He, G.Q., 2004.Geotectonic Map of Xinjiang, China and Its Adjacent Regions.Geological Press, Beijing(in Chinese). [14] Hu, L., Liu, J.L., Ji, M., et al., 2009.Identification Manual of Deformation Microstructures.Geological Press, Beijing(in Chinese). [15] Kříbek, B., Sýkorová, I., Machovič, V., et al., 2008.Graphitization of Organic Matter and Fluid-Deposited Graphite in Palaeoproterozoic (Birimian) Black Shales of the Kaya-Goren Greenstone Belt (Burkina Faso, West Africa).Journal of Metamorphic Geology, 26(9):937-958. https://doi.org/10.1111/j.1525-1314.2008.00796.x [16] Lahfid, A., Beyssac, O., Deville, E., et al., 2010.Evolution of the Raman Spectrum of Carbonaceous Material in Low-Grade Metasediments of the Glarus Alps (Switzerland).Terra Nova, 22(5):354-360. https://doi.org/10.1111/j.1365-3121.2010.00956.x [17] Large, D.J., Christy, A.G., Fallick, A.E., 1994.Poorly Crystalline Carbonaceous Matter in High Grade Metasediments:Implications for Graphitisation and Metamorphic Fluid Compositions.Contributions to Mineralogy and Petrology, 116(1-2):108-116. https://doi.org/10.1007/bf00310693 [18] Li, P., 2011.The Petrogenesis of Paleozoic Granites in the Middle and West Segment of the Central Tianshan and Constrain to the Process of the Ocean-Continent Transition of the Tianshan (Dissertation).Changan University, Xi'an(in Chinese with English abstract). [19] Li, Q., Zhang, L.F., 2004.The P-T Path and Geological Significance of Low-Pressure Granulite-Facies Metamorphism in Muzhaerte, Southwest Tianshan.Acta Petrologica Sinica, 20(3):583-594(in Chinese with English abstract). http://www.researchgate.net/publication/281994533_The_P-T_path_and_geological_significance_of_low-pressure_granulite-facies_metamorphism_in_Muzhaerte_southwest_Tianshan [20] Li, X.D., Li, M.S., 1996.Tectonic Correlation between the Western Chinese Tianshan and It's Western Adjacent Area.Geological Review, 42(2):107-115(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP199602001.htm [21] Li, Y.J., Wang, Z.P., Li, X.G., et al., 2018.The Discovery of Bubble Rhyolite in the Early Carboniferous and Geochemical Characteristics in Yining Block.Acta Petrologica Sinica, 34(1):49-62(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-sinica_thesis/0201252011505.html [22] Luque, F.J., Pasteris, J.D., Wopenka, B., et al., 1998.Natural Fluid-Deposited Graphite:Mineralogical Characteristics and Mechanisms of Formation.American Journal of Science, 298(6):471-498. https://doi.org/10.2475/ajs.298.6.471 [23] Luque, F.J., Ortega, L., Barrenechea, J.F., et al., 2009.Deposition of Highly Crystalline Graphite from Moderate-Temperature Fluids.Geology, 37(3):275-278. https://doi.org/10.1130/g25284a.1 [24] Mastalerz, M., Bustin, R.M., Sinclair, A.J., et al., 1995.Carbon-Rich Material in the Erickson Hydrothermal System, Northern British Columbia, Canada; Origin and Formation Mechanisms.Economic Geology, 90(4):938-947. https://doi.org/10.2113/gsecongeo.90.4.938 [25] Meinhold, G., 2010.Rutile and Its Applications in Earth Sciences.Earth-Science Reviews, 102(1-2):1-28. https://doi.org/10.1016/j.earscirev.2010.06.001 [26] Meyer, M., Klemd, R., John, T., et al., 2016.An (In-) Coherent Metamorphic Evolution of High-P Eclogites and Their Host Rocks in the Chinese Southwest Tianshan? Journal of Metamorphic Geology, 34(2):121-146. https://doi.org/10.1111/jmg.12175 [27] Pasteris, J.D., 1999.Causes of the Uniformly High Crystallinity of Graphite in Large Epigenetic Deposits.Journal of Metamorphic Geology, 17(6):779-787. https://doi.org/10.1046/j.1525-1314.1999.00231.x [28] Pasteris, J.D., Chou, I.M., 1998.Fluid-Deposited Graphitic Inclusions in Quartz:Comparison between KTB (German Continental Deep-Drilling) Core Samples and Artificially Reequilibrated Natural Inclusions.Geochimica et Cosmochimica Acta, 62(1):109-122. https://doi.org/10.1016/s0016-7037(97)00322-0 [29] Rahl, J.M., Anderson, K.M., Brandon, M.T., et al., 2005.Raman Spectroscopic Carbonaceous Material Thermometry of Low-Grade Metamorphic Rocks:Calibration and Application to Tectonic Exhumation in Crete, Greece.Earth and Planetary Science Letters, 240(2):339-354. https://doi.org/10.1016/j.epsl.2005.09.055 [30] Rapp, J.F., Klemme, S., Butler, I.B., et al., 2010.Extremely High Solubility of Rutile in Chloride and Fluoride-Bearing Metamorphic Fluids:An Experimental Investigation.Geology, 38(4):323-326. https://doi.org/10.1130/g30753.1 [31] Scheltens, M., Zhang, L.F., Xiao, W.J., et al., 2015.Northward Subduction-Related Orogenesis of the Southern Altaids:Constraints from Structural and Metamorphic Analysis of the HP/UHP Accretionary Complex in Chinese Southwestern Tianshan, NW China.Geoscience Frontiers, 6(2):191-209. https://doi.org/10.1016/j.gsf.2014.08.002 [32] Shi, J.R., Liu, F.L., Liu, P.H., et al., 2014.Age and Geological Significance of Anatexis from the Low-Pressure and High-Temperature Metamorphic Belt, Southwestern Tianshan.Acta Petrologica Sinica, 30(10):2843-2856(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-sinica_thesis/0201252017981.html [33] Spear, F.S., 1993.Metamorphic Phase Equilibria and Pressure-Temperature-Time Path.Mineralogical Society of America, Washington, D.C.. http://ci.nii.ac.jp/naid/10003544064 [34] Tuinstra, F., Koenig, J.L., 1970.Raman Spectrum of Graphite.The Journal of Chemical Physics, 53(3):1126-1130. https://doi.org/10.1063/1.1674108 [35] Wang, A., Dhamenincourt, P., Dubessy, J., et al., 1989.Characterization of Graphite Alteration in an Uranium Deposit by Micro-Raman Spectroscopy, X-Ray Diffraction, Transmission Electron Microscopy and Scanning Electron Microscopy.Carbon, 27(2):209-218. https://doi.org/10.1016/0008-6223(89)90125-5 [36] Wang, B.Y., Lang, Z.J., Li, X.D., et al., 1994.Study on the Geological Sections across the Western Segment of Tianshan Mountains, China.Science Press, Beijing(in Chinese). [37] Wang, Z.X., Lü, X.C., Wu, J.Y., et al., 1990.Polycyclic Tectonic Evolution and Metallogeny of the Tianshan Mountains.Science Press, Beijing(in Chinese). [38] Wopenka, B., Pasteris, J.D., 1993.Structural Characterization of Kerogens to Granulite-Facies Graphite:Applicability of Raman Microprobe Spectroscopy.American Mineralogist, 78:533-557. http://ci.nii.ac.jp/naid/80007120026 [39] Wu, C.M., Chen, H.X., 2015.Revised Ti-in-Biotite Geothermometer for Ilmenite-or Rutile-Bearing Crustal Metapelites.Science Bulletin, 60(1):116-121. https://doi.org/10.1007/s11434-014-0674-y [40] Xia, B., Zhang, L.F., Bader, T., 2014.Zircon U-Pb Ages and Hf Isotopic Analyses of Migmatite from the 'Paired Metamorphic Belt' in Chinese SW Tianshan:Constraints on Partial Melting Associated with Orogeny.Lithos, 192-195:158-179. https://doi.org/10.1016/j.lithos.2014.02.003 [41] Xiao, X.C., Tang, Y.Q., Feng, Y.M., et al., 1992.Tectonic Evolution of Northern Xinjiang and Its Adjacent Regions.Geological Press, Beijing(in Chinese). [42] Zhao, D.G., Essene, E.J., Zhang, Y.X., 1999.An Oxygen Barometer for Rutile-Ilmenite Assemblages:Oxidation State of Metasomatic Agents in the Mantle.Earth and Planetary Science Letters, 166(3-4):127-137. https://doi.org/10.1016/s0012-821x(98)00281-7 [43] Zhang, L.F., Ai, Y.L., Li, Q., et al., 2005.The Formation and Tectonic Evolution of UHP Metamorphic Belt in Southwestern Tianshan, Xinjiang.Acta Petrologica Sinica, 21(4):1029-1038(in Chinese with English abstract). http://www.researchgate.net/publication/272151407_The_formation_and_tectonic_evolution_of_UHP_metamorphic_belt_in_southwestern_Tianshan_Xinjiang [44] 陈新跃, 王岳军, 孙林华, 等, 2009.天山冰达坂和拉尔敦达坂花岗片麻岩SHRIMP锆石年代学特征及其地质意义.地球化学, 38(5):424-431. doi: 10.3321/j.issn:0379-1726.2009.05.002 [45] 苟龙龙, 张立飞, 2009.新疆西南天山木扎尔特河一带低压泥质麻粒岩岩石学特征、独居石U-Th-Pb定年及其地质意义.岩石学报, 25(9):2271-2280. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200909019.htm [46] 何国琦, 2004.中国新疆及邻区大地构造图.北京:地质出版社. [47] 胡玲, 刘俊来, 纪沫, 等, 2009.变形显微构造识别手册.北京:地质出版社. [48] 李平, 2011.中天山中西段古生代花岗岩成因及对天山洋陆转换时限的制约(硕士学位论文).西安: 长安大学. [49] 李强, 张立飞, 2004.新疆西南天山木扎尔特一带低压麻粒岩相变质作用P-T轨迹及其地质意义.岩石学报, 20(3):583-594. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200403022.htm [50] 李向东, 李茂松, 1996.中国西天山地质构造与西邻区的对比研究.地质论评, 42(2):107-115. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199602001.htm [51] 李永军, 王祚鹏, 李新光, 等, 2018.伊宁地块早石炭世球泡流纹岩的发现及地球化学特征.岩石学报, 34(1):49-62. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201801006.htm [52] 山西地调院, 2010.空古尔布拉克幅(K44E009013) 1:5万地质矿产报告.太原:山西地调院. [53] 施建荣, 刘福来, 刘平华, 等, 2014.新疆西南天山低压高温变质带深熔时代及其地质意义.岩石学报, 30(10):2843-2856. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201410005.htm [54] 王宝瑜, 郎智君, 李向东, 等, 1994.中国天山西段地质剖面综合研究.北京:科学出版社. [55] 王作勋, 吕喜朝, 邬继易, 等, 1990.天山多旋回构造演化及成矿.北京:科学出版社. [56] 肖序常, 汤耀庆, 冯益民, 等, 1992.新疆北部及其邻区大地构造.北京:地质出版社. [57] 新疆地质矿产局, 1993.新疆维吾尔自治区区域新疆地质矿产局地质志.北京:地质出版社. [58] 张立飞, 艾永亮, 李强, 等, 2005.新疆西南天山超高压变质带的形成与演化.岩石学报, 21(4):1029-1038. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200504000.htm