• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    思茅地块西缘大凹子组地层序列及地质时代

    魏月华 甘正勤 刘桂春 冯庆来

    魏月华, 甘正勤, 刘桂春, 冯庆来, 2021. 思茅地块西缘大凹子组地层序列及地质时代. 地球科学, 46(2): 418-431. doi: 10.3799/dqkx.2020.066
    引用本文: 魏月华, 甘正勤, 刘桂春, 冯庆来, 2021. 思茅地块西缘大凹子组地层序列及地质时代. 地球科学, 46(2): 418-431. doi: 10.3799/dqkx.2020.066
    Wei Yuehua, Gan Zhengqin, Liu Guichun, Feng Qinglai, 2021. The Stratigraphic Sequence and Geological Time of Dawazi Formation in Western Simao Block. Earth Science, 46(2): 418-431. doi: 10.3799/dqkx.2020.066
    Citation: Wei Yuehua, Gan Zhengqin, Liu Guichun, Feng Qinglai, 2021. The Stratigraphic Sequence and Geological Time of Dawazi Formation in Western Simao Block. Earth Science, 46(2): 418-431. doi: 10.3799/dqkx.2020.066

    思茅地块西缘大凹子组地层序列及地质时代

    doi: 10.3799/dqkx.2020.066
    基金项目: 

    国家自然科学基金项目 41672222

    详细信息
      作者简介:

      魏月华(1992-), 男, 博士, 主要从事大地构造及地球化学方面的研究.ORCID: 0000-0002-2735-4234.E-mail: yuehuawei@cug.edu.cn

      通讯作者:

      冯庆来, ORCID: 0000-0003-3036-9186.E-mail: qinglaifeng@cug.edu.cn

    • 中图分类号: P539

    The Stratigraphic Sequence and Geological Time of Dawazi Formation in Western Simao Block

    • 摘要: 目前关于思茅地块西缘大凹子组的形成时代仍有分歧.在思茅地块西缘大中河剖面采集了硅质岩、砂岩、凝灰岩和玄武岩,通过放射虫组合和锆石U-Pb年龄方法,厘定其地质时代,并结合区域资料恢复地层序列.通过详细剖面实测,发现该剖面由6个地层断片组成:第一、四断片以含放射虫硅质岩为特征,放射虫组合指示其时代为晚泥盆世至早石炭世早期;第二、五断片以火山碎屑岩、具有鲍玛序列沉积特征的火山碎屑沉积岩为主,锆石U-Pb同位素年龄指示其时代为志留纪中期至早泥盆世;第三、六断片以火山岩沉积为特征,锆石U-Pb同位素年龄指示其时代为志留纪早期.结合前人资料认为思茅地块西缘分布的海相火山岩、碎屑岩和含放射虫硅质岩地层层序代表了志留纪到早石炭世早期的岛弧火山-沉积地层序列.

       

    • 图  1  滇西南构造略图(a)和思茅地块西缘大中河地区地质简图(b)

      图a据刘桂春(2020)修改;前志留纪基底为澜沧群

      Fig.  1.  Geological map of SW Yunnan(a)and simplified geological map in Dazhonghe area, western Simao Block(b)

      图  2  思茅地块西缘大中河大凹子组实测剖面图

      Fig.  2.  Measured profile of the Dawazi Formation in Dazhonghe, western Simao Block

      图  3  野外及显微镜下照片

      a.硅质岩野外照片;b.砂岩鲍玛序列;c.砂岩镜下照片;d.凝灰岩野外照片;e.凝灰岩镜下照片;f.玄武岩野外照片;g.玄武岩镜下照片

      Fig.  3.  Field photographs and photomicrographs

      图  4  大凹子硅质岩样品的放射虫

      a. Entactinia pantotolma Braun; b. Trilonche palimbola (Foreman); c、d. Entactinia herculeus Foreman; f~h. Astroentactinia sp.; e、i、j. Trilonche foremanae (Ormiston and Lane); k、l. Entactinia sp.; m~p. Belowea variabilis Won

      Fig.  4.  Radiolarian of siliceous rock of Dawazi Formation

      图  5  大凹子组凝灰岩、砂岩中代表性锆石的CL照片

      Fig.  5.  Cathodoluminescence images (CL) of the represent zircons from tuff and sandstone

      图  6  凝灰岩中锆石U-Pb年龄谐和图和加权平均年龄分布图

      Fig.  6.  Zircon U-Pb age concordia and weighted average plots for the tuff

      图  7  砂岩中锆石U-Pb年龄谐和图、加权平均年龄及频率分布图

      Fig.  7.  Zircon U-Pb age concordia, weighted average and histogram plots for the sandstones

      图  8  玄武岩中代表性锆石的CL照片

      Fig.  8.  Cathodoluminescence images (CL) of the represent zircons for the basalt

      图  9  玄武岩中锆石U-Pb年龄谐和图和加权平均年龄分布图

      Fig.  9.  Zircon U-Pb age concordia and weighted average plots for the basalt

      图  10  锆石球粒陨石标准化微量元素蛛网图

      Fig.  10.  Chondrite-normalized trace element spider diagram of zircon

      图  11  大凹子凝灰岩、砂岩及玄武岩锆石Th/U-Nb/Hf(a)和Th/Nb-Hf/Th(b)图解(据Yang et al., 2012)

      Fig.  11.  Th/U-Nb/Hf (a) and Th/Nb-Hf/Th (b) plots for the zircons of tuff, sandstone and basalt (from Yang et al., 2012)

      图  12  思茅地块西缘大凹子混杂岩地层层序恢复

      Fig.  12.  The stratigraphic sequence reconstruction of Dawazi mélange in western Simao Block

    • [1] Dickinson, W. R., Gehrels, G. E., 2009. Use of U-Pb Ages of Detrital Zircons to Infer Maximum Depositional Ages of Strata: A Test against a Colorado Plateau Mesozoic Database. Earth and Planetary Science Letters, 288(1-2): 115-125. https://doi.org/10.1016/j.epsl.2009.09.013
      [2] Feng, Q. L., 2002. Stratigraphy of Volcanic Rocks in the Changning-Menglian Belt in Southwestern Yunnan, China. Journal of Asian Earth Sciences, 20(6): 657-664. https://doi.org/10.1016/s1367-9120(02)00006-8
      [3] Feng, Q. L., Chonglakmani, C., Helmcke, D., et al., 2005. Correlation of Triassic Stratigraphy between the Simao and Lampang-Phrae Basins: Implications for the Tectonopaleogeography of Southeast Asia. Journal of Asian Earth Sciences, 24(6): 777-785. https://doi.org/10.1016/j.jseaes.2004.11.008
      [4] Feng, Q. L., Zhang, Z. F., Liu, B. P., et al., 2000. Radiolarian Fauna from the Longdonghe Formation at the Western Margin of the Simao Massif and Its Geologoical Significance. Journal of Stratigraphy, 24(2): 126-128(in Chinese with English abstract). http://www.researchgate.net/publication/285520393_Radiolarian_fauna_from_the_Longdonghe_Formation_at_the_western_margin_of_the_Simao_Massif_and_its_geological_significance
      [5] Foreman, H. P., 1963. Upper Devonian Radiolaria from the Huron Member of the Ohio Shale. Micropaleontology, 9(3): 267-304. https://doi.org/10.2307/1484751
      [6] Goddard, A. L. S., Trop, J. M., Ridgway, K. D., 2018. Detrital Zircon Record of a Mesozoic Collisional Forearc Basin in South Central Alaska: The Tectonic Transition from an Oceanic to Continental Arc. Tectonics, 37(2): 529-557. https://doi.org/10.1002/2017tc004825
      [7] Grimes, C. B., Wooden, J. L., Cheadle, M. J., et al., 2015. "Fingerprinting" Tectono-Magmatic Provenance Using Trace Elements in Igneous Zircon. Contributions to Mineralogy and Petrology, 170(5-6): 46-71. https://doi.org/10.1007/s00410-015-1199-3
      [8] Hara, H., Kunii, M., Miyake, Y., et al., 2017. Sandstone Provenance and U-Pb Ages of Detrital Zircons from Permian-Triassic Forearc Sediments within the Sukhothai Arc, Northern Thailand: Record of Volcanic-Arc Evolution in Response to Paleo-Tethys Subduction. Journal of Asian Earth Sciences, 146: 30-55. https://doi.org/10.1016/j.jseaes.2017.04.021
      [9] Hawkesworth, C. J., Kemp, A. I. S., 2006. Using Hafnium and Oxygen Isotopes in Zircons to Unravel the Record of Crustal Evolution. Chemical Geology, 226(3-4): 144-162. https://doi.org/10.1016/j.chemgeo.2005.09.018
      [10] Hoskin, P. W. O., Ireland, T. R., 2000. Rare Earth Element Chemistry of Zircon and Its Use as a Provenance Indicator. Geology, 28(7): 627-630. https://doi.org/10.1130/0091-7613(2000)28627:reecoz>2.0.co;2 doi: 10.1130/0091-7613(2000)28627:reecoz>2.0.co;2
      [11] Huang, J. Q., Chen, B. W., 1997. The Evolution of the Tethys in China and Adjacent Regions. Geological Publishing House, Beijing (in Chinese).
      [12] Kelty, T. K., Yin, A., Dash, B., et al., 2008. Detrital-Zircon Geochronology of Paleozoic Sedimentary Rocks in the Hangay-Hentey Basin, North-Central Mongolia: Implications for the Tectonic Evolution of the Mongol-Okhotsk Ocean in Central Asia. Tectonophysics, 451(1-4): 290-311. https://doi.org/10.1016/j.tecto.2007.11.052
      [13] Lehmann, B., Zhao, X. F., Zhou, M. F., et al., 2013. Mid-Silurian Back-Arc Spreading at the Northeastern Margin of Gondwana: The Dapingzhang Dacite-Hosted Massive Sulfide Deposit, Lancangjiang Zone, Southwestern Yunnan, China. Gondwana Research, 24(2): 648-663. https://doi.org/10.1016/j.gr.2012.12.018
      [14] Li, D. P., Chen, Y. L., Wang, Z., et al., 2011. Detrital Zircon U-Pb Ages, Hf Isotopes and Tectonic Implications for Palaeozoic Sedimentary Rocks from the Xing-Meng Orogenic Belt, Middle-East Part of Inner Mongolia, China. Geological Journal, 46(1): 63-81. https://doi.org/10.1002/gj.1257
      [15] Li, J. B., 2012. Structure and Chronology of Volcanic in the Dapingzhang Cu Polymetallic Deposit, Yunnan (Dissertation). Kunming University of Science and Technology, Kunming (in Chinese with English abstract).
      [16] Li, W. C., Pan, G. T., Hou, Z. Q., at al., 2010. Collision Orogeny Metallogenic and Exploration of the Multi-Island-Arc Basin in Southwest Sanjiang. Geological Publishing House, Beijing (in Chinese).
      [17] Liu, G.C., 2020. Early Paleozoic Proto-Tethys Ophiolite Mélange in SW Yunnan: Constraints from Detrital Zircon U-Pb Geochronology and Petrology Component (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      [18] Liu, H. C., Bi, M. W., Guo, X. F., et al., 2019. Petrogenesis of Late Silurian Volcanism in SW Yunnan (China) and Implications for the Tectonic Reconstruction of Northern Gondwana. International Geology Review, 61(11): 1297-1312. https://doi.org/10.1080/00206814.2018.1506947
      [19] Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      [20] Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082
      [21] Ludwig, K. R., 2003. Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley.
      [22] Mao, X. C., Wang, L. Q., Li, B., et al., 2012. Discovery of the Late Silurian Volcanic Rocks in the Dazhonghe Area, Yunxian-Jinggu Volcanic Arc Belt, Western Yunnan, China and Its Geological Significance. Acta Petrologica Sinica, 28(5): 1517-1528(in Chinese with English abstract).
      [23] Metcalfe, I., 2013. Gondwana Dispersion and Asian Accretion: Tectonic and Palaeogeographic Evolution of Eastern Tethys. Journal of Asian Earth Sciences, 66: 1-33. https://doi.org/10.1016/j.jseaes.2012.12.020
      [24] Nie, X. M., Feng, Q. L., Metcalfe, I., et al., 2016. Discovery of a Late Devonian Magmatic Arc in the Southern Lancangjiang Zone, Western Yunnan: Geochemical and Zircon U-Pb Geochronological Constraints on the Evolution of Tethyan Ocean Basins in SW China. Journal of Asian Earth Sciences, 118: 32-50. https://doi.org/10.1016/j.jseaes.2015.12.026
      [25] Ormiston, A. R., Lane, H. R., 1976. A Unique Radiolarian Fauna from the Sycamore Limestone (Mississippian) and Its Biostratigraphic Significance. Palaeontographica Abteilung A-Palaozoologie-Stratigraphie, 154: 158-180. http://ci.nii.ac.jp/naid/10026531560
      [26] Pearce, J. A., Peate, D. W., 1995. Tectonic Implications of the Composition of Volcanic Arc Magmas. Annual Review of Earth and Planetary Sciences, 23(1): 251-285. https://doi.org/10.1146/annurev.ea.23.050195.001343
      [27] Peng, Z. M., Zhang, J., Guan, J. L., et al., 2018. The Discovery of Early-Middle Ordovician Granitic Gneiss from the Giant Lincang Batholith in Sanjiang Area of Western Yunnan and Its Geological Implications. Earth Science, 43(8): 2571-2585(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201808003.htm
      [28] Ru, S. S., Li, F., 2014. The Preliminary Discussion on the Proto-Tethys Volcanic Island Arc-Metallogenic Belt in the Western Margin of Simao Basin. Acta Geologica Sinica, 88(S2): 926-927. https://doi.org/10.1111/1755-6724.12377_14
      [29] Ru, S. S., Li, F., Wu, J., et al., 2012. Geochemistry and Chronology of Granodiorite Porphyry in the Dapingzhang Cu Polymetallic Deposit. Acta Petrologica et Mineralogica, 31(4): 531-540(in Chinese with English abstract). http://www.researchgate.net/publication/290486534_Geochemistry_and_chronology_of_granodiorite_porphyry_in_the_Dapingzhang_Cu_polymetallic_deposit
      [30] Schulz, B., Klemd, R., Brätz, H., 2006. Host Rock Compositional Controls on Zircon Trace Element Signatures in Metabasites from the Austroalpine Basement. Geochimica et Cosmochimica Acta, 70(3): 697-710. https://doi.org/10.1016/j.gca.2005.10.001
      [31] Tani, K., Dunkley, D. J., Kimura, J. I., et al., 2010. Syncollisional Rapid Granitic Magma Formation in an Arc-Arc Collision Zone: Evidence from the Tanzawa Plutonic Complex, Japan. Geology, 38(3): 215-218. https://doi.org/10.1130/g30526.1
      [32] Wang, B. D., Wang, L. Q., Wang, D. B., et al., 2018. Tectonic Evolution of the Changning-Menglian Proto-Paleo Tethys Ocean in the Sanjiang Area, Southwestern China. Earth Science, 43(8): 2527-2550(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201808001.htm
      [33] Wang, Y. J., Qian, X., Cawood, P. A., et al., 2018. Closure of the East Paleotethyan Ocean and Amalgamation of the Eastern Cimmerian and Southeast Asia Continental Fragments. Earth-Science Reviews, 186: 195-230. https://doi.org/10.1016/j.earscirev.2017.09.013
      [34] Wang, Y. J., Zhang, A. M., Fan, W. M., et al., 2010. Petrogenesis of Late Triassic Post-Collisional Basaltic Rocks of the Lancangjiang Tectonic Zone, Southwest China, and Tectonic Implications for the Evolution of the Eastern Paleotethys: Geochronological and Geochemical Constraints. Lithos, 120(3-4): 529-546. https://doi.org/10.1016/j.lithos.2010.09.012
      [35] Won, M. Z., 1983. Radiolarien aus dem Unter-Karbon des Rheinischen Schiefergebirges (Deutschland). Palaeontographica A., 182: 116-175. http://ci.nii.ac.jp/naid/10025918502
      [36] Wu, F. Y., Ji, W. Q., Liu, C. Z., et al., 2010. Detrital Zircon U-Pb and Hf Isotopic Data from the Xigaze Fore-Arc Basin: Constraints on Transhimalayan Magmatic Evolution in Southern Tibet. Chemical Geology, 271(1-2): 13-25. https://doi.org/10.1016/j.chemgeo.2009.12.007
      [37] Wu, Y. B., Zheng, Y. F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(16): 1589-1604(in Chinese). doi: 10.1360/csb2004-49-16-1589
      [38] Yang, J. H., Cawood, P. A., Du, Y. S., et al., 2012. Large Igneous Province and Magmatic Arc Sourced Permian-Triassic Volcanogenic Sediments in China. Sedimentary Geology, 261-262: 120-131. https://doi.org/10.1016/j.sedgeo.2012.03.018
      [39] Yu, S. Y., Feng, F. B., Liu, G. C., et al., 2013. New Opinions on the Sedimentary Environment of the Upper Devonian Nanguang Formation in Jinghong, Southern Yunnan. Geological Bulletin of China, 32(10): 1596-1600(in Chinese with English abstract). http://www.researchgate.net/publication/296460438_New_opinions_on_the_sedimentary_environment_of_the_Upper_Devonian_Nanguang_Formation_in_Jinghong_southern_Yunnan/download
      [40] Zhong, D. L., 1998. The Paleotethys Orogenic Belt in West of Sichuan and Yunnan. Science Press, Beijing (in Chinese).
      [41] 冯庆来, 张振芳, 刘本培, 等, 2000. 思茅地块西缘龙洞河组放射虫动物群及其地质意义. 地层学杂志, 24(2): 126-128. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ200002006.htm
      [42] 黄汲清, 陈炳蔚, 1997. 中国及邻区特提斯海的演化. 北京: 地质出版社.
      [43] 李进宝, 2012. 云南省大平掌铜多金属矿床火山岩建造及年代学研究(硕士学位论文). 昆明: 昆明理工大学.
      [44] 李文昌, 潘桂棠, 侯增谦, 等, 2010. 西南"三江"多岛弧盆-碰撞造山成矿理论与勘查技术. 北京: 地质出版社.
      [45] 刘桂春, 2020. 滇西南早古生代原特提斯洋蛇绿混杂岩物质组成和形成时代(博士学位论文). 武汉: 中国地质大学.
      [46] 毛晓长, 王立全, 李冰, 等, 2012. 云县-景谷火山弧带大中河晚志留世火山岩的发现及其地质意义. 岩石学报, 28(5): 1517-1528. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201205016.htm
      [47] 彭智敏, 张辑, 关俊雷, 等, 2018. 滇西"三江"地区临沧花岗岩基早-中奥陶世花岗质片麻岩的发现及其意义. 地球科学, 43(8): 2571-2585. doi: 10.3799/dqkx.2018.102
      [48] 汝珊珊, 李峰, 吴静, 等, 2012. 云南大平掌铜多金属矿区花岗闪长斑岩地球化学特征及年代学研究. 岩石矿物学杂志, 31(4): 531-540. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201204007.htm
      [49] 王保弟, 王立全, 王冬兵, 等, 2018. 三江昌宁-孟连带原-古特提斯构造演化. 地球科学, 43(8): 2527-2550. doi: 10.3799/dqkx.2018.160
      [50] 吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200416001.htm
      [51] 俞赛赢, 冯凡斌, 刘桂春, 等, 2013. 云南景洪上泥盆统南光组沉积环境新议. 地质通报, 32(10): 1596-1600. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201310011.htm
      [52] 钟大赉, 1998. 滇川西部古特提斯造山带. 北京: 科学出版社.
    • 加载中
    图(12)
    计量
    • 文章访问数:  644
    • HTML全文浏览量:  226
    • PDF下载量:  53
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-03-05
    • 刊出日期:  2021-02-15

    目录

      /

      返回文章
      返回