• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    中建海底峡谷地貌及沉积特征的分段性

    田洁 宋军 马本俊 吴时国 吕福亮

    田洁, 宋军, 马本俊, 吴时国, 吕福亮, 2021. 中建海底峡谷地貌及沉积特征的分段性. 地球科学, 46(2): 708-718. doi: 10.3799/dqkx.2020.062
    引用本文: 田洁, 宋军, 马本俊, 吴时国, 吕福亮, 2021. 中建海底峡谷地貌及沉积特征的分段性. 地球科学, 46(2): 708-718. doi: 10.3799/dqkx.2020.062
    Tian Jie, Song Jun, Ma Benjun, Wu Shiguo, Lü Fuliang, 2021. Segmentation Features of Geomorphology and Sedimentary Structure of Zhongjian Canyon. Earth Science, 46(2): 708-718. doi: 10.3799/dqkx.2020.062
    Citation: Tian Jie, Song Jun, Ma Benjun, Wu Shiguo, Lü Fuliang, 2021. Segmentation Features of Geomorphology and Sedimentary Structure of Zhongjian Canyon. Earth Science, 46(2): 708-718. doi: 10.3799/dqkx.2020.062

    中建海底峡谷地貌及沉积特征的分段性

    doi: 10.3799/dqkx.2020.062
    基金项目: 

    辽宁省“兴辽英才计划”项目 XLYC1807161

    大连市高层次人才创新支持计划 2017RQ063

    辽宁省教育厅科研项目 QL201905

    国家科技支撑计划项目 2014BAB12B02

    中央高校基本科研业务费专项资金资助项目 3072019CFJ0512

    详细信息
      作者简介:

      田洁(1987-), 讲师, 主要从事海洋沉积与油气资源研究.ORCID: 0000-0001-7984-0325.E-mail: tianjie@dlou.edu.cn

      通讯作者:

      吴时国, E-mail: swu@sidsse.ac.cn

    • 中图分类号: P736.2

    Segmentation Features of Geomorphology and Sedimentary Structure of Zhongjian Canyon

    • 摘要: 中建海底峡谷具有分段性,但分段的关键地貌特征、各段沉积充填及其控制因素缺乏精细描述和系统论证.综合利用高分辨率二维和三维地震资料,结合水深地貌数据,对中建海底峡谷地貌及沉积特征进行了详细分析,总结了其南北段沉积过程的主控因素.中建海底峡谷呈NW向顺直展布于广乐隆起与西沙隆起之间,以华光礁附近的地貌高点为拐点被分为南北两段.中建海底峡谷北段沉积体系包括重力流沉积(水道、席状沉积、滑塌体)和底流沉积(漂积体、环槽、谷槽),南段以重力流水道和海底扇为主.北段沉积体系受底流和重力流交互作用控制,底流自中中新世开始出现,改造重力流水道,使其出现侧向迁移或翼部不对称现象,上新世以后重力流作用减弱,底流作用增强,沉积物波和漂积体广泛发育;峡谷南段水道表现出侵蚀-沉积-废弃的沉积旋回,未见底流沉积现象.相对海平面变化导致碳酸盐生产率变化影响物源供应,从而控制水道沉积演化,碳酸盐台地的“高位溢流”作用决定水道在高水位时发育.

       

    • 图  1  南海西北陆缘水深地形图

      Chen et al.(2014)Zhu et al.(2010)修改

      Fig.  1.  Bathytopographic map of the northwestern margin of the South China Sea

      图  2  研究区层序地层及特征

      Fig.  2.  Sequence stratigraphy and characteristics of the study area

      图  3  中建海底峡谷地形地貌特征

      图a中红线表示地震测线,红框表示研究区部分三维工区,黑线表示峡谷地貌图

      Fig.  3.  Geomorphology of the Zhongjian Canyon

      图  4  中建海底峡谷相关的地震相-沉积相

      图a~h依次为地震相A、地震相B、地震相C、地震相D、地震相E、地震相F、地震相G、地震相H

      Fig.  4.  Seismic-sedimentary facies of the Zhongjian Canyon

      图  5  中建海底峡谷北段上游沉积特征

      Fig.  5.  Sedimentary characteristics of the upper part of the northern Zhongjian Canyon

      图  6  中建海底峡谷北段上游放大图

      a.中中新世水道轴部向东迁移;b.天然堤不对称发育;c.沉积物波自上新世开始发育,现今海底仍存在

      Fig.  6.  Zoomed in map of the upper part of the northern Zhongjian Canyon

      图  7  中建海底峡谷北段下游沉积特征

      Fig.  7.  Sedimentary characteristics of the lower part of the northern Zhongjian Canyon

      图  8  中建海底峡谷南段上游沉积特征

      Fig.  8.  Sedimentary characteristics of the lower part of the southern Zhongjian Canyon

      图  9  中建海底峡谷南段中游和下游沉积特征

      a. 2.0 s处的时间切片(相当于上新世);b.中建海底峡谷南段中游剖面,显示4期水道充填;c. 中建海底峡谷南段下游剖面,U型水道消失,主要充填席状朵叶体

      Fig.  9.  Sedimentary characteristics of the middle and lower parts of the southern Zhongjian Canyon

      图  10  中建海底峡谷沉积体平面展布示意图

      底图为中中新世古地貌图.黑色虚线表示可能的底流流向,据Sun et al.(2017)修改

      Fig.  10.  Sketch map of the sedimentary systems in the Zhongjian Canyon

      表  1  中建海底峡谷各段剖面形态学参数统计

      Table  1.   Morphology parameter statistics of different sections of the Zhongjian Canyon

      剖面号 横截面形态 宽度(km) 下切深度(m) 宽深比
      3c V型 28 150 186.67
      3d U型 26 80 328.75
      3e UV型 17 50 340.00
      3f UV型 18 62 289.60
      3g U型 20 76 267.11
      下载: 导出CSV
    • [1] Betzler, C. , Fürstenau, J. , Lüdmann, T. , et al. , 2013. Sea-Level and Ocean-Current Control on Carbonate-Platform Growth, Maldives, Indian Ocean. Basin Research, 25(2): 172-196. https://doi.org/10.1111/j.1365-2117.2012.00554.x
      [2] Chen, H. , Xie, X. N. , Mao, K. N. , et al. , 2020. Depositional Characteristics and Formation Mechanisms of Deep-Water Canyon Systems along the Northern South China Sea Margin. Journal of Earth Science, 31(4): 808-819. https://doi.org/10.1007/s12583-020-1284-z
      [3] Chen, H. , Xie, X. N. , van Rooij, D. , et al. , 2014. Depositional Characteristics and Processes of Alongslope Currents Related to a Seamount on the Northwestern Margin of the Northwest Sub-Basin, South China Sea. Marine Geology, 355: 36-53. https://doi.org/10.1016/j.margeo.2014.05.008
      [4] Cronin, B. T. , Akhmetzhanov, A. M. , Mazzini, A. , et al. , 2005. Morphology, Evolution and Fill: Implications for Sand and Mud Distribution in Filling Deep-Water Canyons and Slope Channel Complexes. Sedimentary Geology, 179(1-2): 71-97. https://doi.org/10.1016/j.sedgeo.2005.04.013
      [5] Fenner, P. , Kelling, G. , Stanley, D. J. , 1971. Bottom Currents in Wilmington Submarine Canyon. Nature Physical Science, 229(2): 52-54. https://doi.org/10.1038/physci229052a0
      [6] Glaser, K. S. , Droxler, A. W. , 1991. High Production and Highstand Shedding from Deeply Submerged Carbonate Banks, Northern Nicaragua Rise. SEPM Journal of Sedimentary Research, 61(1): 128-142. https://doi.org/10.1306/d42676a4-2b26-11d7-8648000102c1865d
      [7] Gong, C. L. , Wang, Y. M. , Zhu, W. L. , et al. , 2013. Upper Miocene to Quaternary Unidirectionally Migrating Deep-Water Channels in the Pearl River Mouth Basin, Northern South China Sea. AAPG Bulletin, 97(2): 285-308. https://doi.org/10.1306/07121211159
      [8] Hall, R. , 2002. Cenozoic Geological and Plate Tectonic Evolution of SE Asia and the SW Pacific: Computer-Based Reconstructions, Model and Animations. Journal of Asian Earth Sciences, 20(4): 353-431. https://doi.org/10.1016/s1367-9120(01)00069-4
      [9] He, Y. , Zhong, G. F. , Wang, L. L. , et al. , 2014. Characteristics and Occurrence of Submarine Canyon-Associated Landslides in the Middle of the Northern Continental Slope, South China Sea. Marine and Petroleum Geology, 57: 546-560. https://doi.org/10.1016/j.marpetgeo.2014.07.003
      [10] Klaucke, I. , Masson, D. G. , Kenyon, N. H. , et al. , 2004. Sedimentary Processes of the Lower Monterey Fan Channel and Channel-Mouth Lobe. Marine Geology, 206(1-4): 181-198. https://doi.org/10.1016/j.margeo.2004.02.006
      [11] Lewis, K. B. , Pantin, H. M. , 2002. Channel-Axis, Overbank and Drift Sediment Waves in the Southern Hikurangi Trough, New Zealand. Marine Geology, 192(1-3): 123-151. https://doi.org/10.1016/s0025-3227(02)00552-2
      [12] Li, J. , Li, W. , Alves, T. M. , et al. , 2019. Different Origins of Seafloor Undulations in a Submarine Canyon System, Northern South China Sea, Based on Their Seismic Character and Relative Location. Marine Geology, 413: 99-111. https://doi.org/10.1016/j.margeo.2019.04.007
      [13] Liu, C. S. , Lundberg, N. , Reed, D. L. , et al. , 1993. Morphological and Seismic Characteristics of the Kaoping Submarine Canyon. Marine Geology, 111(1-2): 93-108. https://doi.org/10.1016/0025-3227(93)90190-7
      [14] Liu, J. , Su, M. , Qiao, S. H. , et al. , 2016. Forming Mechanism of the Slope-Confined Submarine Canyons in the Baiyun Sag, Pearl River Mouth Basin. Acta Sedimentologica Sinica, 34(5): 940-950(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201605013.htm
      [15] Lu, Y. T. , Li, W. , Wu, S. G. , et al. , 2018. Morphology, Architecture, and Evolutionary Processes of the Zhongjian Canyon between Two Carbonate Platforms, South China Sea. Interpretation, 6(4): 1-15. https://doi.org/10.1190/int-2017-0222.1
      [16] Lüdmann, T. , Wong, H. K. , Berglar, K. , 2005. Upward Flow of North Pacific Deep Water in the Northern South China Sea as Deduced from the Occurrence of Drift Sediments. Geophysical Research Letters, 32(5): L05614. https://doi.org/10.1029/2004gl021967
      [17] Luo, W. D. , Zhou, J. , Li, X. J. , et al. , 2018. Morphology and Structure and Evolution of West Basin Canyon, South China Sea. Earth Science, 43(6): 2172-2183(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201806029.htm
      [18] Migeon, S. , Savoye, B. , Babonneau, N. , et al. , 2004. Processes of Sediment-Wave Construction along the Present Zaire Deep-Sea Meandering Channel: Role of Meanders and Flow Stripping. Journal of Sedimentary Research, 74(4): 580-598. https://doi.org/10.1306/091603740580
      [19] Mulder, T. , Ducassou, E. , Hanquiez, V. , et al. , 2019. Contour Current Imprints and Contourite Drifts in the Bahamian Archipelago. Sedimentology, 66(4): 1192-1221. https://doi.org/10.1111/sed.12587
      [20] Posamentier, H. W., Vail, P. R., 1988. Eustatic Controls on Clastic Deposition II: Sequence and Systems Tract Models. In: Wilgus, C.K., Hastings, B.S., Posamentier, H.W., et al., eds., Sea-Level Changes. SEPM Society for Sedimentary Geology, Tulsa. https://doi.org/10.2110/pec.88.01.0125
      [21] Puga-Bernabéu, Á. , Webster, J. M. , Beaman, R. J. , et al. , 2011. Morphology and Controls on the Evolution of a Mixed Carbonate-Siliciclastic Submarine Canyon System, Great Barrier Reef Margin, North-Eastern Australia. Marine Geology, 289(1-4): 100-116. https://doi.org/10.1016/j.margeo.2011.09.013
      [22] Puga-Bernabéu, Á. , Webster, J. M. , Beaman, R. J. , et al. , 2013. Variation in Canyon Morphology on the Great Barrier Reef Margin, North-Eastern Australia: The Influence of Slope and Barrier Reefs. Geomorphology, 191: 35-50. https://doi.org/10.1016/j.geomorph.2013.03.001
      [23] Schwarz, E. , Arnott, R. W. C. , 2007. Anatomy and Evolution of a Slope Channel-Complex Set (Neoproterozoic Isaac Formation, Windermere Supergroup, Southern Canadian Cordillera): Implications for Reservoir Characterization. Journal of Sedimentary Research, 77(2): 89-109. https://doi.org/10.2110/jsr.2007.015
      [24] Su, M. , Xie, X. N. , Li, J. L. , et al. , 2011. Gravity Flow on Slope and Abyssal Systems in the Qiongdongnan Basin, Northern South China Sea. Acta Geologica Sinica, 85(1): 243-253. https://doi.org/10.1111/j.1755-6724.2011.00394.x
      [25] Su, M. , Xie, X. N. , Xie, Y. H. , et al. , 2014. The Segmentations and the Significances of the Central Canyon System in the Qiongdongnan Basin, Northern South China Sea. Journal of Asian Earth Sciences, 79: 552-563. https://doi.org/10.1016/j.jseaes.2012.12.038
      [26] Sun, M. J. , Gao, H. F. , Li, X. J. , 2018. Sedimentary Characteristics and Origin of Taitung Canyon in Eastern Waters of Taiwan Island. Earth Science, 43(10): 3709-3718(in Chinese with English abstract). http://www.researchgate.net/publication/329983998_Sedimentary_Characteristics_and_Origin_of_Taitung_Canyon_in_Eastern_Waters_of_Taiwan_Island
      [27] Sun, Q. L. , Cartwright, J. , Lüdmann, T. , et al. , 2017. Three-Dimensional Seismic Characterization of a Complex Sediment Drift in the South China Sea: Evidence for Unsteady Flow Regime. Sedimentology, 64(3): 832-853. https://doi.org/10.1111/sed.12330
      [28] Tian, J. , Wu, S. G. , Lü, F. , et al. , 2015. Middle Miocene Mound-Shaped Sediment Packages on the Slope of the Xisha Carbonate Platforms, South China Sea: Combined Result of Gravity Flow and Bottom Current. Deep Sea Research Part II: Topical Studies in Oceanography, 122: 172-184. https://doi.org/10.1016/j.dsr2.2015.06.016
      [29] Tian, J. , Wu, S. G. , Wang, D. W. , et al. , 2016. Characteristics of Periplatform Channels of the Xisha Area, Northern South China Sea. Marine Sciences, 40(6): 101-109(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HYKX201606015.htm
      [30] Tournadour, E. , Mulder, T. , Borgomano, J. , et al. , 2017. Submarine Canyon Morphologies and Evolution in Modern Carbonate Settings: The Northern Slope of Little Bahama Bank, Bahamas. Marine Geology, 391: 76-97. https://doi.org/10.1016/j.margeo.2017.07.014
      [31] Viana, A. R. , Faugères, J. C. , Stow, D. A. V. , 1998. Bottom-Current-Controlled Sand Deposits: A Review of Modern Shallow- to Deep-Water Environments. Sedimentary Geology, 115(1-4): 53-80. https://doi.org/10.1016/s0037-0738(97)00087-0
      [32] Wang, P. X. , Li, Q. Y. , Tian, J. , 2014. Pleistocene Paleoceanography of the South China Sea: Progress over the Past 20 Years. Marine Geology, 352: 381-396. https://doi.org/10.1016/j.margeo.2014.03.003
      [33] Webster, J. M. , Beaman, R. J. , Puga-Bernabéu, Á. , et al. , 2012. Late Pleistocene History of Turbidite Sedimentation in a Submarine Canyon off the Northern Great Barrier Reef, Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 331-332: 75-89. https://doi.org/10.1016/j.palaeo.2012.02.034
      [34] Wu, J. P. , Wang, Y. M. , Wang, H. R. , et al. , 2012. The Interaction between Deep-Water Turbidity and Bottom Currents: A Review. Geological Review, 58(6): 1110-1120(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201206013.htm
      [35] Wu, S. G. , Yang, Z. , Wang, D. W. , et al. , 2014. Architecture, Development and Geological Control of the Xisha Carbonate Platforms, Northwestern South China Sea. Marine Geology, 350: 71-83. https://doi.org/10.1016/j.margeo.2013.12.016
      [36] Zhu, M. Z. , Graham, S. , Pang, X. , et al. , 2010. Characteristics of Migrating Submarine Canyons from the Middle Miocene to Present: Implications for Paleoceanographic Circulation, Northern South China Sea. Marine and Petroleum Geology, 27(1): 307-319. https://doi.org/10.1016/j.marpetgeo.2009.05.005
      [37] 刘杰, 苏明, 乔少华, 等, 2016. 珠江口盆地白云凹陷陆坡限制型海底峡谷群成因机制探讨. 沉积学报, 34(5): 940-950. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201605013.htm
      [38] 罗伟东, 周娇, 李学杰, 等, 2018. 南海海盆盆西峡谷的形态与结构及形成演化. 地球科学, 43(6): 2172-2183. doi: 10.3799/dqkx.2017.615
      [39] 孙美静, 高红芳, 李学杰, 2018. 台湾东部海域台东峡谷沉积特征及其成因. 地球科学, 43(10): 3709-3718. doi: 10.3799/dqkx.2017.515
      [40] 田洁, 吴时国, 王大伟, 等, 2016. 西沙海域碳酸盐台地周缘水道沉积体系. 海洋科学, 40(6): 101-109. https://www.cnki.com.cn/Article/CJFDTOTAL-HYKX201606015.htm
      [41] 吴嘉鹏, 王英民, 王海荣, 等, 2012. 深水重力流与底流交互作用研究进展. 地质论评, 58(6): 1110-1120. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201206013.htm
    • 加载中
    图(10) / 表(1)
    计量
    • 文章访问数:  907
    • HTML全文浏览量:  268
    • PDF下载量:  60
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-11-28
    • 刊出日期:  2021-02-15

    目录

      /

      返回文章
      返回